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SUMMARY

Human genetic studies implicate interleukin-27 (IL-27)
in the pathogenesis of type 1 diabetes (T1D), but the
underlying mechanisms remain largely unexplored.
To further define the role of IL-27 in T1D,wegenerated
non-obese diabetic (NOD) mice deficient in IL-27 or
IL-27Ra. In contrast to wild-type NOD mice, both
NOD.Il27�/� andNOD.Il27ra�/� strains are completely
resistant to T1D. IL-27 from myeloid cells and IL-27
signaling in T cells are critical for T1D development.
IL-27 directly alters the balance of regulatory T cells
(Tregs) and T helper 1 (Th1) cells in pancreatic islets,
which in turn modulates the diabetogenic activity of
CD8 T cells. IL-27 also directly enhances the effector
function of CD8 T cells within pancreatic islets. In
addition to T1D, IL-27 signaling in T cells is also
required for lacrimal and salivary gland inflammation
in NODmice. Our study reveals that IL-27 contributes
to autoimmunity in NODmice through multiple mech-
anisms and provides substantial evidence to support
its pathogenic role in human T1D.

INTRODUCTION

Interleukin-27 (IL-27), amember of the IL-6/IL-12 cytokine super-

family, is a heterodimer composed of two noncovalently associ-

ated subunits: Epstein-Barr virus-induced gene 3 (EBI3) and

IL-27p28 (Pflanz et al., 2002). The IL-27 receptor is also a heter-

odimer composed of the IL-27 receptor subunit alpha (IL-27Ra)

and a signal transduction subunit, glycoprotein 130 (gp130)

(Pflanz et al., 2004). IL-27 is secreted primarily by activated den-

dritic cells (DCs), monocytes, and macrophages, and the recep-
Cell Repo
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tor complex is expressed on many immune cells, including

T cells, B cells, DCs, macrophages, and natural killer cells (Yosh-

ida andHunter, 2015). IL-27 signaling activates signal transducer

and activator of transcription (STAT) family proteins STAT1 and

STAT3, as well as the mitogen-activated protein kinase (MAPK)

pathway (Takeda et al., 2003; Lucas et al., 2003; Peters et al.,

2015; Owaki et al., 2006). IL-27 has been shown to have both

pro- and anti-inflammatory activities in several autoimmune dis-

eases, including rheumatoid arthritis, multiple sclerosis, and in-

flammatory bowel disease (Meka et al., 2015).

Type 1 diabetes (T1D) is an autoimmune disease character-

ized by the T cell-mediated destruction of insulin-producing

pancreatic b cells (Serreze and Leiter, 2001). Genome-wide as-

sociation studies have identified more than 50 loci significantly

linked to T1D in humans (Barrett et al., 2009; Bradfield et al.,

2011; Evangelou et al., 2014; Fortune et al., 2015; Todd et al.,

2007; Onengut-Gumuscu et al., 2015; Cooper et al., 2008),

including a region located on chromosome 16 that contains 24

protein coding genes, of which IL27 (encoding the p28 subunit)

has been indicated as a strong candidate (Barrett et al., 2009;

Bergholdt et al., 2012). Expression quantitative trait loci (eQTL)

analysis revealed that the T1D-associated risk allele of the

SNP rs4788084 located within 2 kb upstream of IL27 was linked

to increased expression of GBP4 and STAT1 in human periph-

eral bloodmononuclear cells (PBMCs) (Westra et al., 2013). Sub-

sequently, an IL27 missense variant (rs181206) was found in

strong linkage disequilibrium with rs4788084, and eQTL analysis

indicated that the rs181206 variant was associated with elevated

STAT1 and IRF1 transcript levels in human CD4 T cells (Kasela

et al., 2017). Interestingly, this study also demonstrated that

the same rs181206 variant increased IL-27 function (Kasela

et al., 2017). Collectively, these genetic studies suggest the po-

tential of IL27 allelic variants to directly affect the downstream

signaling pathway, and they could have effects on T1D

pathogenesis.
rts 29, 3073–3086, December 3, 2019 ª 2019 The Author(s). 3073
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Figure 1. NOD.Il27�/� Mice Are Completely Resistant to T1D

(A) T1D incidence of NOD and NOD.Il27�/� mice. ***p < 0.005 by log rank test.

(B) Summary of insulitis in female NOD and NOD.Il27�/� mice.

(C) Summary of insulitis inmale NOD andNOD.Il27�/�mice. Pancreatic islets were scored for insulitis: 0 = no infiltration, 1 = peri-insulitis, 2 =%25% b cell loss, 3 =

between 25% and 75% b cell loss, 4 = >75% b cell loss. Each symbol represents one mouse. The horizontal bar depicts the mean. More than 30 islets were

scored for each mouse. **p < 0.01 by Mann-Whitney test. NS, not significant.

(D) T1D incidence study of sublethally irradiated NOD.Il27�/� females infused with BM cells (5 3 106) from sex-matched NOD.Rag1�/� or NOD.Rag1�/�.Il27�/�

mice as indicated. **p < 0.01 by log rank test.

(E and F) T1D incidence study of adoptively transferred T cell recipients.

(E) Splenic T cells (5 3 106) were isolated from 6-week-old NOD females and transferred into sex-matched NOD.Rag1�/� or NOD.Rag1�/�.Il27�/� recipients.

(F) Splenic T cells (5 3 106) were isolated from young (6- to 7-week-old) NOD, old (11- to 13-week-old) NOD, or old (14- to 15-week-old) NOD.Il27�/� mice and

transferred into sex-matched NOD.Rag1�/� recipients. *p < 0.05, **p < 0.01, and ***p < 0.005 by log rank test. NS, not significant.

See also Figure S1.
Previous mouse studies aimed at understanding the role of

IL-27 in T1D showed a model-dependent outcome. A study in

the non-obese diabetic (NOD) mouse revealed that IL-27 was

expressed by activated DCs in diabetic mice, and blockade

of IL-27 significantly delayed the onset of splenocyte-trans-

ferred T1D in lymphocyte-deficient NOD-scid recipients

(Wang et al., 2008). In contrast, another study in which diabetes

was induced by multiple injections of low-dose streptozotocin

showed that IL-27 signaling conferred protection against T1D

(Fujimoto et al., 2011). To better define the role of IL-27 in

T1D, we generated and characterized NOD mice deficient in

IL-27p28 or IL-27Ra. Our results demonstrate that IL-27

signaling in both CD4 and CD8 T cells is critical for T1D devel-

opment and this cytokine directly influences differentiation and

effector functions of both CD4 and CD8 T cells in pancreatic is-

lets. In addition, we show here that IL-27 signaling in T cells is

also required for lacrimal and salivary gland inflammation, indi-

cating that its effects are not limited to b-cell autoimmunity in

NOD mice.
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RESULTS

IL-27 Is Required for T1D Development in NOD Mice
To study the role of IL-27 in T1D, we used zinc-finger nuclease

(ZFN)-mediated mutagenesis to directly target Il27 in NOD

mice (Figure S1A). Bone marrow (BM)-derived macrophages

from NOD but not NOD.Il27�/� mice produced IL-27 upon stim-

ulation with lipopolysaccharide (LPS), confirming the knockout

phenotype (Figure S1B). Strikingly, both female and male

NOD.Il27�/� mice were completely resistant to T1D develop-

ment (Figure 1A). Compared with NOD mice, insulitis was signif-

icantly reduced in 10-week-old NOD.Il27�/� mice, and it did not

further progress from 10 to 30 weeks of age (Figures 1B and 1C;

Figure S1C).

Macrophages and DCs are the main sources of IL-27, but pre-

vious studies have also reported its production by activated

T cells (Kimura et al., 2016; Dibra et al., 2012; Fujita et al.,

2009). Therefore, we tested if introducing wild-type macro-

phages and DCs is sufficient for T1D development in
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Figure 2. IL-27 Deficiency Suppresses Islet Infiltration of DCs and T Cells

(A) The percentages of CD45+ cells among single viable cells in the islets of 4- or 10-week-old NOD and NOD.Il27�/� females.

(B) The percentages of CD3+ T cells among CD45+ cells in the islets of 4- or 10-week-old NOD and NOD.Il27�/� females. Cells were gated on viable, single, and

CD45+ cells.

(C) The percentages of F4/80+ single-positive (SP), F4/80+ CD11c+, and CD11c+ SP amongmyeloid APCs in the islets of 4- or 10-week-old NOD and NOD.Il27�/�

females. Cells were first gated on viable, single, CD45+, and CD3� cells, followed by excluding F4/80� CD11c� cells. For (A)–(C), representative flow cytometry

(legend continued on next page)
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NOD.Il27�/� mice. Sublethally irradiated NOD.Il27�/� mice were

infused with NOD.Rag1�/� BM cells to allow partial reconstitu-

tion of wild-type macrophages and DCs in the presence of

host Il27�/� T and B cells. Sublethally irradiated NOD.Il27�/�

mice reconstituted with NOD.Rag1�/�.Il27�/� BM cells were

used as the control. NOD.Il27�/� recipients of NOD.Rag1�/�

but not NOD.Rag1�/�.Il27�/� BM cells progressed to diabetes

(Figure 1D). These results indicate that IL-27 production by

non-T and non-B cells, most likely macrophages and/or DCs,

is sufficient to drive T1D progression. We then asked if IL-27 pro-

duction by macrophages and/or DCs is required for T1D devel-

opment by transferring NOD splenic T cells into NOD.Rag1�/�

or NOD.Rag1�/�.Il27�/� recipients. NOD.Rag1�/� but not

NOD.Rag1�/�.Il27�/� recipients of NOD T cells developed dia-

betes, indicating that IL-27 production by non-T and non-B cells

is required to drive T1D (Figure 1E).

