
 

Reviewer 1 
This is a very interesting study that introduces the gaze-weighted linear accumulator model 
(GLAM) and validates a new toolbox for fitting the model in Python to understand the 
association between gaze bias and decision making. In this manuscript, the authors tried to 
validate the GLAM and the toolbox in three different cases: individual-level parameter 
estimation, group-level parameter estimation using hierarchical Bayesian method, and 
parameter recovery. The authors show convincing and converging evidence that the GLAM 
performs better than a model without reflecting gaze bias in value-based decisions and explain 
how to use the toolbox to fit GLAM in Python. I believe the manuscript is good to be considered 
publication in PLOS ONE with a revision. Here, I summarize several points that I was not clear 
or had questions while reading it through: 
 
1. It was not quite clear what the general speed parameter (parameter v in Eq 5, page 4) in the 
model captures. What does the general speed exactly mean? Does it capture speed-accuracy 
tradeoff as boundary parameter in DDM? It seems like Eq 6 captures accuracy-speed tradeoff 
using the speed parameter, but it is not quite clear for me. If the authors could provide more 
about this parameter, it would be better for readers to understand the parameter better. 
 

The velocity parameter v linearly scales the item drift rates in the race process (Eq. 5) 
and thereby predominantly affects the response times produced by the model (lower 
values of v produce longer response times, whereas larger values of v produce shorter 
response times). It creates speed-accuracy tradeoffs in conjunction with the 
accumulation noise (or “diffusion”) parameter σ. This implementation is similar to other 
diffusion-to-bound models like the aDDM (where there is a speed parameter d and a 
diffusion parameter σ) or some implementations of the DDM (although some DDM 
parameterizations fix the diffusion parameter and estimate the boundary separation, 
instead).  
We have added additional information about the velocity parameter v and its function in 
the model section: 
 
Resulting changes in the manuscript: 
 
ll. 110ff. 
At each time step t, the amount of accumulated evidence is determined by the 
accumulation rate vRi, and zero-centered normally distributed noise with standard 
deviation σ. The velocity parameter v linearly scales the item drift rates in the race 
process and thereby affects the response times produced by the model: Lower values of 
v produce longer response times, larger v result in shorter response times. 
A choice for an item is made as soon as one accumulator reaches the decision 
boundary b. To avoid underdetermination of the model, either the velocity parameter v, 
the noise parameter σ or the decision boundary b has to be fixed. Similar to the aDDM, 
the GLAM fixes the decision boundary to a value of 1. [...] 



 

 
 
2. Is Eq 4 correct? Parentheses are missing after “exp”? 
  

We thank the reviewer for indicating this error in equation 4 of our manuscript. We have 
accordingly added the missing parentheses to equation 4 of our revised manuscript. 

 
3. In Example 1, the authors collected liking scores after choice and used the liking scores to 
identify the higher value items or the best items. However, choice-induced preference literature 
has shown that choices not only reveal preferences, but also shape preferences. Thus, chosen 
items might have higher liking scores than non-chosen items not only because participants liked 
them but also because they chose them. Is there any way to rule out this issue? Or, do the 
authors expect different or the results if liking scores are measured in advance and test the 
model? 
 

We thank the reviewer for this valuable remark. We adapted the description of this 
(fictitious) experiment to be more consistent with published experimental procedures, 
where liking ratings are collected before the choice task (e.g., Krajbich, Armel & Rangel, 
2010; Krajbich & Rangel, 2011, Folke et al., 2017). 
 
Resulting changes in the manuscript: 
 
ll. 283ff. 
While participants perform the task, their eye movements, choices and RTs are 
measured. Before completing the choice trials, participants were asked to indicate their 
liking rating for each of the items used in the choice task on a liking rating scale between 
1 and 10 (with 10 indicating strong liking and 1 indicating little liking). 

 
 
4. The “glam_bias.fit” and “glam_nobias.fit” lines in page 10 and page 11 do not have “chains” 
attribute (which is 4 in default), but the authors’ suggestion for model convergence is 2 in the 
main text. I found that the script in Github includes chains parameter in the script. Including the 
‘chains attribute in the script examples in the manuscript would help readers more intuitively. 
 

