Supplemental File

METHODS

Animals. All procedures with animals in this study were performed according to approved protocols under the supervision of the Institutional Animal Care and Use Committee of the University of Colorado Anschutz Medical Campus (Aurora, CO). All mice were C57bl6/J background. The experiments in mice began when they were 12 weeks old. Sprague Dawley (SD) male rats weighing 210-245 grams were used for rat experiments.

Transgenic mice and genotyping.

Hif1a floxed mice (1), *Hif-2a* floxed mice (2) were constructed wherein exon 2 (coding DNA binding domain) of the Hif1a or Hif2a gene was floxed with LoxP sites. *UbcCreERT*⁺ mice express a fusion protein consisting of cre recombinase and the human estrogen receptor binding domain under control of a ubiquitously active Ubiquitin-C gene promoter, in which Cre recombinase is activated upon tamoxifen exposure. Crossing of Hif1a^{fl/fl} or Hif2a^{fl/fl} mice with UbcCreERT⁺ mice generated *Hif1a^{fl/fl};UbcCreERT*⁺mice, *Hif2a^{fl/fl};UbcCreERT*⁺ mice and *Hif2a^{fl/WT};UbcCreERT*⁺ mice, in which tamoxifen treatment completely or partially deleted *Hif1a* or *Hif2a* gene in all cell types in adult mice (See Suppl Fig 1A-C for breeding information and Suppl Table 1 for Hifa reduction efficiency). Endothelial cell–specific knockout of *Hif2a*^{fl/fl} mice to mice expressing cre recombinase under the control of the VE-cadherin promoter (from the Jackson laboratory, kindly provided by Dr. Eltzschig's laboratory, University of Colorado, Denver, CO, USA) (See Suppl Fig 1D for breeding

information)(3). In all cases, mouse genotypes were determined using real time PCR of tail genomic DNAs by a commercial vendor (Transnetyx, Cordova, TN, USA). Agematched (about 12 wk old), male and female mice with the desired genotypes were used for experimentation.

Tamoxifen treatment in mice. To delete Hif1 α or Hif2 α gene in adult mice, *UbcCreERT*⁺ or *UbcCreERT* (as control) mice were injected with 100 µl of tamoxifen solution (in peanut oil at 10mg/ml) i. p. once daily over five consecutive days. Mice were then allowed to rest for one week before being exposed to hypobaric hypoxia or normoxia.

Antisense oligonucleotide treatment in mice. Hif1 α antisense oligonucleotide (henceforth Hif1 α -ASO; 75mg/kg; 298745-11) or Hif2 α -ASO (50mg/kg; 589983-5) or non-specific ASO (control-ASO; 549148-18) was injected intraperitoneally twice per week, beginning one week before the hypoxia exposure and continued during the hypoxia exposure. ASOs were provided by Ionis Pharmaceuticals, Inc. (Carlsbad, CA, USA). See Suppl Table for HIF1 α and HIF2 α mRNA reduction rate.

Rats treated with HIF2 inhibitor PT2567. Sprague Dawley (SD) male rats weighing 210-245 grams (Charles River Laboratories) were housed in chambers under normoxia or hypoxic (high altitude ~ 18,000 feet) conditions for four days or four weeks. Rats were dosed with vehicle methylcellulose (0.5%)/Tween-80 (0.5%) or PT2567 (300 mg/kg/day) (4), beginning the day they were placed in chambers. PT2567 was provided by Peloton Therapeutics, Inc.

Exposure to chronic hypoxia. Mice or rats were housed for indicated times (5 weeks for mice, 4 days or 4 weeks for rats) in chambers equipped for continuous hypobaric

hypoxia (0.5 atm, equivalent to 5,486m/18,000 feet altitude and corresponding to FiO_2 0.1). Chambers were vented to room atmosphere weekly for cage maintenance (twice weekly in case of ASO administration). Control mice were housed in identical chambers at sea level atmosphere (1.0 atm, 0m altitude, FiO_2 0.21).

Measurement of right ventricular systolic pressure in mice and mean pulmonary arterial pressure in rats. RV pressure measurements were performed essentially as previously described (5). Briefly, mice were anesthetized with isoflurane. The RV was directly catheterized with a fluid-filled catheter interfaced with a pressure transducer connected to a dedicated computer. Trains of successive pressure waveforms were analyzed and averaged over three seconds to determine RV systolic pressure (RVSP). MPAP measurements were performed as described (6). Additional measurements were performed in ASO-experiments utilizing a 1.4 French Pressure Volume Conductance System SPR-839 (Millar Instruments, Houston, TX) inserted into the RV via a surgical transdiaphragmatic approach.

Tissue preparation, hematocrit measurement, Fulton index and weight ratios. Animals were deeply anesthetized. Blood samples were taken by left ventricular puncture and the hematocrit was measured using glass capillaries and a suitable centrifuge (IEC, model MB micro-capillary centrifuge). Lung vasculature was flushed with PBS through the RV after incision of the left atrium. For immunohistochemical analysis, left lungs were inflated with agarose in situ and fixed in paraformaldehyde (4%) after excision. Left lungs were then paraffin embedded and cut into 5 µm sections. Right lung lobes were excised, snap frozen in liquid nitrogen and stored at -80°C for RNA extraction to conduct pulmonary gene expression analysis. To determine right ventricular hypertrophy, the atria were removed from the heart. Subsequently, the heart was dissected into sections of RV free wall and LV free wall including the septum (LV+S) or LV only. Heart tissue was patted dry, weights were taken and the Fulton index (Fulton index = Weight_{RV}/Weight_{LV+S}) or Weight_{RV}/Weight_{LV} and the ratio of weight_{RV}/bodyweight were calculated. After taking weights, heart tissue was snap frozen in liquid nitrogen and stored at -80°C for RNA extraction to conduct right ventricle gene expression analysis.

Immunohistochemistry of lung tissue. Vascular remodeling was quantified by immunohistochemical staining with specific antibody and hematoxylin counterstaining as previously described (5). Alpha-smooth muscle actin antibody (α SMA) (Abcam ab 66133 rabbit polyclonal antibody; dilution 1:400) was used to assess vessel muscularization. Using a Nikon microscope, twelve fields (1µm² each) per lung were inspected and muscularized vessels (α SMA+) were counted. Anti-ED1 antibody, anti-Ki67 antibody, or anti-Tenascin C antibody was used to assess monocyte/macrophage accumulation, cell proliferation, or vessel remodeling respectively.