IL-27 Is Not Essential for the Development of b-Cell
Autoreactive T Cells
The striking protective phenotype in NOD.Il27�/� mice prompted

us to question if diabetogenic T cells are present in this strain. To

test this, we transferred total splenic T cells isolated from NOD

and NOD.Il27�/� mice into NOD.Rag1�/� recipients capable

of producing IL-27. T cells from old (14- to 15-week-old)

NOD.Il27�/� and young (6- to 7-week-old) NOD mice had similar

diabetogenic activity, but both were significantly less capable of

inducing T1D than those from old (11- to 13-week-old) NOD mice

(Figure 1F). Thus, NOD.Il27�/� mice still harbor b-cell autoreactive

T cells, but the frequency is likely lower than that in NODmice of a

similar age. These results also suggest that b-cell autoreactive

T cells in NOD.Il27�/� mice are not permanently tolerized but

cannot be efficiently activated and expanded. We also conclude

that T cell-derived IL-27 is not required for T1D development.

IL-27 Deficiency Suppresses Islet Infiltration of DCs and
T Cells
CD11b� CD103+ migratory DCs are critical for autoreactive CD8

T cell activation and expansion in pancreatic lymph nodes (PLNs)

(Ferris et al., 2014). Therefore, we evaluated if IL-27 is important

for thedevelopment ofDCsubsets in thePLNandspleen.Our an-

alyses did not reveal a difference in the abundance of CD11b�

CD103+ or other DC subsets in the PLNs and spleens of 10-

week-old NOD and NOD.Il27�/� mice (Figures S2A–S2C).

Furthermore, expression levels of CD40, CD80, CD86, Kd, I-

Ag7, and PD-L1 on PLN DCs were comparable between NOD

and NOD.Il27�/� mice (data not shown). Thus, IL-27 deficiency

does not cause ageneral defect ofDCdevelopment inNODmice.

In NOD mice, myeloid antigen-presenting cells (APCs) are

among the first immune cells to infiltrate the pancreatic islets

and are required for amplification of the autoreactive T cell
profiles are shown in the left panels, and summarized results are presented in

experiments. Each symbol represents a mouse. The horizontal line indicates the

(D) Representative flow cytometry plots on the left depict I-Ag7 and CD40 ex

NOD.Il27�/� females. Summarized data on the right show geometric mean fluores

SP APC subsets in the islet of 10-week-old NOD or NOD.Il27�/� females. Summ

represents a mouse. The horizontal bar depicts the mean. *p < 0.05 by Mann-W

See also Figure S2.
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response (Melli et al., 2009; Ferris et al., 2016). Therefore, we

analyzed whether IL-27 is important for the infiltration and accu-

mulation of myeloid APCs and T cells in the islets. At 4 weeks of

age, NOD and NOD.Il27�/� mice had a similar frequency of

CD45+ cells in the islets (Figure 2A). The proportion of CD45+

cells dramatically increased in the islets of 10-week-old NOD

mice, but it was only marginally increased from 4 to 10 weeks

in the NOD.Il27�/� mice (Figure 2A). Likewise, NOD and

NOD.Il27�/� mice had a similar low frequency of islet-infiltrating

CD3+ cells at 4 weeks of age. However, by 10weeks of age, NOD

mice showed a significant accumulation of CD3+ cells in the is-

lets, while NOD.Il27�/� mice had only a slight increase of these

cells (Figure 2B). Coincidentally, at 4 weeks of age, there were

no differences in the overall frequencies of F4/80+ CD11c�,
F4/80+ CD11c+, or F4/80� CD11c+ APCs in the islets of NOD

and NOD.Il27�/� mice (Figure 2C). However, at 10 weeks of

age, the frequency of F4/80� CD11c+ DCs, which includes

CD103+ migratory DCs, was significantly increased in the islets

of NOD mice, whereas it was largely unchanged in the absence

of IL-27 (Figure 2C). These data indicate that the overall infiltra-

tion of T cells and DCs into the pancreatic islets is significantly

decreased in the absence of IL-27 signaling. Because initial

T cell infiltration promotes maturation of CD11c+ APCs in islets,

including upregulation of CD40 (Melli et al., 2009), we further

analyzed the phenotype of islet-infiltrating myeloid APCs in

NOD and NOD.Il27�/� mice. The expression of I-Ag7, Kd, and

CD40 was comparable in myeloid APCs between NOD and

NOD.Il27�/� mice at 4 weeks of age (data not shown). In

contrast, at 10 weeks of age, myeloid APCs from NOD islets

had significantly increased CD40 expression compared with

NOD.Il27�/�mice despite comparable levels of I-Ag7 (Figure 2D).

Reduced CD40 expression on intra-islet myeloid APCs as a

result of IL-27 deficiency is consistent with the significantly

decreased T cell infiltration and disease progression in

NOD.Il27�/� mice.

Activation of b-Cell Autoreactive CD8 T Cells in PLNs Is
Significantly Reduced in NOD.Il27�/� Mice
Although NOD.Il27�/�mice still harbor b-cell autoreactive T cells

(Figure 1F), it is possible that their activation in PLNs is reduced.

To test this hypothesis, we used T cell receptor (TCR) transgenic

b-cell autoreactive BDC2.5 CD4 and NY8.3 CD8 T cells (Verda-

guer et al., 1997; Katz et al., 1993). We transferred eFluor670-

labeled BDC2.5 CD4 or NY8.3 CD8 T cells into NOD and

NOD.Il27�/� recipients and analyzed their activation in PLNs

5 days after transfer. Proliferation as well as the expression of

CD44 and CD62L of adoptively transferred BDC2.5 CD4 T cells

were comparable in NOD and NOD.Il27�/� mice (Figures 3A

and 3B). However, both proliferation and the activation pheno-

type (CD44high and CD62Lneg) of transferred NY8.3 CD8 T cells
the right panels. Summarized data are representative of two independent

mean. *p < 0.05 by Mann-Whitney test.

pression among myeloid APC subsets in the islets of 10-week-old NOD or

cence intensity of I-Ag7 or CD40 among F4/80+ SP, F4/80+ CD11c+, or CD11c+

arized data are representative of two independent experiments. Each symbol

hitney test.
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Figure 3. Activation of b-Cell-Specific T Cells in NOD Versus NOD.Il27�/� Recipients

(A and B) Purified splenic BDC2.5 CD4 T cells (2 3 106) were labeled with eFluor670 proliferation dye and transferred into 8- to 9-week-old female NOD or

NOD.Il27�/� recipients. PLNs were harvested 5 days post-transfer, and proliferation (A) and CD44 and CD62L expression (B) of CD4+eFluor670+ cells was

analyzed using flow cytometry.

(C and D) Purified splenic NY8.3 CD8 T cells (33 106 to 53 106) were labeled with eFluor670 proliferation dye and transferred into sex-matched 7- to 9-week-old

NOD or NOD.Il27�/� recipients. PLNs were harvested 5 days post-transfer, and proliferation (C) and CD44 and CD62L expression (D) of CD8+eFluor670+ cells

were analyzed using flow cytometry.

(E and F) Purified splenic CD45.2+ NY8.3 CD8 T cells (53 106) were transferred into 7- to 9-week-old female NOD or NOD.Il27�/� recipients (expressing CD45.1).

Sixteen hours after transfer, PLNs were harvested and analyzed for CD69 (E) and CD44 (F) expression on CD45.2+CD8+NRP-V7 tetramer+ cells using flow

cytometry.

Representative flow cytometry profiles are shown in the left panels, and summarized results are presented in the right panels. Summarized results are from two or

three independent experiments. Each symbol represents a mouse. The horizontal bar depicts the mean. *p < 0.05 and **p < 0.01 by Mann-Whitney test. NS, not

significant.
were significantly reduced in the PLNs of the NOD.Il27�/� strain

compared with NOD mice (Figures 3C and 3D). Thus, IL-27 defi-

ciency significantly suppressed the activation of b-cell autoreac-

tive CD8 T cells and had less effect on the activation of CD4

T cells in PLNs.

To initially test whether the decreased activation of NY8.3 CD8

T cells in NOD.Il27�/� mice is due to an impairment in the early

event of antigenic stimulation, we isolated splenic CD8 T cells

from NOD.Cd45.2.NY8.3 mice and transferred them into NOD

and NOD.Il27�/� recipients. Sixteen hours later, the expression

level of the early activation marker CD69 on transferred

CD45.2+ NY8.3 CD8 T cells in the PLNs was significantly lower

in NOD.Il27�/�mice than in NOD recipients (Figure 3E). Similarly,

CD44 expression on transferred NY8.3 CD8 T cells was signifi-

cantly reduced in the PLNs of NOD.Il27�/� recipients (Figure 3F).

This result suggests that antigenic stimulation of b-cell autoreac-

tive CD8 T cells in PLNs is reduced in the IL-27-deficient mice,
likely because of decreased b-cell antigen availability as a result

of limited DC infiltration in islets.

IL-27 Receptor Is Essential for T1DDevelopment in NOD
Mice
To further confirm that loss of IL-27 signaling in NOD.Il27�/�

mice was responsible for diabetes protection, we used

CRISPR/Cas9 to target Il27ra directly in NOD mice (Figure S1A),

resulting in the absence of IL-27Ra protein (Figure S1D).

NOD.Il27ra�/�mice of both sexes were also completely resistant

to T1D development (Figure 4A). Compared with NOD mice,

NOD.Il27ra�/� mice also had significantly decreased insulitis at

10 weeks and limited progression from 10 to 30 weeks (Figures

4B and 4C; Figure S1C). These results confirm that IL-27

signaling is essential for T1D development in NOD mice.

Both IL-27 and IL-6 use the gp130 receptor subunit and

induce expression of some common genes in CD4 T cells
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Figure 4. T Cell-Intrinsic IL-27 Signaling Is Essential for the Development of T1D

(A) T1D incidence of NOD and NOD.Il27ra�/� mice. ***p < 0.005 by log rank test.

(B) Summary of insulitis in female NOD and NOD.Il27ra�/� mice.

(C) Summary of insulitis in male NOD and NOD.Il27ra�/� mice. Pancreatic islets were scored for insulitis as in Figure 1. Each symbol represents one mouse. The

horizontal bar depicts the mean. **p < 0.01 by Mann-Whitney test. NS, not significant.

(D) T1D incidence study of sublethally irradiated NOD.Il27�/� or NOD.Il27ra�/� females infused with BM cells (53 106) from sex-matched NOD.Rag1�/� mice as

indicated. **p < 0.01 by log rank test.

(E–G) Incidence of T1D in recipients of adoptively transferred T cells.

(E) Splenic T cells (5 3 106) were isolated from 6-week-old NOD females and transferred into sex-matched NOD.Rag1�/� or NOD.Rag1�/�.Il27ra�/� recipients.

T1D incidence was not significantly different between recipient groups.

(F) Splenic T cells (5 3 106) were isolated from 6- to 11-week-old NOD or 11- to 15-week-old NOD.Il27ra�/� females and transferred into sex-matched

NOD.Rag1�/� recipients. ***p < 0.005 by log rank test.

(G) Splenic CD4 (4 3 106) and CD8 (2 3 106) T cells were isolated from indicated 6- to 8-week-old female strains and co-transferred into sex-matched

NOD.Rag1�/� recipients. **p < 0.01 and ***p < 0.005 by log rank test.

(H) In vitro suppression function of NOD and NOD.Il27ra�/� Tregs. Splenic CD4+CD25� T cells were isolated from NOD mice, labeled with CFSE, and cultured

either alone or in the presence of unlabeled CD4+CD25+ Tregs at the indicated ratios. Cells were activated with soluble anti-CD3 in the presence of NOD.Rag1�/�

splenocytes for 3 days, and proliferation was analyzed using flow cytometry. Representative histograms of CFSE dilution from one experiment are shown in

Figure S4. Summarized data from three independent experiments are shown. The percentage suppression was calculated as [percentage of divided CD4+CD25�

T cells (without Tregs)� percentage of divided CD4+CD25� (with Tregs)]/[percentage of divided CD4+CD25� T cells (without Tregs)]3 100. Error bars represent

SEM. The suppression function of NOD and NOD.Il27ra�/� Tregs was not significantly different.

(legend continued on next page)
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through STAT1-, STAT3-, and MAPK-dependent pathways (Pot

et al., 2009; Jin et al., 2013; Hirahara et al., 2015). Therefore, we

asked if IL-6 also has an important role in diabetes development

in NOD mice. However, T1D development in IL-6-deficient and

sufficient NOD mice was indistinguishable (Figure S3).

T Cell-Intrinsic IL-27 Signaling Is Essential for T1D
Development
Next, we used the IL-27Ra-deficient mice to determine which cell

types need to respond to IL-27 for T1D development. Using the

same BM chimera approach described in Figure 1D, we found

that NOD.Rag1�/� BM (capable of giving rise to non-T and non-

B cells that can both produce and respond to IL-27) did not induce

T1D in sublethally irradiated NOD.Il27ra�/� mice (Figure 4D). In

addition, NOD splenic T cells equally induced T1D in

NOD.Rag1�/� and NOD.Rag1�/�.Il27ra�/� recipients (Figure 4E).

Hence, the ability to respond to IL-27 by non-T and non-B cells

isneither sufficient nor required for T1Ddevelopment inNODmice.

Therefore, we asked if T cells need to directly respond to IL-27

to cause T1D. Splenic T cells isolated from NOD or

NOD.Il27ra�/� mice were transferred into NOD.Rag1�/� recipi-

ents to compare their diabetogenic activity. T cells isolated

from NOD.Il27ra�/� mice were unable to induce T1D in the

NOD.Rag1�/� recipients, indicating that T cells need to respond

to IL-27 to induce T1D (Figure 4F). It is most likely that

NOD.Il27ra�/� mice also harbor b-cell autoreactive T cells, as

in the NOD.Il27�/� strain; however, their inability to respond to

IL-27 precluded them from inducing diabetes in NOD.Rag1�/�

recipients. Next, we asked if both CD4 and CD8 T cells need

to respond to IL-27 for T1D development. Splenic CD4 and

CD8 T cells were individually isolated from NOD or

NOD.Il27ra�/� mice, mixed in a ‘‘crisscross’’ design, and trans-

ferred into NOD.Rag1�/� recipients. As expected, co-transfer

of CD4 plus CD8 T cells fromNODmice induced a high incidence

of diabetes, but co-transfer of both cell types fromNOD.Il27ra�/�

donors did not (Figure 4G). Co-transferred NOD CD4 and

NOD.Il27ra�/� CD8 T cells or NOD.Il27ra�/� CD4 and NOD

CD8 T cells were able to induce T1D but the onset was delayed

and the overall incidence in both recipient groups was signifi-

cantly lower than those infused with NOD CD4 and CD8 T cells

(Figure 4G). Therefore, IL-27 signaling in both CD4 and CD8

T cells is important for T1D development.

Direct IL-27 Signaling Does Not Alter the Suppressive
Function of Regulatory T Cells
The reduced diabetogenic activity of IL-27Ra-deficient CD4

T cells could be due to altered function of effector T cells

and/or regulatory T cells (Tregs). We next determined whether

the decreased diabetogenicity of IL-27Ra-deficient CD4

T cells was due to the enhanced suppressive function of IL-

27Ra-deficient Tregs. First, we tested the in vitro suppressive

activities of NOD and NOD.Il27ra�/� Tregs. We co-cultured

NOD or NOD.Il27ra�/� Tregs (CD4+ CD25+) with NOD effector
(I) Incidence of T1D in recipients of adoptively transferred T cells. Splenic CD25�

CD4+GITR+CD25+ Tregs (5 3 105) FACS sorted from 6- to 9-week-old NOD or

recipients. ***p < 0.005 by log rank test. NS, Not significant.

See also Figures S1, S3, and S4.
cells (CD4+ CD25�) and NOD.Rag1�/� splenocytes in the pres-

ence of anti-CD3. We found the suppressive activity of NOD

and NOD.Il27ra�/� Tregs to be similar (Figure 4H; Figure S4).

As the in vitro suppression assay does not completely reflect

the complexity of Treg activities, we subsequently compared

their in vivo functionality. Splenic Tregs (CD4+CD25+GITR+)

were independently sorted from NOD and NOD.Il27ra�/� mice

and co-transferred with splenic CD25-depleted NOD total

T cells in a 1:10 ratio (Treg/effector) into NOD.Rag1�/� recipi-

ents. A control group received only CD25-depleted T cells

and developed rapid T1D onset as expected (Figure 4I). The

mice receiving CD25-depleted T cells plus either NOD or

NOD.Il27ra�/� Tregs developed T1D similarly but had signifi-

cantly delayed T1D onset compared with the control group

(Figure 4I). Therefore, IL-27 signaling in Tregs does not directly

alter their ability to suppress T1D.