Cell culture and treatments. Normal human pulmonary artery endothelial cells and smooth muscle cells were provided by Pulmonary Hypertensive Breakthrough Initiative. Human ECs were cultured in endothelial cell basal medium plus supplements (Cat#: CC-3202, Lonza Walkersville, MD USA). Human SMCs were cultured in smooth muscle cell basal medium plus supplements (Cat#: CC-3182, Lonza Walkersville, MD USA). Human pulmonary artery Fibs are from control donors undergoing lobectomy or pneumonectomy at Papworth Hospital, Cambridge, UK and were cultured in fibroblast growth medium (DMEM) (15-018-CV, Corning, VA USA) supplemented with fetal bovine

serum (FBS) (10%, Cat#: 100-106, Gemini, CA USA) and Penicillin-Streptomycin (P/S) (30-002-CI, Corning, VA USA), MEM Nonessential Amino Acids (25-025-CI, Corning, VA USA) and L-Glutamine (4mM, 25-005-CI, Corning, VA USA). When hypoxia treatment was needed, cells were placed in normoxia (Nx, 21% O2) or hypoxia (Hx, 1.5% O2) for 16 h for HIF target gene studies, cultured under regular 10% FBS medium. To assess the role of HIF1 or HIF2 in the increased expression of HIF target genes in hypoxic EC cells, ECs were treated with HIF2 inhibitor PT2567 at concentration of 0.1, 1. or 10 μ M or targeted with siRNA against Hif2 α or Hif1 α mRNA.

Gene expression analysis. After tissue disruption and homogenization using a beadmill system, RNA from organs such as lung and heart, or cells was isolated using RNeasy column kits (Qiagen). Synthesis of cDNA was performed using a commercially available kit according to the manufacturer's instructions (iScript Advanced cDNA Synthesis Kit, Bio-Rad, Hercules, CA, USA). Quantification of messenger RNA levels was performed by reverse transcription quantitative PCR (RT–qPCR) using iQ Universal SYBR Green Supermix (Bio-Rad) and CFX384 Real Time System (Bio-rad). All primer sets for RT–qPCR were validated for their specificity and amplification efficiency (85% to 110%) using melt curve analysis, RT–qPCR product sequencing and standard dilution analysis. Primer sequences are listed in Suppl. Table 6. The qPCR results were analyzed using the $\Delta\Delta$ CT method using 18S ribosomal RNA and beta actin messenger RNA as reference genes and presented in relative to samples from controls. For Fig. 3A) and Suppl. Fig. 8), commercially TaqMan probes and reagents were used (Applied Biosystems, Grand Island, NY), according to the manufacturer's instructions. At least three independent experiments were performed for all in vitro results presented in this paper.

Statistics. In general, data is reported as mean +/- SEM. Statistical differences were evaluated by 2-way ANOVA test as well as an unpaired, two-tailed t-test. Figure legends specified the statistical analysis used for the data in each panel. Star (*) is used to indicate the difference between hypoxia versus normoxia in the same genotype (or treatment) group. # is used to show the differences between genotypes or treatments under hypoxic condition while ^ is used to mark the differences between genotypes or treatments under normoxic condition. Survival curves were compared by log-rank test. P<0.05 (* or # or ^) was considered statistically significant, other levels of statistical significance are reported as p<0.01 (** or ## or ^^) and p<0.001 (*** or ### or ^^^). Group size (n) is reported in the corresponding figure legends. Data was logged using Excel (Microsoft Corp.), graphing and calculations were performed using Graphpad Prism (GraphPad Software Inc.) and figures were designed using Powerpoint (Microsoft Corp.).

References

1. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000;60(15):4010-5.

2. Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci U S A. 2007;104(7):2301-6.

3. Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A, Harvey NL, et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev Dyn. 2006;235(3):759-67.

4. Wehn PM, Rizzi JP, Dixon DD, Grina JA, Schlachter ST, Wang B, et al. Design and Activity of Specific Hypoxia-Inducible Factor-2alpha (HIF-2alpha) Inhibitors for the Treatment of Clear Cell Renal Cell Carcinoma: Discovery of Clinical Candidate (S)-3-((2,2-Difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1 H-inden-4-yl)oxy)-5fluorobenzonitrile (PT2385). J Med Chem. 2018;61(21):9691-721.

5. Brown RD, Ambler SK, Li M, Sullivan TM, Henry LN, Crossno JT, Jr., et al. MAP kinase kinase kinase-2 (MEKK2) regulates hypertrophic remodeling of the right ventricle in hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2013;304(2):H269-81.

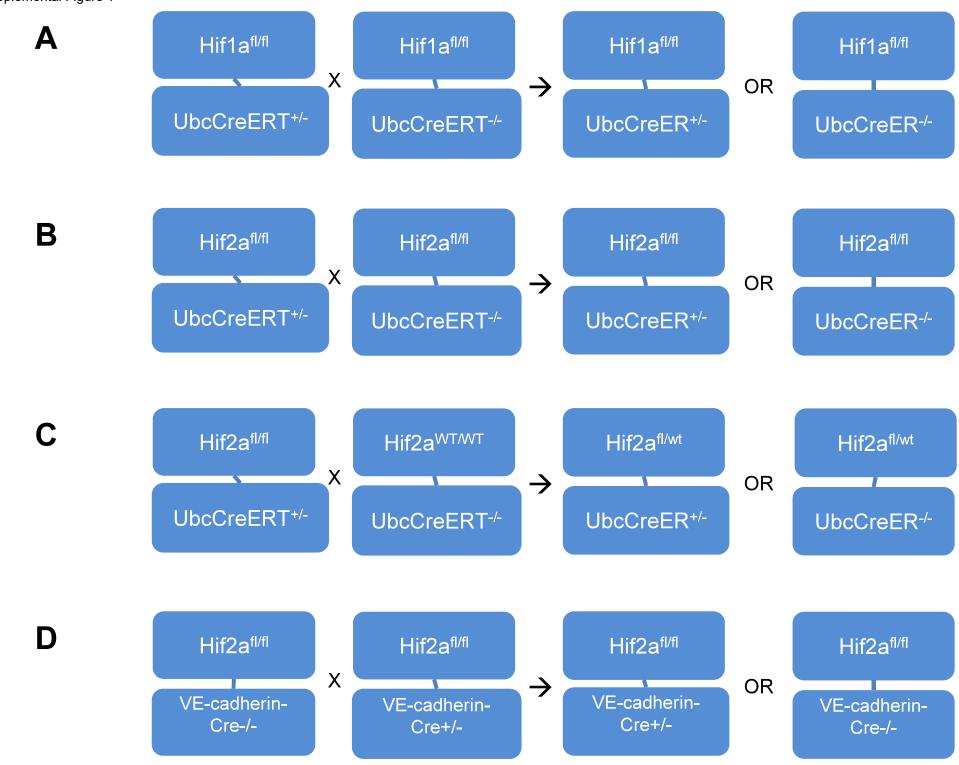
6. Cavasin MA, Demos-Davies KM, Schuetze KB, Blakeslee WW, Stratton MS, Tuder RM, et al. Reversal of severe angioproliferative pulmonary arterial hypertension and right ventricular hypertrophy by combined phosphodiesterase-5 and endothelin receptor inhibition. J Transl Med. 2014;12:314.