IL-27 Directly Affects the Composition of CD4 T Cell
Subsets in Pancreatic Islets
Although IL-27 signaling does not appear to be essential for the

proliferation of b-cell autoreactive CD4 T cells in PLNs, as shown

by the BDC2.5 transfer experiment (Figures 3A and 3B), it may

affect their effector function in islets. To further analyze the

cell-intrinsic effects of IL-27 signaling on the effector function

of CD4 T cells, we directly compared wild-type and Il27ra�/�

CD4 T cells in the mixed BM chimeras. We reconstituted lethally

irradiated (NOD3NOD.Cd45.2)F1 recipients with an equal num-

ber of NOD.Cd45.2 and NOD.Il27ra�/� (expressing CD45.1) BM

cells. Pre-diabetic chimeras were analyzed 10–12 weeks after

BM reconstitution. The spleens, PLNs, and islet infiltrates of

the BM chimeras were analyzed to determine if IL-27 signaling

directly controls the frequency of CD4 T cells. The proportions

of NOD.Cd45.2- and NOD.Il27ra�/�-derived total CD4 T cells

were comparable in the spleens and PLNs, indicating that their

overall reconstitution ability did not differ significantly (Figure 5A

and data not shown). The frequencies of NOD.Cd45.2- and

NOD.Il27ra�/�-derived total CD4 T cells were also similar in the

islets (Figure 5A).

To further determine whether IL-27 signaling can directly con-

trol the balance of effector and regulatory CD4 T cells, we

analyzed transcription factor expression and cytokine produc-

tion in the mixed BM chimeras. The frequency of NOD.Il27ra�/�

derived T-bet+ Foxp3� CD4 T cells was significantly reduced

compared with those originating from NOD.Cd45.2 in the

spleens, PLNs, and islets of the mixed BM chimeras (Figure 5B).

The frequency of NOD.Il27ra�/�-derived interferon (IFN)g-pro-

ducing Foxp3� CD4 T cells was also significantly reduced in

the spleens, PLNs, and islets of the mixed BM chimeras (Fig-

ure 5C). There was minimal detection of IL-17A and IL-4 produc-

tion (data not shown). These results indicate that IL-27 signaling

directly promotes the development of a pathogenic T helper 1

(Th1) T cell response in NOD mice. On the other hand, the

frequency of NOD.Il27ra�/�-derived Tregs was significantly
T cells (5 3 106) isolated from 13- to 15-week-old NOD females and splenic

NOD.Il27ra�/� females were co-transferred into sex-matched NOD.Rag1�/�
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Figure 5. IL-27 Signaling Intrinsically Modulates CD4 and CD8 T Cell Subsets

Lethally irradiated (NOD3NOD.Cd45.2)F1 mice were infused with equal numbers of T cell-depleted BM cells from NOD.Cd45.2 and NOD.Il27ra�/� donors. Pre-

diabetic recipients were analyzed for wild-type (CD45.2+) and IL-27Ra-deficient (CD45.1+) T cell subsets 10–12 weeks after BM reconstitution.

(A) Frequencies of total CD4 and CD8 T cells in the spleens and islets of the mixed BM chimeras. Representative flow cytometry profiles are shown in the left

panels, and summarized results are presented in the right panels. Summarized results are representative of at least two independent experiments.

(B) T-bet expression in CD3+CD4+Foxp3� T cells in the spleens, PLNs, and islets of mixed BM chimeras. Representative flow cytometry profiles are shown in the

left panels, and summarized results are presented in the right panels.

(C) IFNg production in CD3+CD4+Foxp3� T cells in the spleens, PLNs, and islets of mixed BM chimeras. Cells were stimulated with PMA and ionomycin.

Representative flow cytometry profiles are shown in the left panels, and summarized results are presented in the right panels.

(D) Frequencies of CD3+CD4+Foxp3+ Tregs in the spleens, PLNs, and islets of the mixed BM chimeras. Representative flow cytometry profiles are shown in the

left panels, and summarized results are presented in the upper middle and right panels. The ratios of IL-27Ra-deficient to wild-type Treg frequencies in spleens

versus islets are shown in the lower middle panel. The levels of CD25 expression are summarized in the lower right panel.

(E) T-bet expression in CD3+CD8+ T cells in the spleens, PLNs, and islets of mixed BM chimeras. Representative flow cytometry profiles are shown in the left

panels, and summarized results are presented in the right panels.

(F) IFNg production in CD3+CD8+ T cells in the spleens, PLNs, and islets of mixed BM chimeras. Cells were stimulated with PMA and ionomycin. Representative

flow cytometry profiles are shown in the left panels, and summarized results are presented in the right panels.

All summarized data in (B)–(F) are from two independent experiments. Statistical significance was determined using Wilcoxon matched-pairs signed rank test

(*p < 0.05, **p < 0.01, and ***p < 0.005). NS, not significant. GMFI, geometric mean fluorescence intensity. See also Figure S5.
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A B C D

Figure 6. Effector T Cells Require IL-27 Signaling for Sjögren Syndrome-like Inflammation in NOD Mice

(A and B) Quantification of inflammation of male lacrimal (A) and female salivary (B) glands from 10-week-old NOD, NOD.Il27�/�, and NOD.Il27ra�/� mice.

Symbols represent individual mice, and lines are medians. p < 0.0001 (A) and p = 0.0014 (B) by Kruskal-Wallace test with Dunn’s post-test p values as indicated.

*p < 0.05, **p < 0.01, and ***p < 0.005.

(C) Graph depicts quantification of inflammation of male lacrimal glands from 21-week-old NOD and NOD.Il27ra�/�mice. Symbols represent individual mice, and

lines are medians. Boxed symbol represents diffuse inflammation with foci so numerous that they coalesced, preventing accurate enumeration. *p < 0.05 by

Mann-Whitney test. Histology images are H&E-stained tissue sections representative of NOD (top) and NOD.Il27ra�/� (bottom) mice and demonstrate the

characteristic focal inflammatory cell infiltrates that are more abundant in NOD lacrimal glands. Scale bar is 1 mm.

(D) Quantification of lacrimal gland inflammation in male NOD-scid recipients of sorted effector T cells (CD8+ and CD4+CD25� sorted together) from spleens of

male NOD or NOD.Il27ra�/� mice. Symbols represent individual mice pooled from two independent transfers. Lines are medians. ***p < 0.005 by Mann-Whitney

test.
increased compared with those of the NOD.Cd45.2 origin in the

islets and spleens but not PLNs (Figure 5D). Interestingly, the ra-

tio of NOD.Il27ra�/�- to NOD.Cd45.2-derived Tregs was signifi-

cantly larger in the islets than in the spleens (Figure 5D). This

observation suggests that there is a local effect of IL-27 signaling

to proportionally promote Treg accumulation in the islet environ-

ment. Further supporting this possibility is the observation that

the absolute number of Il27ra�/� Tregs was higher than those

of the NOD.Cd45.2 origin in the pancreatic islets but not the

spleens and PLNs of the mixed BM chimeras (Figure S5). There

was not a difference in CD25 expression on NOD.Cd45.2- or

NOD.Il27ra�/�-derived Tregs in the islets (Figure 5D), indicating

that the increased frequency of NOD.Il27ra�/�-derived Tregs is

not due to an enhanced ability to bind IL-2. Together these

results indicate that CD4 T cell-intrinsic IL-27 signaling tips the

balance between Tregs and Th1 effectors and favors the latter

population in the islet environment. This is likely an important

factor contributing to T1D resistance in NOD.Il27�/� and

NOD.Il27ra�/� mice.

IL-27 Directly Promotes the Accumulation and Effector
Function of CD8 T Cells in Pancreatic Islets
Using the same mixed BM chimera approach described above,

we further defined the intrinsic effects of IL-27 signaling on CD8

T cell frequency and function. The proportions of NOD.Cd45.2-

and NOD.Il27ra�/�-derived total CD8 T cells were comparable

in the spleens and PLNs, indicating that their overall reconstitu-

tion ability did not differ significantly (Figure 5A and data not

shown). Interestingly, the frequency of NOD.Il27ra�/�-derived
CD8 T cells was significantly decreased compared with those

of the NOD.Cd45.2 origin in the pancreatic islets (Figure 5A).

This result indicates that CD8 T cell-intrinsic IL-27 signaling pro-

motes their islet accumulation. To further define the intrinsic ef-

fects of IL-27 signaling on CD8 T cell function, we analyzed their

T-bet expression and IFNg production in the mixed BM chimera

mice. The frequency of T-bet+ cells among total NOD.Il27ra�/�-
derived CD8 T cells was significantly reduced compared with

those of the NOD.Cd45.2 origin in the spleens and islets but

not the PLNs of the mixed BM chimeras (Figure 5E). Consis-

tently, the frequency of NOD.Il27ra�/�-derived CD8 T cells

capable of producing IFNg was significantly reduced compared

with those derived from NOD.Cd45.2 in the islets but not the

spleens or PLNs of themixed BMchimeras (Figure 5F). These re-

sults suggest that direct IL-27 signaling within pancreatic islets is

important for optimal pathogenic CD8 T cell differentiation.