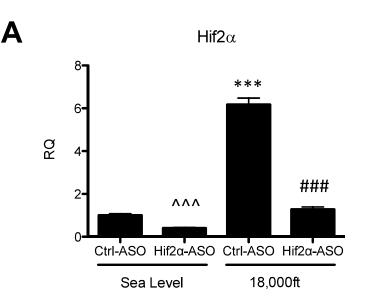
Supplementary Figure 1. Breeding schemes to generate the transgenic mice used in the study. A) Breeding scheme to generate $Hif1\alpha^{fl/fl};UBC-creER^{+/-}$ and $Hif1\alpha^{fl/fl};UBC-creER^{-/-}$ mice. B) Breeding scheme to generate $Hif2\alpha^{fl/fl};UBC-creER^{+/-}$ and $Hif2\alpha^{fl/fl};UBC-creER^{-/-}$ mice. C) Breeding scheme to generate $Hif2\alpha^{fl/wt};UBC-creER^{+/-}$ and $Hif2\alpha^{fl/wt};UBC-creER^{-/-}$ mice D.) Breeding scheme to generate $Hif2\alpha^{fl/fl};Ve$ cadherin-cre^{+/-} and $Hif2\alpha^{fl/fl};Ve-$ cadherin-cre^{-/-} mice.

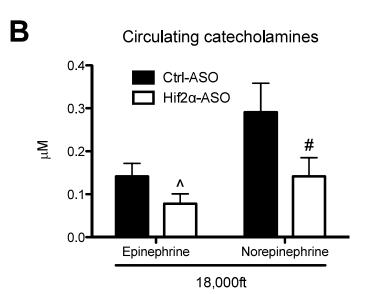
Supplementary Figure 2. Hif2 ASO reduces cardiac function of mice under hypoxia. Mice were treated Control or HIF2a ASO as described in Fig. 3. At the end of the experiment, cardiac expression of Hif2a mRNA was determined by qRT-PCR (A). Levels of catecholamines in blood plasma as determined by HPLC (B). C-E: Parameters of cardiac function, Millar catheter measurements. Statistical significance determined by t-test (B) or by 2-way ANOVA (other panels).

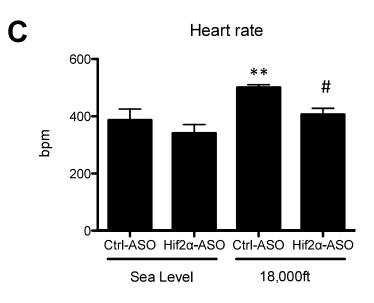
Supplementary Figure 3. HIF2 inhibitor PT2567 significantly normalizes the levels of some misexpressed genes in lungs of rats exposed to hypoxia for 4 weeks. A-C: levels of HIF target genes and PH related genes in the lungs from rats under normoxia or hypoxia, treated with control reagent or HIF2 inhibitor PT2567 (N=6 for each group). A) Classical HIF target genes; B) Genes involved in inflammation;
C) Genes involved in signaling and proliferation. Statistical significance determined by t-test.

Supplementary Figure 4. HIF inhibitor PT2567 significantly normalizes the levels of some misexpressed genes in lungs of the rats exposed to hypoxia for four days. A-C: levels of HIF target genes and PH related genes in the lungs of rats under normoxia or hypoxia, treated with control or HIF2 inhibitor PT2567 (N=6 for each group). A) Classical HIF target genes. B) Genes involved in inflammation.
C) Genes involved in signaling and proliferation. Statistical significance determined by t-test.

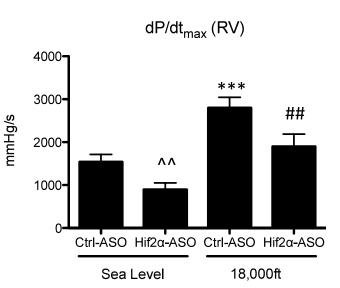

Supplementary Figure 5. Hif2 α , not Hif1 α siRNA significantly prevents gene expression changes observed in normal pulmonary artery endothelial cells in response to acute hypoxia. To determine if HIF2 or HIF1 activity is responsible for hypoxia-mediated gene expression changes in EC, normal human pulmonary artery EC cells (N=3) were transfected with control or siRNAs targeting Hif1 α or Hif2 α mRNAs. Post-transfection of 16 hours, cells were exposed to normoxia or hypoxia (1.5% O2) for additional 16 hours, and then cells were collected for RNA preparation and qRT-PCR. A) Hif1 α and Hif2 α mRNA levels, to monitor the knockdown efficiency; B) Select classical HIF target genes; C) Genes involved in inflammation that are significantly induced by hypoxia in EC (Fig 6B); D) Genes involved in signaling and proliferation that are significantly altered by hypoxia in EC (Fig 6C). Statistical significance determined by t-test.

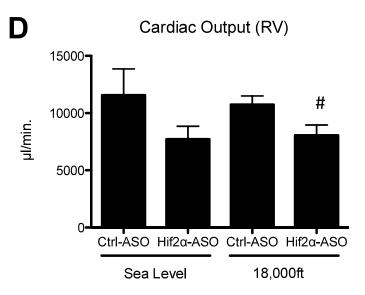

Supplementary Figure 6. Signals generated from normal pulmonary vascular EC under hypoxia, in a HIF2 activity dependent manner, significantly activate normal pulmonary vascular SMCs. Conditional medium prepared from normal pulmonary vascular ECs (N=3), cultured under normoxia or hypoxia (1.5% O2 for 24 hours), in the presence of DMSO or HIF2 inhibitor PT2567 (1 μM), were added to culture medium of normal pulmonary vascular SMCs (N=3) that were cultured under normaxia. After 24 hours, SMC cells were collected for RNAs that were used to examine the mRNA levels of the indicated genes involved in cell proliferation (CCNE1 and CCNE2), pro-inflammation (CCL2) and anti-apoptosis (BCL2, BCL2L1 and BIRC5). Statistical significance determined by t-test.

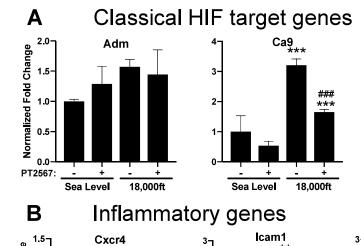

Supplementary Figure 7. Endothelial deletion of Hif2 α markedly attenuates some pathologic gene expression in the lungs of chronically (5 weeks) hypoxic mice. A-C: levels of HIF target genes and PH related genes in the lungs of normoxic or hypoxic mice, with or without EC deletion of Hif2 α gene. A) Classical HIF target genes. B) Genes involved in inflammation. C) Genes involved in signaling and proliferation. Statistical significance determined by t-test.