IL-27 Signaling in T Cells Is Required for Lacrimal and
Salivary Gland Inflammation
In addition to T1D, NODmice spontaneously develop autoimmu-

nity of lacrimal and salivary glands and are a well-established

model of Sjögren syndrome (Park et al., 2015). To determine if

disruption of IL-27 signaling has a broader effect in autoimmu-

nity, we analyzed lacrimal and salivary glands from NOD,

NOD.Il27�/�, and NOD.Il27ra�/� mice. In NOD mice, Sjögren

syndrome-like manifestations occur in a sex-specific manner,

with males spontaneously developing lacrimal gland inflamma-

tion and females developing spontaneous salivary gland

inflammation (Hunger et al., 1998, 1996; Lieberman et al.,

2015; Mikulowska-Mennis et al., 2001; Takahashi et al., 1997;

Toda et al., 1999). Both male lacrimal and female salivary gland

inflammation were significantly reduced in NOD.Il27�/� and

NOD.Il27ra�/� mice compared with age- and sex-matched

wild-type NOD mice (Figures 6A and 6B). This protection was

not transient as 30-week-old NOD.Il27�/� mice showed little or

no lacrimal or salivary gland inflammation, with median focus

scores of 0.46 foci/4 mm2 (range 0.18–2.46, n = 6) and 0 foci/

4 mm2 (range 0–0.76, n = 5), respectively. Similarly, 21-week-

old NOD.Il27ra�/� mice showed significantly decreased lacrimal

gland inflammation compared with age- and sex-matched NOD

mice (Figure 6C). Because IL-27 signaling was required for path-

ogenic T cells in the context of autoimmune diabetes (Figure 4F),

we asked if IL-27 was similarly required for pathogenic effector
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T cells in the context of Sjögren syndrome-like manifestations in

NODmice. We isolated CD25-depleted splenic T cells fromNOD

or NOD.Il27ra�/� males and transferred them to sex-matched

NOD-scid recipients. NOD T cells caused typical focal lympho-

cytic inflammation in NOD-scid mice, whereas recipients of

NOD.Il27ra�/� T cells were protected from the development of

lacrimal gland inflammation (Figure 6D). Thus, in the absence

of IL-27 signaling, effector T cells failed to adequately infiltrate

lacrimal glands, demonstrating that the pathogenic role of IL-

27 in driving autoimmunity in NOD mice is not limited to pancre-

atic islets.

DISCUSSION

In this study we aimed to better define the function of IL-27

signaling in T1D autoimmune pathogenesis. Our data show

that IL-27 signaling promotes the development of insulitis and

progression to T1D through multiple mechanisms. We found

that IL-27 production by non-T and non-B cells was both neces-

sary and sufficient to drive T1D progression. However, the ability

of non-T and non-B cells to respond to IL-27 was neither neces-

sary nor sufficient for T1D development. Notably, T cell-intrinsic

IL-27 signaling was critical for progression to T1D. Direct IL-27

signaling in both CD4 and CD8 T cells was found to be important.

CD4 T cell-intrinsic IL-27 signaling affected the balance of the

Treg and Th1 effector cells and favored the latter population.

Direct IL-27 signaling also promoted the accumulation of CD8

T cells in the islets and enhanced the expression of the effector

molecules T-bet and IFNg. Together, our results support amodel

wherein macrophage/DC-derived IL-27 promotes CD8 T cell-

mediated b cell destruction directly and indirectly through mod-

ulation of CD4 T cells.

Many pro-inflammatory effects of IL-27 signaling aremediated

through activation of STAT1 (Hunter and Kastelein, 2012).

The completely protective phenotype of NOD.Il27�/� and

NOD.Il27ra�/� mice is particularly significant considering that

NOD.Stat1�/� mice are also completely protected from insulitis

and T1D (Kim et al., 2007). In contrast, NOD mice deficient in

other genes immediately upstream of STAT1 signaling, including

Il6 (reported here), Ifng, Ifngr2, and Ifnar1, develop insulitis and

T1D (Serreze et al., 2000, 2001; Quah et al., 2014). Surprisingly,

NODmice deficient in both Ifngr1 and Ifnar1 still developed T1D,

although the overall incidencewas reduced (Carrero et al., 2018).

Both type I and type II interferon (IFN) pathways can also induce

IL-27 expression (Zhang et al., 2010; Blahoianu et al., 2014; Liu

et al., 2007). Together these results indicate that signaling path-

ways independent of type I and type II IFNs stimulate IL-27

expression leading to activation of STAT1-mediated diabeto-

genic activities.

Earlier studies have revealed that IL-27 signaling promotes the

expression of T-bet and IFNg production by CD4 T cells via

STAT1-dependent signaling (Pflanz et al., 2002; Kamiya et al.,

2004; Takeda et al., 2003). Likewise, we observed that direct

IL-27 signaling promoted the accumulation of T-bet+ CD4

T cells and enhanced their production of IFNg in the spleen,

PLN, and pancreatic islets. NOD mice deficient in T-bet are pro-

tected from T1D, and T-bet-deficient BDC2.5 CD4 T cells are

impaired in their ability to transfer T1D (Esensten et al., 2009).
3082 Cell Reports 29, 3073–3086, December 3, 2019
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progression, IL-27-induced T-bet expression likely enhances

the diabetogenic activity of CD4 T cells through an IFNg-inde-

pendent mechanism. Numerous studies have shown that CD4

T cells can provide help to CD8 T cells by directly activating

DCs via IFNg-dependent and IFNg-independent mechanisms

(Hivroz et al., 2012). Insulin reactive CD4 T cells and myeloid

APCs are among the first cells to infiltrate the pancreatic islets

(Unanue et al., 2016; Ferris et al., 2014). CD11b� CD103+ migra-

tory DCs are critical for autoreactive CD8 T cell activation in

PLNs and DC maturation in islets precedes their migration to

the PLN (Melli et al., 2009; Ferris et al., 2016). Furthermore, trans-

fer of autoreactive CD4 T cells induced maturation of migratory

DCs in the pancreatic islets (Melli et al., 2009). Interestingly, we

show here that in the absence of IL-27 signaling, there is limited

DC and T cell infiltration in the islets and minimal expression of

CD40 on myeloid APC subsets over time. Moreover, antigenic-

specific activation of autoreactive CD8 T cells was suppressed

in the PLN of IL-27-deficient hosts. Together, these results sug-

gest that in the absence of IL-27 signaling, DC infiltration to the

pancreatic islets and antigen trafficking to the PLN are insuffi-

cient to activate CD8 T cells and amplify the autoimmune

response. Interestingly, we found that direct IL-27 signaling in

myeloid APCswas not sufficient or required for T1D progression.

This suggests that CD4 T cell-intrinsic IL-27 signaling promotes

their ability to activate APCs in the pancreatic islets. Further ex-

periments are required to determine whether this effect is T-bet

dependent.

IL-27 can also signal through activation of STAT3 (Hunter and

Kastelein, 2012). The role of STAT3 inmediating T1D is difficult to

discern because of the embryonic lethality of global STAT3-defi-

cient mice (Takeda et al., 1997). Multiple cytokines signaling

through STAT3 activation have been implicated in human and

NOD mouse T1D pathogenesis, including IL-2, IL-6, IL-15, and

IL-21 (Tang et al., 2008; Hulme et al., 2012; Ihantola et al.,

2018; Hundhausen et al., 2016; Chen et al., 2013a; Yuan et al.,

2018; Spolski et al., 2008; Sutherland et al., 2009; Ferreira

et al., 2015). Although IL-6 has been implicated in human T1D,

we did not observe a significant role of this cytokine in diabetes

development in NODmice. It has been previously demonstrated

that IL-27 signaling can upregulate IL-21 expression in both hu-

man and mouse CD4 T cells via STAT3-dependent signaling

(Batten et al., 2010). Significantly, NOD.Il21�/� and NOD.Il21r�/�

mice are both completely protected from T1D (Sutherland et al.,

2009; Spolski et al., 2008; Chen et al., 2013b). Specifically, CD4

T cell-derived IL-21 is required for T1D progression, and IL-21R-

deficient CD4 and CD8 T cells are impaired in their ability to

transfer T1D (McGuire et al., 2011). Furthermore, IL-21 signaling

promotes themigration and co-stimulatory functions of DCs dur-

ing T1D progression (Van Belle et al., 2012). Therefore, it is

conceivable that the reduced diabetogenicity of IL-27Ra-defi-

cient CD4 T cells could be due to an inability to produce IL-21.

The concept that IL-27-induced IL-21 production by CD4

T cells may drive autoimmune pathogenesis is further supported

by two observations in the progression of Sjögren syndrome: (1)

our observation that IL-27 signaling in T cells is required for

lacrimal and salivary gland inflammation and (2) IL-21 expression

in T cells correlates with the degree of lymphocytic infiltration in



labial salivary glands in patients with Sjögren syndrome (Kang

et al., 2011).