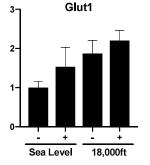

Supplementary Figure 8. Endothelial deletion of Hif 2α markedly attenuates pathologic gene

expression in the RVs of chronically hypoxic mice. In the hypertrophic heart, cardiac myocytes display an altered gene signature, such as isoform switching from α -myosin heavy chain (α -MHC, Myh6) to β -MHC (Myh7) and re-expression of skeletal muscle α -actin (Acta1). **A**) Increased expression of Acta1 was attenuated in hypoxic EC-Hif2 α KO mice. **B**) Myh6 expression was reduced in hypoxia-exposed mice, but was not reversed in hypoxic EC-Hif2 α KO mice. **C**) Increased expression of Myh7 was attenuated in hypoxic EC-Hif2 α KO mice. Statistical significance determined by t-test. Supplemental Figure 1







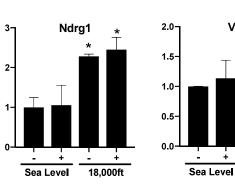

Ε

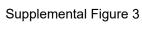
2-

Sdf1

Sea Level

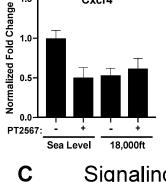
2.

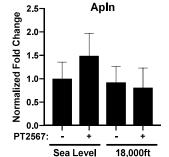

###

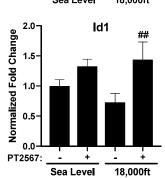

Т

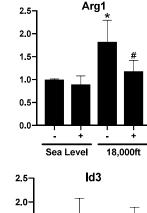
18,000ft

18,000ft





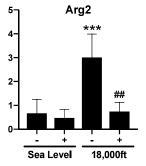

Vegf


18,000ft

1.5-

1.0-

0.5-


0.0

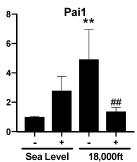
Sea Level

Sea Level

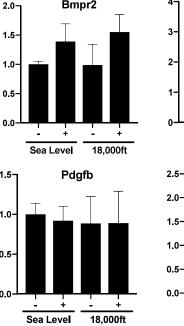
18,000ft

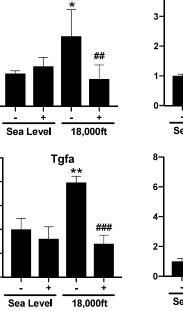
1.0

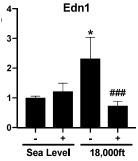
0.5

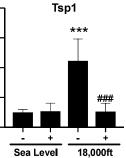

0.0

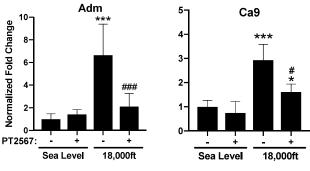
1.5-


1.0-

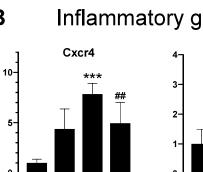

0.5


0.0



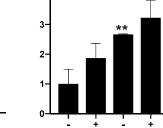


Normalized Fold Change


PT2567:

С

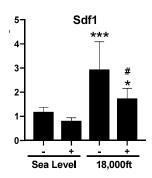
Classical HIF target genes



Inflammatory genes Β

18,000ft

Signaling


Sea Level

15-

lcam1

**

18,000ft

Glut1

##

**

18,000ft

5-

2-

Sea Level

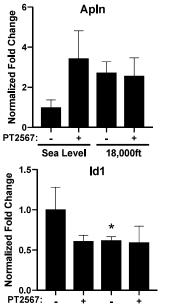
PT rat 4 days

3-

2-

Sea Level

Vegf

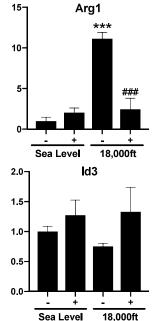

**

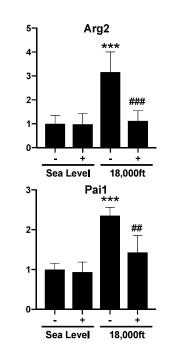
####

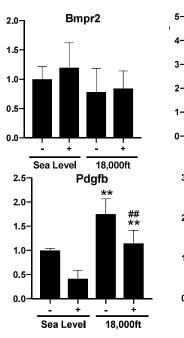
18,000ft

3-

2-




Sea Level

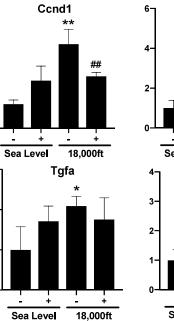

18,000ft

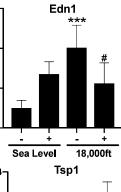
+

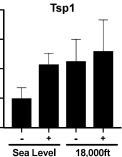
Sea Level

Ndrg1

##

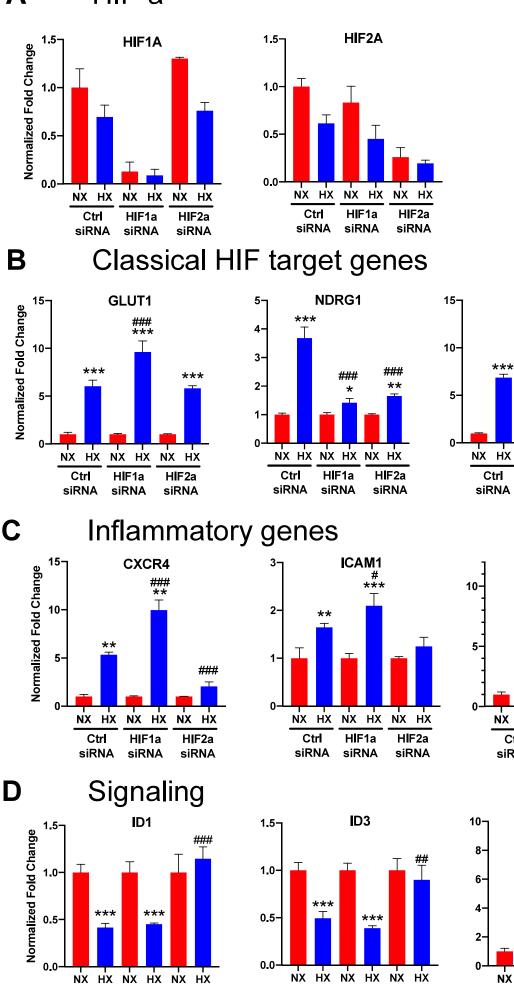

18,000ft

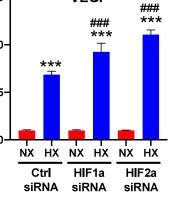

6-


4

2

Sea Level





Supplemental Figure 4

Supplemental Figure 5

SDF1

нх

Ctrl

siRNA

NX HX

Ctrl

siRNA

NX

HIF1a

siRNA

НΧ

ŃХ нх

HIF1a

siRNA

TGFA

###

####

###

ŃХ НX

HIF2a

siRNA

#

NX HX

HIF2a

siRNA

VEGF

С

Ctrl

siRNA

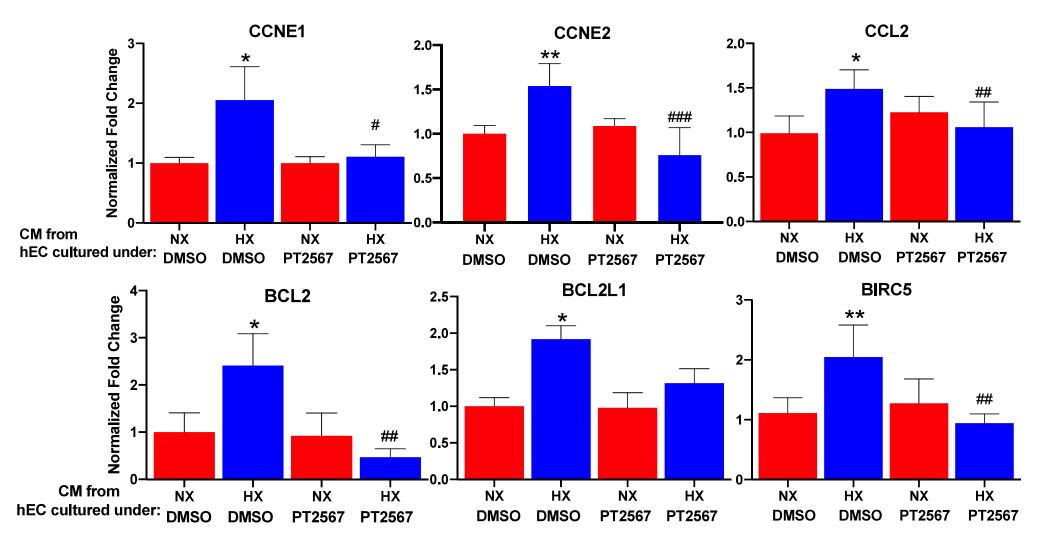
HIF1a

siRNA

HIF2a

siRNA

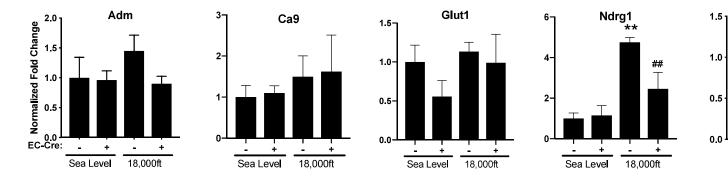
Ctrl


siRNA

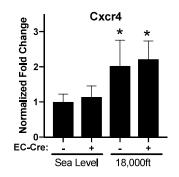
HIF1a

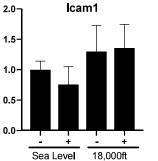
siRNA

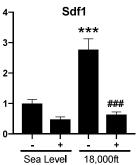
HIF2a

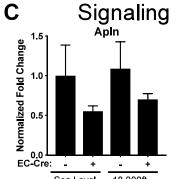

siRNA

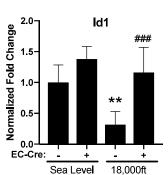
Α

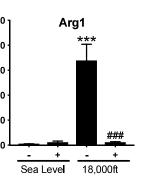

Classical HIF target genes

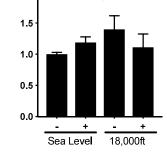

Supplemental Figure 7

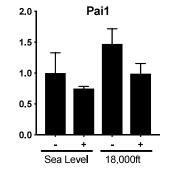


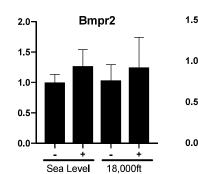

Β

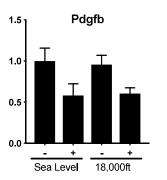

Inflammatory genes

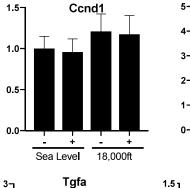






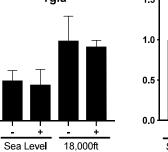


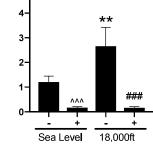

ld3


Arg2

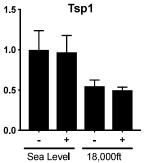
2-

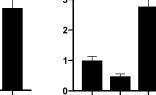
Vegf

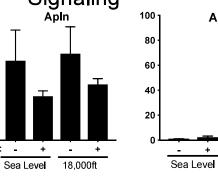

+


Sea Leve

-


18,000ft


+

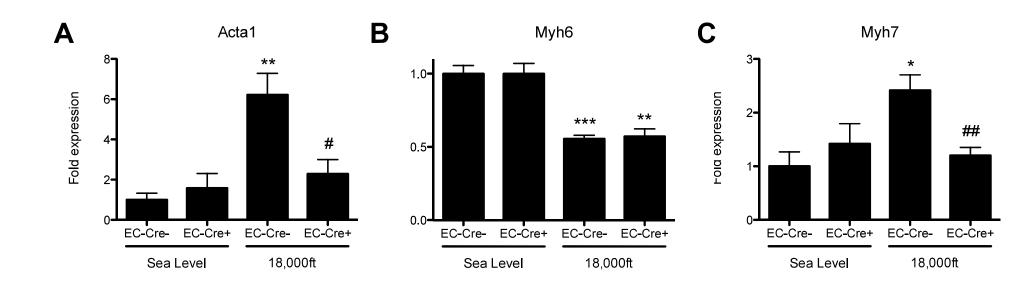


Edn1

2.0

1.5

1.0-


0.5-

0.0

Sea Leve

18,000ft

Supplemental Figure 8

Mice	Reduction of mRNA
$Hif1\alpha^{fl/fl};UbcCreERT^{+}$	Hif1α: -80% ±5%
$Hif2\alpha^{fl/fl};UbcCreERT^{+}$	Hif2α: -71% ±6%
$Hif2\alpha^{fl/WT};UbcCreERT^{+}$	Hif2α: -36% ±4%
Hif1a-ASO	Hif1α: -60% ± 5% (RV)
Hif2α-ASO	Hif2α: -72% ± 4%

Supplementary Table 1. Hif1a and HIF2a mRNA reduction in floxed and ASO treated mice. Rate of reduction in Hifa mRNA after hypoxia exposure (experimental setup: Fig. 1A and Fig. 3C)) in cre-positive mice and in ASO-treated animals, compared to the appropriate controls (cre-negative mice or Ctrl-ASO). Similar results were obtained for normoxic animals (data not shown). Expression was studied in lung tissue, with the exception of Hif1 α ASO, for which RV tissue was used (no lung tissue available). There was no reduction of Hif1 α , when Hif2 α was targeted and vice versa.

	Sea I	Level	18,000ft		
	Hif1a ^{fl/fl} ; Hif1a ^{fl/fl} ; UbcCre- UbcCre+		Hif1a ^{fl/fl} ; <i>UbcCre-</i>	Hif1a ^{fl/fl} ; <i>UbcCre+</i>	
Weigth (g)	29.3	27.3	24.2 (**)	22.0 (**)(^)	
Females / Males (n)	6/3	9/2	3/7	5/4	
Heart Rate (bpm)	366	340	448 (***)	435 (*)	

Supplementary Table 2. Parameters were taken after exposure to either sea level or high altitude at the end of the experiment. *, ** and ***: p<0.05, p<0.01 and p<0.001 for sea level vs. high altitude within the same genotype. ^p<0.1 for cre-negative vs. Cre-positive within the same condition. T-test was used.