In addition to the indirect effect of IL-27 through CD4 T cells,

IL-27 can also signal directly in CD8 T cells. Several in vitro

studies have shown that IL-27 signals through STAT1 and

STAT3 in CD8 T cells and promotes the expression of molecules

important for an effector response, including T-bet, EOMES,

IFNg, and granzyme B (Schneider et al., 2011; Morishima

et al., 2005, 2010). Yet the direct effects of IL-27 on CD8

T cells in vivo remain understudied. Pennock et al. (2014) found

that direct IL-27 signaling was critical for the generation of a

robust antigen-specific CD8 T cell response to subunit vaccina-

tion. However, it is unclear whether the mechanisms governing

the expansion of autoreactive CD8 T cells are parallel to those

observed in infectious conditions. In the present study we found

CD8 T cell-intrinsic IL-27 signaling to be important for T1D pro-

gression. Although direct IL-27 signaling did not have a marked

effect on the effector phenotype of CD8 T cells in the spleen or

PLN, it promoted the accumulation of CD8 T cells and enhanced

their expression of T-bet and IFNg in the pancreatic islets. These

results are consistent with the previous observation that CD8

T cells undergo further differentiation within the local islet envi-

ronment (Graham et al., 2011, 2012). The role of IL-27 in CD8

T cells in T1D is further supported by a previous study in which

islet inflammation and heightened CD8 T cell responses were

observed in mice transgenically overexpressing IL-27 (Wojno

et al., 2011). Additional research is warranted to determine the

effect of islet-centric CD8 T cell differentiation on T1D progres-

sion and the role of intrinsic IL-27 signaling in this process.

In the context of Sjögren syndrome, the role of IL-27 has not

previously been well established. In Sjögren syndrome patients,

serum levels of IL-27 were elevated (Xia et al., 2012); however,

whether this reflected a pathogenic process driving inflammation

versus a regulatory process driven by the inflammation was not

known. In another mouse model of Sjögren syndrome, overex-

pression of IL-27 systemically by adeno-associated viral vec-

tor-mediated gene therapy resulted in decreases in IL-17 and

IL-17-producing Th17 cells (Lee et al., 2012). This was associ-

ated with improvement in some disease parameters but had

less of an effect on degree of inflammation within target organs.

Regardless, that study suggested a possible immunoregulatory

role for IL-27 when administered later in disease. In contrast,

our findings demonstrate a requirement for IL-27 early in disease

development, Because the lack of IL-27 or IL-27Ra in NODmice

prevented lacrimal and salivary gland inflammation, which is the

earliest recognizable hallmark of Sjögren syndrome in mice or

humans. This difference in the pathogenic versus protective

role for IL-27 may reflect the complex immunostimulatory and

immunomodulatory effects of IL-27 along with the complex roles

of different lymphocyte populations in the development and pro-

gression of Sjögren syndrome-like disease in NOD mice. It is

possible that IL-17 plays a pathogenic role in progression of dis-

ease, and thus, skewing away from IL-17 production through

overexpression of IL-27 may limit later disease progression.

In conclusion, we identified IL-27 as an important mediator in

the pathogenesis of T1D and Sjögren syndrome, and this was

attributed to the effect of IL-27 signaling on the function of

CD4 and CD8 T cells. Although several mechanistic questions
remain, this study highlights the potential of IL-27 to be a viable

therapeutic target for the treatment of autoimmune pathologies

and advances our basic understanding of the function of a hu-

man T1D candidate gene.
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Chemicals, Peptides, and Recombinant Proteins

MHC Class I (Kd) tetramers loaded with NRP-V7 NIH Tetramer Core Facility

(Trudeau et al., 2003)

N/A

eFluor670 eBioscience Cat#65-0840-85

7-aminoactinomycin D Sigma Cat#A9400-1MG

Foxp3/Transcription Factor staining buffer set Invitrogen Cat#00-5523-00

Fixable Viability Stain 575V BD Bioscience Cat#565694

Carboxyfluorescein succinimidyl ester Invitrogen Cat#V12883

rmM-CSF R&D Systems Cat#416-ML

Critical Commercial Assays

Anti-CD3ε microbeads Miltenyi Biotec Cat#130-094-973

Pan T cell isolation kit II Miltenyi Biotec Cat#130-095-130

CD8+ T cell isolation kit Miltenyi Biotec Cat#130-104-075

CD4+ T cell isolation kit Miltenyi Biotec Cat#130-104-454

CD4+CD25+ Regulatory T cell isolation kit Miltenyi Biotec Cat#130-091-041

IL-27 ELISA Invitrogen Cat#88-7274-88

Experimental Models: Organisms/Strains

NOD/ShiLtJ The Jackson Laboratory JAX: 001976; RRID:IMSR_JAX:001976

NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ The Jackson Laboratory JAX: 005868; RRID:IMSR_JAX:005868

NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ The Jackson Laboratory JAX: 004460; RRID:IMSR_JAX:004460

NOD.129S7(B6)-Rag1tm1Mom/J The Jackson Laboratory JAX: 003729; RRID:IMSR_JAX:003729

NOD.B6-Ptprcb/6908MrkTacJ The Jackson Laboratory JAX: 014149; RRID:IMSR_JAX:014149

NOD.Il27�/� This Manuscript N/A

NOD.Il27ra�/� This Manuscript N/A

NOD.Rag1�/�.Il27�/� This Manuscript N/A

NOD.Rag1�/�.Il27ra�/� This Manuscript N/A

NOD.Cd45.2.NY8.3 This Manuscript N/A

NOD.Il6�/� This Manuscript N/A

Oligonucleotides

Il27ra sgRNA: TGCTACAGCGTCGGTCCCC

TGGG

IDT N/A

Forward primer for NOD.Il27�/� genotyping:

AAACTTGTGAATGAAATGGAAGC

IDT N/A

Reverse primer for NOD.Il27�/� genotyping:

TTCAACCTGATTCTGGGAG

IDT N/A

Forward primer for NOD.Il27ra�/� genotyping:

AACTTGACCACGGTCCTCTC

IDT N/A

Reverse primer for NOD.Il27ra�/� genotyping:

AATGAGTGGGCTAGCCTGAG

IDT N/A

Software and Algorithms

FlowJo 7.6.5 FlowJo https://www.flowjo.com

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Application Suite X Lecia Microsystems https://www.leica-microsystems.com/products/

microscope-software/p/leica-las-x-id/

Prism 7 Graphpad https://www.graphpad.com/scientific-software/

prism/
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yi-Guang

Chen (yichen@mcw.edu). All unique mouse strains generated in this study are available from the Lead Contact with a completedMa-

terials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

NOD/ShiLtJ (NOD), NOD.Cg-Tg(TcraTcrbNY8.3)1Pesa/DvsJ (NOD.NY8.3), NOD.Cg-Tg(TcraBDC2.5,TcrbBDC2.5)1Doi/DoiJ

(NOD.BDC2.5), NOD.129S7(B6)-Rag1tm1Mom/J (NOD.Rag1�/�), and NOD.B6-Ptprcb/6908MrkTacJ (NOD.Cd45.2) mice were ob-

tained from The Jackson Laboratory and subsequently maintained at the Medical College of Wisconsin (MCW) or University of

Iowa (U Iowa). NOD.Il27�/�mice were generated using ZFNs as previously described (Chen et al., 2014). Constructs of the ZFN pairs

specifically targeting the fourth coding exon of the mouse Il27 gene were designed, assembled, and validated by Sigma-Aldrich

(target sequence CTACCACACTTCGGCCCTtccctGCCATGCTGGGAGGGCTG; ZFNs bind to each sequence shown in upper

case on opposite strands). Forward (50-AAACTTGTGAATGAAATGGAAGC-30) and reverse (50-TTCAACCTGATTCTGGGAG-30)
primers were used for PCR followed by Sanger sequencing. A founder heterozygous for a one bp deletion predicted to disrupt

the normal reading frame and introduce a premature stop codon was identified and backcrossed to NOD. N2 heterozygous mutant

mice were then intercrossed to fix the mutation to homozygosity. NOD.Il27ra�/� mice were generated using the CRISPR/Cas9 tech-

nology as previously described (Presa et al., 2018). NOD embryos were intra-cytoplasmic microinjected with 3 pl of a solution con-

taining Cas9 mRNA and single guide RNA (sgRNA) at respective concentrations of 100 ng/ml and 50 ng/ml. The guide RNA sequence

(50-TGCTACAGCGTCGGTCCCCTGGG-30) was designed to target the second coding exon of Il27ra. The genomic region around the

targeted site was amplified by PCR using forward (50- AACTTGACCACGGTCCTCTC-30) and reverse (50-AATGAGTGGGCTAGCCT

GAG-30) primers and screened by Sanger sequencing. A founder heterozygous for a 34 bp deletion predicted to disrupt the normal

reading frame was identified and backcrossed to NOD. At the N2 generation, heterozygous mutant mice were intercrossed to fix the

mutation to homozygosity. The generation of NOD.Rag1�/�.Il27�/� and NOD.Rag1�/�.Il27ra�/� mice was accomplished by respec-

tively outcrossing NOD.Il27�/� and NOD.Il27ra�/� mice to the NOD.Rag1�/� strain. Similarly, the NOD.Cd45.2.NY8.3 mice were

generated by outcrossing NOD.Cd45.2 to the NOD.NY8.3 strain. B6.129S2-Il6tm1Kopf/J mice (Kopf et al., 1994) obtained from

The Jackson Laboratory were initially backcrossed to NOD/ShiLtJ for 10 generations and then to NOD/LtDvs for three additional gen-

erations before intercrossing to generate littermates for the diabetes incidence study. All known insulin dependent diabetes suscep-

tibility (Idd) regions were confirmed to be of NOD origin (Driver et al., 2011). All mice were used in accordance with Institutional Animal

Care and Use Committee guidelines at theMCWandU Iowa. Mice used for experiments were housed in the same facility at either the

MCW or U Iowa.