	Sea I	Level	18,000ft		
	Hif2α ^{fl/w⊤} ; <i>UbcCre-</i>	Hif2α ^{fl/wτ} ; <i>UbcCre+</i>	Hif2α ^{fl/w⊤} ; <i>UbcCre-</i>	Hif2α ^{fl/wT} ; <i>UbcCre+</i>	
Weight (g)	25,0	26,3	23,5	23,1	
Females / Males (n)	5/2	1/3	3/7	5/7	
Heart Rate (bpm)	397,1	390,0	390,0	360,0	

Supplementary Table 3. Parameters were taken after exposure to either sea level or high altitude at the end of the experiment.

	Sea Level		18,000ft	
	Ctrl-ASO Hif2a-ASO		Ctrl-ASO	Hif2a-ASO
Weight (g)	27,6	26,2	23,3 (**)	22,4 (***)(^)
Females / Males (n)	0/8	0/8	0/8	0/7
Heart Rate (bpm)	386,7	340,5	500,5 (**)	406,4 (##)

Supplementary Table 4. Parameters were taken after exposure to either sea level or high altitude at the end of the experiment. **, ***: p<0.01 and p<0.001 for sea level vs. high altitude within the same ASO-treatment group. ^, ##: p<0.1 and p<0.01 for Ctrl-ASO vs. Hif2a-ASO within the same condition. T-test was used.

	Sea Level		18,000ft	
	Hif2a ^{fl/fl} ; <i>EC-Cre-</i>	Hif2α ^{fl/fl} ; <i>EC-Cre+</i>	Hif2a ^{fl/fl} ; <i>EC-Cre-</i>	Hif2a ^{fl/fl} ; <i>EC-Cre+</i>
Weight (g)	23,8	25,7	22,4	21,3
Females / Males (n)	5/4	4/4	4/3	6/1

Supplementary Table 5. Parameters were taken after exposure to either sea level or high altitude at the end of the experiment.

Gene		Mouse	Rat	Human
Acta1	fwd	AATGCTTCTAGGCGACTCG		
	rev	CCTGCAACCACAGCACGATT		
Adm	fwd	GACAAAGACAAGGACGGCATG	GGTATCGGAGCATCGCTACAG	GAG TGG AAG TGC TCC CCA CTT
	rev	GCCTTGAGGGCTGATCTTGTT	GAACGGCGAGCGAACCCAAT	CTT GTA CCA TGG GCG CCT A
Apln	fwd	GACCGAGTTGCAGCATGAATC	TGCCACTGATGCTGCCTCCA	ATGAATCTGCGGCTCTGCGT
	rev	TCAAGGAGAGCCAGAGCAGC	CTTCACCAGGTAGCGCATGTT	GCGGCATCAGGGACCCTCC
Arg1	fwd	GCTTGCGAGACGTAGACCCT	CAGAGGAGGTGACTCGTACTGTG	ACTCGAACAGTGAACACAGCAGT
	rev	TGCCAATCCCCAGCTTGTCT	ACAAGACAAGGTCAACGCCA	CAATAGGCTTGTGATTACCCTCC
Arg2	fwd	GAAGAGGCCAAGGCAACAGC	AGGCTGCACTCACTCGAGGT	AATCCTCAGTTGGCCACCTC
	rev	TGTCCTCCTTCTCTTGTCTGACC	ATGATTGGCAGGGAGGCGAT	CAATCACATCTACTGCCAGGTTAGC
Bcl2				TCCACCAAGAAAGCAGGAAAC
				TGGACAGGATAGCAGCACAGGA
Bcl2L1				CAG GAG AAC GGC GGC TGG GA
				TCG GCT GCT GCA TTG TTC CCA
Birc5				GTGGCTGCTTCTCTCTCTCT
				GCCTTCTTCCTCCCTCACTT

Supplementary Table 6. Primer sequences used for qRT-PCRs.

Gene		Mouse	Rat	Human
Bmpr2	fwd	AGAAGAGCACAGAGGCCCAAT	GTC TAC ACA GTG TGA GCA TGA TGG	TGCTATGCAGAATGAACGCAAC
	rev	CTGTATACTGCTGCCATCCAGG	CTC CAG CAG CTT CAG GTT ATC CAA	AAGGACCAATTTTTGGCACACG
Ca9	fwd	TGAAGGGTCTCTGACCACACC	CTGCCTCTCTGCTGGTGACA	GGT GTC ATC TGG ACT GTG TTT
	rev	ACACAGTCCAGATGACCCCC	AGGAGGAAGGCGATGCTGGT	GGT GTC AGA GAG GGT GTG GAG
Ccl2	fwd			CATGAAAGTCTCTGCCGCCCT
	rev			TGAGCGAGCCCTTGGGGAAT
Ccna1	fwd		CTTCAGTACTTAAGGCGGCAA	
	rev		GGCCAAATTCTCAGTCCTGATG	
Ccnd1	fwd	CGT GGC CTC TAA GATGAA GGA	ATGGTGGCTGCTGGGAGTGT	CGT GGC CTC TAA GATGAA GGA
	rev	GTA GAT GCA CAG CTT CTC GGC	TAGCAGGAGAGGAAGTTGTTGG	GTA GAT GCA CAG CTT CTC GGC
Ccne1	fwd			GGACACCATGAAGGAGGACG
	rev			TTCCTGGAGCGAGCCGAGAA
Ccne2	fwd			GTAGCTGGTCTGGCGAGGTT
	rev			ACGGCTACTTCGTCTTGACATTC
Cd68	fwd	CACAGGCAGCACAGTGGACA	CTTTGGATTCAAACAGGACCG	
	rev	CTTGGAGCTCTCGAAGAGATGA	GGTAGACTGTACTGTGGCTCTGATG	

Supplementary Table 6 (continued). Primer sequences used for RT-PCRs.