METHOD DETAILS

Assessment of T1D and insulitis
Mice were tested weekly for glycosuria (Bayer Diastix �) and considered diabetic with two consecutive readings > 250 mg/dl. Pan-

creata from 10-week and 30-week-old non-diabetic mice were fixed in 10% neutral buffered formalin and 4mm sections were cut,

discarding 60mm in between each section. The pancreatic sections were then stained with aldehyde fuchsin followed by a hematox-

ylin and eosin (H&E) counterstain. At least 30 islets were scored per mouse. Insulitis scores were determined as follows: 0-no infil-

tration, 1-leukocytes surrounding islet but no penetration, 2-estimated loss of up to 25% of the b cells, 3-estimated loss of up to 75%

of the b cells, 4-end stage, less than 25% of the b cells remaining.

Generation of bone marrow chimeras
Bone marrow (BM) cells were harvested from the tibias and femurs of NOD.Rag1�/� or NOD.Il27�/�. Rag1�/� females (7-12 weeks

old). BM cells (5 3 106) were injected intravenously into sublethally irradiated (600 rads) NOD.Il27�/� or NOD.Il27ra�/� female mice

(5-7 weeks old). For the generation of mixed BM chimeras, BM cells were collected from 6-9-week-old NOD.Il27ra�/� and

NOD.Cd45.2 females. T cells were depleted using anti-CD3e microbeads (Miltenyi Biotec). T cell-depleted NOD.Il27ra�/� and

NOD.Cd45.2 BM cells were mixed at a 1:1 ratio (2.5x106 cells each) and infused into lethally irradiated (1100 rads) 6-8-week-old

(NOD x NOD.Cd45.2)F1 females.

Adoptive T cell transfer
Splenic total T cells were isolated by negative selection (Pan T cell isolation kit II, Miltenyi Biotec) from NOD (6-13 weeks old),

NOD.Il27�/� (14-16 weeks old), or NOD.Il27ra�/� females (12-15 weeks old) and intravenously injected (5x106 cells) into

NOD.Rag1�/�, NOD.Rag1�/�.Il27�/� or NOD.Rag1�/�.Il27ra�/� female recipients. In some experiments, splenic CD4 and CD8

T cells were independently isolated from 6-8-week-old NOD and NOD. Il27ra�/� females, mixed at a 2:1 ratio (6x106 cells total),

and transferred into NOD.Rag1�/� female recipients. The purity of the transferred T cells was analyzed by flow cytometry and

was consistently > 93%. To test the function of Tregs in vivo, splenic CD25 depleted total T cells were isolated from 13-15-week
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old female NODmice by negative selection (Pan T cell isolation kit II, Miltenyi Biotec) with the addition of biotin conjugated anti-CD25

(7D4), (BD Biosciences). Splenic Tregs were independently isolated by fluorescence-activated cell sorting (FACS) from 6-9-week-old

NOD or NOD.Il27ra�/� mice. Flow cytometry verified that similar portions (> 92%) of CD3+CD4+CD25+GITR+ splenocytes from both

NOD and NOD.Il27ra �/� mice were also FOXP3+. Therefore, Tregs were sorted by gating on single, CD4+CD25+GITR+ cells using

clones RM4-5, PC61 and DTA-1, respectively, and a BD FACSAria II cytometer. Splenic CD25 depleted NOD total T cells (5x106)

were co-transferred with or without splenic Tregs (5x105) into NOD.Rag1�/� recipients.

In vivo cell proliferation assay
Splenic CD8 T cells or CD4 T cells were isolated by negative selection (CD8+ T cell isolation kit or CD4+ T cell isolation kit, Miltenyi

Biotec) fromNOD.NY8.3 or NOD.BDC2.5mice respectively. Isolated cells were labeled with 2.5mMeFluor670 (eBioscience) in Hanks

balanced salt solution (HBSS, Sigma) at 37�C for 10 minutes and washed four times with complete RPMI. Labeled CD8 T cells were

intravenously injected into sex-matched NOD and NOD.Il27�/� males (33 106) or females (53 106). Labeled CD4 T cells were intra-

venously injected into NOD or NOD.Il27�/� females (2 3 106). Five days post-transfer, PLNs were harvested from recipients and

analyzed by flow cytometry. In some experiments, splenic CD8 T cells were isolated by negative selection from NOD.Cd45.2.NY8.3

females and intravenously injected into NOD or NOD.Il27�/� females (5x106). One day post-transfer, PLNs were harvested from re-

cipients and analyzed by flow cytometry.

Flow cytometry
Fluorochrome-conjugated antibodies specific for CD45.1 (A20), CD45.2 (104), CD3ε (145-2C11 or 17A2) or TCRb (H57-597), CD4

(RM4-5 or GK1.5), CD8a (53-6.7), IL-27Ra (2918), CD44 (IM7), CD62L (MEL-14), Foxp3 (FJK-16 s), CD25 (PC61), T-bet (eBIO4B10),

IFNg (XMG1.2), IL-17A (eBio17B7), IL-4 (11B11), CD11b (M1-70), CD11c (N418), I-Ag7 (AMS32.1), H-2Kd (SF1-1.1.1), CD103 (2E7),

F4/80 (BM8), CD49b (DX5), CD40 (3/(23)), CD80 (16-10A1), CD86 (GL1), PD-L1 (MIH5), and PDCA-1 (eBIO129c) were purchased from

BD Biosciences (San Jose, CA), Bio-Legend (San Diego, CA), or Thermo Fisher Scientific (Waltham, MA). MHC class I (Kd) tetramers

loaded with a mimotope peptide NRP-V7(Trudeau et al., 2003) were obtained from the National Institutes of Health Tetramer Core

Facility. Single cell suspensions were prepared from the spleen, PLN, or thymus at the indicated age by passing the tissue through

an 80mm Nitex screen (Dynamic Aqua Supply Ltd). For analysis of DC subsets, spleens and PLNs were digested for 30 minutes at

37�C in collagenase D (400 units/mL, Sigma) and agitated with a disposable transfer pipette to obtain a single cell suspension. Cells

were washed with modified HBSS (Sigma), and then washed with FACS buffer (sodium azide (1mg/mL) and 2% fetal bovine serum

(FBS, GIBCO) in phosphate buffered saline (D-PBS, GIBCO)) before staining. For analysis of islet-infiltrating cells, pancreatic

islets were harvested by perfusion of the pancreas with a collagenase P solution (0.5 units/mL collagenase, Roche Diagnostics,

10mg/mL DNase, Sigma, diluted in HBSS) via the common bile duct using a 30-gauge needle. The inflated pancreata were incubated

for 16 minutes at 37�C, agitated, and washed three times with HBSS plus 2% FBS. Islets were hand-picked from the pancreas sus-

pension using a dissecting microscope and micropipette. Hand-picked islets were dissociated in non-enzymatic cell dissociation

buffer (GIBCO) to obtain a single cell suspension. Cells were washed with FACS buffer before staining. For all experiments, cells

were blocked with Fc block (anti-mouse CD16/CD32 clone 2.4G2, BioXCell) at room temperature for 10 minutes and then stained

with the indicated antibodies for 30minutes at 4�C. Stained cells were washedwith FACS buffer. Dead cells were discriminated using

7-aminoactinomycin (7AAD, Sigma). For intracellular cytokine staining, cells were cultured at 37�C for four hours in the presence of

phorbol myristate acetate (PMA, 20ng/mL, Sigma), ionomycin (1mg/mL, Sigma), and BD GolgiPlugTM (1mL/mL). Cultured cells were

washed with FACS buffer before staining. For intracellular staining of cytokines and transcription factors, cells were fixed and per-

meabilized using the Foxp3/Transcription factor staining buffer set (eBioscience) according to the instructions. Dead cells were

discriminated by fixable viability stain 575V (BD Biosciences) in the cultured samples from mixed BM chimera mice. Samples

were run on the LSRII or LSRFortessa X20 cytometer (BD Biosciences). Data was analyzed with FlowJo software (Tree Star, Ashland,

OR). Gating for IFNg, IL-17A, IL-4, and T-bet were based on samples stained with isotype controls at the same concentration as the

corresponding antibody.