Gene		Mouse	Rat	Human
Cxcr4	fwd	CCCTCGCCTTCTTCCACTG	TGTTCCAGTTCCAGCACATC	ATCTGTGACCGCTTCTACCCC
	rev	CGAGGAAGGCATAGAGGATGG	CCTTGGAGTGTGACAGCTTG	AAACTGGAACACAACCACCCA
Edn1	fwd	GCACCGGAGCTGAGAATGGA	CGAGCTGAGAAGGAAGTGCAGAG	AAAGAGTGTGTCTACTTCTGCCACC
	rev	ACAGGAACAGCGCTTGGACC	AAGGAGGAGCAGGAGCAACG	CAACGTGCTCGGGAGTGTTG
Еро	fwd	TTGGAAAAGAATGGAGGTGGA		
	rev	GACAGGCCTTGCCAAACTTC		
Glut1	fwd	GGA GAG GTG TCA CCT ACA GC	GATGATGCGGGAGAAGAAGG	TGTGGGCCTTTTCGTTAACC
	rev	AAG GAT GCC AAC GAC GAT TC	AGCACCACGGCGATGAGGAT	ATCATCAGCATTGAATTCCGC
Hif1a	fwd	TGCAGCAAGATCTCGGCGAA		TTT TAC CAT GCC CCA GAT TCA
	rev	AGTGGCAACTGATGAGCAAGC		AGT GCT TCC ATC GGA AGG ACT
Hif2a (Epas1)	fwd	GACGGAGGTCTTCTATGAGTTGG		TACAAGGAGCCCCTGCTGTC
	rev	CGCATGATGGAGGCTTTGTC		TGCTGGATTGGTTCACACATG
lcam1	fwd	GAGGAGATACTGAGCCGCCA	CTTCCGACTAGGGTCCTGAA	CTGTATACTGCTGCCATCCAGG
	rev	GCTAGCCAGCACCGTGAATG	CTTCAGAGGCAGGAAACAGG	CTGGCTTCGTCAGAATCACGTT
ld1	fwd	GGTGGAGATCCTGCAGCATGTA	TTC TGC TCT ACG ACA TGA ACG GCT	GCACCCTCAACGGCGAGATCAGCG
	rev	CCGACTTCAGACTCCGAGTTCA	ACA TGC TGC AGT ATC TCC ACC TTG	CAGCGACACAAGATGCGATCGTCC

Supplementary Table 6 (continued). Primer sequences used for qRT-PCRs.

Gene		Mouse	Rat	Human
Id3	fwd	GGAACGTAGCCTGGCCATT	CTG TCG GAA CGT AGC CTA GCC ATT	CAG CGC GTC ATC GAC TAC ATT CTC
	rev	TCCAAGAGGCTAAGAGGCTCC	GCG AGT AGC AGT GGT TCA TGT CGT	CCA TCA GGG GGT CCA GGG GCT GGC
Myh6	fwd	GGGCAGCTCATGCGCATTGA		
	rev	TGCGCTCTTCAGCAGCGGTT		
Myh7	fwd	CAGCAGTTGGATGAGCGACT		
	rev	GATGCGTGCCTGAAGCTCCT		
Ndrg1	fwd	ATGCCTGGAACCCACACTGT	GTGGAGGTGGTGCACACGTA	GAA GCA AGC ATC TCC GCA TC
	rev	AACTACCAGCCAGAGCAGGGC	TTGTAGGCGCTGATGAACAGG	CAA CCG GCC ACT GGT TAA TG
Pai1	fwd	TTTGGACCCAGTTCCCACC	TTGTGAAGGAGGAACGCTGC	
	rev	TGAAAGTGTTGTGCCCTCCAC	ATTGGCTCTTGTTGGCTGTCG	
Pdgfb	fwd	AATGCTGAGCGACCACTCCA	CAGCAGAGCCTGCCGTAATC	GGCCGAGTTGGACCTGAACA
	rev	TACGGAGTCTCTGTGCAGCAGG	GAACACCTCTGTACGCGTCTTG	TCCAGCTCGCCTCCAGAGTG
Pgk1	fwd	GGAGAGTCCAGAGCGACCCT		
	rev	GCAACTTTAGCGCCTCCCA		
Sdf1	fwd	ATCGGTGGCTGCGAGCTGAA	TGTGCATTGACCCGAAATTA	AGA TTG TAG CCC GGC TGA AG
	rev	ACATGCCTGGGATGCTGCGT	TCCTCAGGGGTCTACTGGAA	TCG GGT CAA TGC ACA CTT GT

Supplementary Table 6 (continued). Primer sequences used for qRT-PCRs.

Gene		Mouse	Rat	Human	
Tgfa	fwd	GGGAAGGAAATGTGTTCCCTG	CAACAAGTGCCCAGATTCCC	GAAGGGAAGAACCGCTTGCT	
	rev	GGCTCAATGGGTCAGAGCAT	GGCTTCTCTTCCTGCACCAA	TGGGCTCTTCAGACCACTGTT	
Tnc	fwd		TGCTGAAGGTTGTGGCTGTG		
	rev		ATTCAGGCTCAGAGCAGTTGG		
Tsp1	fwd	CAATTTTCAGGGGGTGCTGC	ACATCTGCTCTGTCACCTGTGG	CCTGTGATGATGACGATGA	
	rev	CCGTTCACCACGTTGTTGTC	GGGTTGTTGCAGAGTCGGCT	CTGATCTGGGTTGTGGTTGTA	
Vegf	fwd	TGACAAGCCAAGCGCGTGAG	GGGATCTTTCATCGGACCAGT	TGT GCC CAC TGA GGA GTC C	
	rev	CTCCTCTTCCTTCATGTCAG	CGGTGTCTGTCTGTCTGTCCGT	GGT TTG ATC CGC ATA ATC TGC	
House ke	eeping:				
18S	fwd	GAA TT	C CCA GTA AGT GCG GG (for mouse, rat and	human)	
	rev	GGG CAG GGA CTT AAT CAA CG (for mouse, rat and human)			
Actb	fwd	GCCCTGAGGCTCTTTTCCAG	CCAGCCATGTACGTAGCCATCCAG	GCCCTGAGGCACTCTTCCA	
	rev	TGCCACAGGATTCCATACCC	TCACAATGCCAGTGGTACGACCAG	ATGCCACAGGACTCCATGC	

Supplementary Table 6. Forward and Reverse sequences of qPCR primers used in the manuscript, listed in mouse, rat, and human genes. The amplicon sizes are typically 50-80 mer and without significant secondary structures. All primer sets were validated by melt curve analysis, cloning and sequencing of qPCR products, and standard dilution assay to ensure specific PCR products and to have amplification efficiencies between 90% and 110%. *Hif1a* floxed mice and *Hif-2a* floxed mice were constructed wherein exon 2 (coding DNA binding domain) of the Hif1a or Hif2a gene was floxed with LoxP sites. To assess HIF1a and HIF2a deletion in HIF flox mice, qPCR primers for mouse HIF1a and HIF2a mRNAs are located in the exon 2 of HIF1a or HIF2a gene.

	Gene	Cell type	Normoxia	Нурохіа
		EC	100%±9.7	250.7%±24.3***
	ADM	Fib	100%±0.6	221.3%±41.2***
		SMC	100%±22.3	93.7%±6.8
		EC	100%±10.1	1328.6%±274.4*
	CA9	Fib	100%±18.6	19164.2%±3575.7**
Hypoxic induction		SMC	100%±26.7	235.1%±26.7
of		EC	100%±27	301.3%±33***
classical HIF target genes	GLUT1	Fib	100%±1.6	477.0%±8.7***
In normal pulmonary artery vascular cells		SMC	100%±20.2	461.7±140.2***
	NDRG1	EC	100%±8.6	301.8%±15.6***
		Fib	100%±8.7	333.5%±30.3***
		SMC	100%±9.6	312.6%±13.6***
		EC	100%±8.2	193.5%±6.9***
	VEGF	Fib	100%±5.3	208.5%±27.1***
		SMC	100%±7.2	209.6%±30***
		EC	100%4.8	250.0%±13.2***
	CXCR4	Fib	100%±2.9	46.3%±23.9
Hypoxic induction		SMC	100%±3.3	195.6%±18.2***
Of		EC	100%±13.9	321.5%±13.9***
inflammatory genes	SDF1	Fib	100%±0.61	123.2%±53.0
in normal		SMC	100%±3.3	109.4%±32.42
pulmonary artery vascular cells		EC	100%±23.6	307.4%±18.8***
	ICAM1	Fib	100%±3.7	138.6%±4.4
Supplementary Table 7 Gene expression in p	Imonany artany colla by	SMC	100%±41.6 Statistical significance a	162.7%±18.8

Supplementary Table 7. Gene expression in pulmonary artery cells by qRT-PCR, as in Fig. 6. Statistical significance as determined by t-test.