In vitro Treg suppression assay
CD4+CD25- T cells (effectors) were isolated by negative selection and CD4+CD25+ T cells (Tregs) were isolated by the CD4+CD25+

Regulatory T cell isolation kit (Miltenyi Biotec) from the spleens of 7-9-week-old male NOD and NOD.Il27ra�/�mice. Purity of isolated

cells was checked by flow cytometry and was routinely > 87% for CD4+CD25- T cells and > 90% for CD4+CD25+ T cells. Isolated

CD4+CD25- T cells were labeled with 2mM CFSE (Invitrogen) in HBSS at 37�C for 10 minutes and washed four times with complete

RPMI. Labeled CD4+CD25- T cells from NOD donors (5x104) were co-cultured with decreasing numbers of CD4+CD25+ T cells from

NOD, or NOD.Il27ra�/� (5x104, 2.5x104, 1.25x104, and 6.25x103) and 2x105 total splenocytes from NOD.Rag1�/� mice in the pres-

ence of 1mg/mL anti-CD3 (145-211, eBioscience). Control wells containing labeled CD4+CD25- T cells plus NOD.Rag1�/� total sple-

nocytes with or without anti-CD3 were included. Cells were incubated at 37�C for three days. Cells were then washed with FACS

buffer and stained with anti-CD4 and 7AAD. Flow cytometry was used to measure the proliferation of effector T cells by dilution

of CFSE. The percent suppression was calculated by [percentage of divided CD4+CD25- T cells (without Tregs) - percentage of

divided CD4+CD25- (with Tregs)] / [percentage of divided CD4+CD25- T cells (without Tregs)] x 100.
e4 Cell Reports 29, 3073–3086.e1–e5, December 3, 2019



IL-27 ELISA
BM was harvested from the tibias and femurs of 8-10-week-old male NOD and NOD.Il27�/� mice and cultured in non-tissue culture

treated plates in the presence of 25ng/mL rmM-CSF (R&D Systems) at 37�C for seven days. The supernatant was removed, and the

adherent cells were washed with PBS and incubated with non-enzymatic cell dissociation buffer (GIBCO) at 37�C for 10 minutes.

Adherent cells were then lifted from the plate using a cell scraper. Cells were then stimulated for 24 hours at 37�C with 100ng/mL

lipopolysaccharide (LPS). ELISA was performed using a kit (Invitrogen) according to the manufacturer’s instruction to measure IL-

27 heterodimers in the cell-free supernatant.

Adoptive transfer of Sjögren syndrome
Splenic T cells from the indicated strains were enriched bymagnetic sorting using a negative selection T cell purification kit according

to the manufacturer’s protocol (Miltenyi Biotech Inc, Auburn, CA). Enriched T cells were then labeled with fluorophore-conjugated

anti-CD8a (clone 53-6.7), anti-CD4 (clone GK1.5 or RM4-5), and anti-CD25 (clone PC61) monoclonal antibodies and subjected to

FACS using an Aria II or an Aria Fusion (BD Biosciences, San Jose, CA). CD4+CD25� and CD8a+ cells were purified and collected

together as effector T cells. Sorted populations were > 94% TCRa positive based on post-sort purity analyses with anti-TCRa anti-

body (clone H57-597) acquired on a BD LSR II (BD Biosciences). For transfers, 4x106 effector T cells were transferred intravenously

via retro-orbital injection to sex-matched NOD-scid recipient mice. Sevenweeks later, lacrimal glands were fixed for H&E analyses to

quantify inflammation.

Histology of lacrimal and salivary glands
Exorbital lacrimal and submandibular salivary glands were fixed in buffered formalin, processed, embedded in paraffin, and

sectioned. Five mmsections of paired glands were stained with H&E and inflammation was quantified by light microscopy using stan-

dard focus scoring (Barr et al., 2017). Briefly, slides were analyzed at 10x magnification by a blinded observer to determine the num-

ber of mononuclear cell foci in tissue sections of male lacrimal or female salivary glands, with a focus defined as a cluster of at least 50

mononuclear cells. Slides were scanned using PathScan Enabler IV (Meyer Instruments, Houston, TX) to obtain digital images, and

tissue areas were measured using ImageJ software (US National Institutes of Health, Bethesda, MD, USA) (Schneider et al., 2012).

Focus scores were calculated as number of foci per 4mm2 tissue area. Samples with foci that were so numerous that they coalesced

were designated as diffuse and assigned focus scores greater than the highest calculable value for that set of comparisons. Repre-

sentative images were captured on a Leitz DM-RB research microscope with a Leica DCF700T digital camera using the Leica Appli-

cation Suite X software (Leica Microsystems, Wetzlar, Germany).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was determined by Mann-Whitney test or Wilcoxon matched-pairs signed rank test as appropriate. Log-rank

test was used for analyzing T1D incidence. Multiple group comparisons of non-normally distributed data (focus scores) were

performed by Kruskal-Wallace with Dunn’s multiple comparisons post-test to compare each knockout group to wild-type. All statis-

tical tests were performed using GraphPad Prism 7 (La Jolla, CA). p < 0.05 was considered significant: * p < 0.05, ** p < 0.01, and

*** p < 0.005. Statistical details of individual experiments can be found in the figures and legends.

DATA AND CODE AVAILABILITY

This study did not generate or analyze datasets or codes.
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WT       TGCTTCCTCGCTACCACACTTCGGCCCTTCCCTGCCATGCTGGGAGGGCTGGGGACCCA

Il27-/- TGCTTCCTCGCTACCACACTTCGGCCCTTCCCTGCCATGCTGGGAGGGCTGGGGACCCA

Partial sequence of the 4th coding exon of Il27

Partial sequence of the 2nd coding exon of Il27ra

WT CGTCGGTCCCCTGGGAATCCTGAACTGCTCCTGGGAACCTTTGGGCGACCTGGAGA

Il27ra-/- CGTCGGTCCCCTGGGAATCCTGAACTGCTCCTGGGAACCTTTGGGCGACCTGGAGA
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Figure S1. Related to Figures 1 and 4. Generation and characterization of NOD.Il27-/- and 
NOD.Il27ra-/- mice. (A) Partial sequence of the 4th coding exon of Il27 depicting single base pair 
deletion (double strikethrough) created by zinc finger nucleases (Top). Partial sequence of the 2nd

coding exon of Il27ra depicting deletion of 34 base pairs (double strikethrough) created by the 
CRISPR/Cas9 technology. (B) Bone marrow derived macrophages from NOD or NOD.Il27-/- mice 
were stimulated for 24 hours with 100ng/mL LPS. IL-27 protein was measured in the supernatant by 
ELISA. (C) Pancreatic sections from 10-week-old non-diabetic mice were stained with aldehyde 
fuchsin followed by H&E. Representative images depict islet infiltration in mice of the indicated sex 
and strain. Scale bar is 100 µm. (D) Representative flow cytometry histograms depicting IL-27Rα 
expression in splenic CD8 T cells of NOD or NOD.Il27ra-/- mice. Shaded area indicates isotype 
control. 



Figure S2. Related to Figure 2. Splenic and PLN DC subsets in NOD and NOD.Il27-/- mice. (A) 

Analyses of splenic DC subsets. Representative flow cytometry plots depicting splenic DC subsets in 

10-week-old female NOD and NOD.Il27-/- mice (Left). Summarized data from at least two 

independent experiments (Right). The frequencies in the summarized results depict the percentages 

of total DCs or their subsets among total splenocytes. (B) Analyses of PLN DC subsets. 

Representative flow cytometry plots depicting PLN DC subsets in 10-week-old NOD or NOD.Il27-/-

females (Left). Summarized data from at least two independent experiments (Right). The frequencies 

in the summarized results depict the percentages of total DCs or their subsets among total PLN cells. 

(C) Representative flow cytometry plots (Left) and the summarized results (Right) depicting the 

frequencies of splenic and PLN plasmacytoid DCs in 10-week-old NOD females. The frequencies in 

the summarized results depict the percentages of pDCs among total splenocytes or PLN cells.  All 

error bars are SEM.
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Figure S3. Related to Figure 4. IL-6 does not play an essential role in T1D development.

Female littermates of the indicated genotypes were monitored for diabetes development for 30 

weeks. Diabetes onset was determined by two consecutive positive readings of glycosuria on a urine 

test strip (> 250 mg/dl).  No difference in diabetes development was found among genotypes.
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Figure S4. Related to Figure 4. In vitro suppression function of IL-27 receptor deficient Tregs. 

Splenic CD4+CD25- T cells were isolated from NOD mice, labeled with CFSE, and cultured either 

alone or in the presence of unlabeled CD4+CD25+ NOD or NOD.Il27ra-/- Tregs at the indicated ratios. 

Cells were activated with soluble anti-CD3 in the presence of NOD.Rag1-/- splenocytes for three days 

and proliferation was analyzed by flow cytometry. Representative histograms depicting proliferation 

of single, viable, CD4+ CFSE+ responder cells are shown. Data are representative of 3 independent 

experiments. 
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Figure S5. Related to Figure 5. Differential accumulation of wildtype and IL-27Rα-deficient 

Tregs in mixed BM chimeras. Lethally irradiated (NOD x NOD.Cd45.2)F1 mice were infused with 

equal numbers of T cell-depleted BM cells from NOD.Cd45.2 and NOD.Il27ra-/- donors. Pre-diabetic 

recipients were analyzed for wildtype (CD45.2+) and IL-27Rα-deficient (CD45.1+) T cell subsets 10-

12 weeks after BM reconstitution. (A-C) Summarized results pooled from 2 independent experiments 

depict absolute number of CD3+CD4+Foxp3+ Tregs in the spleens (A), PLNs (B), and islets (C) of the 

mixed BM chimeras. Statistical significance was determined with Wilcoxon matched-pairs signed 

rank test. *p < 0.05. NS: not significant.
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