	Gene	Cell type	Normoxia	Нурохіа
		EC	100%±12.0	208.3%±57.7***
	APLN	Fib	100%±52.7	595.8%±64.5***
		SMC	100%±4.3	530.%±16.4***
		EC	100%±30.8	89.4%±15.4
	ARG1	Fib	100%±21.3	89.8%±32.3
		SMC	100%±39.8	82.7%±4.9
		EC	100%±22.4	97.9%±11.2
	ARG2	Fib	100%±15.5	79.0%±10.1
Hypoxic induction Of		SMC	100%±8.7	87.2%±27.3
	BMPR2	EC	100%±16.5	94.7%±17.1
		Fib	100%±25.1	127.8%±15.4
signaling factors		SMC	100%±27.0	76.6%±15.0
in normal		EC	100%±5.1	103%±6.1
pulmonary artery vascular cells	CCND1	Fib	100%±9.6	90%±5.8
		SMC	100%±30.8	110%±32.7
	EDN1	EC	100%±13.1	118.0%±22.7
		Fib	100%±38.3	366.5%±17.4***
		SMC	100%±25.0	144.7%±8.9***
		EC	100%±14.7	30.0%±4.3***
	ID1	Fib	100%±12.3	83.6%±12.3
		SMC	100%±14.4	96%±7.1
		EC	100%±4.6	54.8%±12.0***
	ID3	Fib	100%±4.3	96.4%±6.0
		SMC	100%±10.0	91.2%±1.2

Supplementary Table 7, continued.

	Gene	Cell type	Normoxia	Нурохіа
Hypoxic induction Of signaling factors in normal pulmonary artery vascular cells (continued)	PDGFB	EC	100%±25.7	161.2%±23.3*
		Fib	100%±33.5	120.1%±12.0
		SMC	100%±43.2	257.3%±39.6**
	TGFA	EC	100%±17.8	775.3%±127.1***
		Fib	100%±23.0	80%±15.0
		SMC	100%±60.0	346.9%±16.9***
	TSP1	EC	100%±20.1	104.0%±4.6
		Fib	100%±8.1	141.7%±28.1
		SMC	100%±30.0	159.9%±62.5*

Supplementary Table 7, continued.

	Gene		Normoxia	Нурохіа	Δ
Hypoxic induction of classical HIF target genes in EC	GLUT1	DMSO	100.0%±1.2	721.26%±75.1***	
		ΡΤ2567 0.1μΜ	103.0%±13.3	555.5%±20.8***	23%#
		ΡΤ2567 1μΜ	88.9%±14.62	346.8%±21.2**	36.5% ****
		ΡΤ2567 10μΜ	116.7%±19.6	242.6%±84.4*	51.9% ###
	NDRG1	DMSO	100.0%±12.6	603.3%±39.7***	
		ΡΤ2567 0.1μΜ	94.5%±21.7	578.3%±23.9***	4,10%
		ΡΤ2567 1μΜ	96.2%±13.2	400.0%±57.8***	33.7% ##
		ΡΤ2567 10μΜ	99.4%±8.1	522.4%±7.0***	13.4% #
	VEGF	DMSO	100.0%±30.9	516.0%±87.8***	
		ΡΤ2567 0.1μΜ	97.1%±20.6	384.4%±50.4***	25.5% #
		ΡΤ2567 1μΜ	114.8%±18.0	271.0%±54.0**	47.5% ***
		ΡΤ2567 10μΜ	92.6%±20.9	276.0%±33.6**	46.5% ###
Hypoxic induction of inflammatory genes in EC	CXCR4	DMSO	100.0%±15.0	350.0%±31.9**	
		ΡΤ2567 0.1μΜ	127.9%±26.3	319.3%±73.3**	8,77%
		ΡΤ2567 1μΜ	79.9%±1.01	85.9%±11.05	75.5% ##
		ΡΤ2567 10μΜ	110.5%±18.0	98.2%±26.7	71.9% ##
	ICAM1	DMSO	100.0%±33.1	450.8%±41.8**	
		ΡΤ2567 0.1μΜ	109.5%±60.0	105.6%±51.1	76.6% ##
		ΡΤ2567 1μΜ	116.9%±35.4	115.9%±10.2	74.3% ##
		ΡΤ2567 10μΜ	122.8%±15.5	143.2%±19.2	68.2% ##
	SDF1	DMSO	100.0%±23.6	395.8%±18.3**	
		ΡΤ2567 0.1μΜ	184.6%±10.3	424.6%±1.02**	107,30%
		ΡΤ2567 1μΜ	59.0%±31.3	45.5%±133.3	88.5% ###
		ΡΤ2567 10μΜ	99.1%±28.4	115.5%±4.74	70.8% ###

Supplementary Table 8. Gene expression in EC by qRT-PCR, as in Fig. 7. Δ (inhibitory rate) refers how effective of HIF2 inhibitor PT2567 in reducing the induction of the gene by the hypoxia. Statistical significance as determined by t-test.

	Gene		Normoxia	Нурохіа	Δ
Hypoxic induction of signaling factors in EC	ID1	DMSO	100.0%±25.0	30.1%±4.3**	
		ΡΤ2567 0.1μΜ	107.5%±24.3	48.5%±10.1*	161,00%
		ΡΤ2567 1μΜ	134.5%±35.4	63.0%±3.3***	209.3% **
		ΡΤ2567 10μΜ	82.9%±0.53	69.4%±8.2	230.6% ##
	ID3	DMSO	100.0%±4.6	57.8%±10.7**	
		ΡΤ2567 0.1μΜ	77.7%±31.2	63.7%±20.2	110,20%
		ΡΤ2567 1μΜ	89.4%±25.5	74.2%±12.6	128,40%
		ΡΤ2567 10μΜ	71.9%±10.05	77.3%±5.95	124,40%
	TGFA	DMSO	100.0%±46.4	384.7%±64.9***	
		ΡΤ2567 0.1μΜ	139.2%±22.04	180.7%±5.8***	53.02% ###
		ΡΤ2567 1μΜ	147.6%±78.6	134.7%±3.1	65% ###
		ΡΤ2567 10μΜ	185.5%±158.8	140.4%±10.5	63.5% ###

Supplementary Table 8, continued.