We thank the reviewer for pointing out that our initial manuscript was not clear enough 
on the number of posterior chains that we recommend for model sampling. We now 
explicitly include the chains argument in our code examples of the revised manuscript, 
when calling the fit method of the GLAM model class (see pp. 11, 12, 15, and 17).  
 
We would further like to point the reviewer to p. 11, ll. 340 of our manuscript, where we 
state that the chains arguments “[...] defaults to four and should be set to at least two, in 
order to allow convergence diagnostics”. At least two posterior chains are needed in 
order to compute several common convergence diagnostic measures, such as the R-hat 



 

measure. We recommend four chains, in accordance with the recommendations of the 
PyMC3 development team. 

 
5. The authors mention about the results of model comparison test result in page 11. Without 
output figure or table, it was not quite easy to understand what the results look like. The Github 
script did not include model comparison results. Adding the model comparison result table in the 
revised manuscript would help readers. 
 

We thank the reviewer for bringing this to our attention. We agree that this section was 
difficult to follow and have revised it substantially: The toolbox now includes a dedicated 
function to perform model comparisons. It wraps the PyMC3 compare function that was 
used previously, and simplifies the inputs required from the user. 
We have included a paragraph describing how to perform model comparisons into the 
Basic Usage section of the manuscript and revised Example 1 accordingly. 
 
Resulting changes in the manuscript: 
 
ll. 248ff. 
Comparing model variants 
Model comparisons between multiple GLAM variants (e.g., full and restricted variants) 
can be performed using the compare function, which wraps the function of the same 
name from the PyMC3 library. The compare function takes as input a list of fitted model 
instances that are to be compared. Additional keyword arguments can be given and are 
passed on to PyMC3 function. This allows the user, for example, to specify the 
information criterion used for the comparison via the ic argument 'WAIC' or 'LOO' for 
Leave-One-Out cross validation). It returns a table containing an estimate of the 
specified information criterion, standard errors, difference to the best-fitting model, 
standard error of the difference, and other output variables from PyMC3 for each 
inputted model (and subject, if individually estimated models were given). We refer the 
reader to Example 2 for a usage example and exemplary output from the compare 
function. 
 
ll. 342ff. 
After convergence has been established for all parameter traces (for details on the 
suggested convergence criteria, see Methods), we perform a model comparison on the 
individual level, using the compare_models function from the analysis module (see 
Basic Usage: Comparing model variants): 
 

comparison_df = gb.analysis.compare_models(models=[glam_bias, glam_nobias], 
                                           ic='WAIC') 

 
The resulting table (shown in Table 2) can be used to identify the best fitting model 
(indicated by the lowest WAIC score) per individual. 



 

 
Table 2. Output from compare_models function for the first two subjects. 

subject model WAIC pWAIC dWAIC weight SE dSE var_warn 

0 glam_bias 523.6 5.75 0 0.94 50.25 0 0 

0 glam_nobias 645.09 3.64 121.49 0.06 44.15 23.56 0 

1 glam_bias 1097.86 3.69 0 1 40.32 0 0 

1 glam_nobias 1185.02 2.85 87.16 0 38.22 18 0 

 
 

 
 
6. Overall, I felt that the captions of figures are too long and redundant with the main text. I think 
it would be better to explain more in the main text and shorten the caption of figures. 
  

We thank the reviewer for this valuable remark. In line with the reviewer’s suggestion, 
we have shortened the (previously very long) captions of Figures 2, 6 and 7 of our 
revised manuscript. 
 

Resulting changes in the manuscript: 
 
Fig. 2. Hierarchical model structure In the hierarchical model, individual subject 
parameters 𝛾" , 𝑣". 𝜎", and 𝜏" (subject plate) are drawn from Truncated Normal group 
level distributions with means μ and standard deviations σ (outside of the subject plate). 
Weakly informative Truncated Normal priors are placed on the group level parameters. 
RT and choice data 𝑥",) for each trial𝑡 is distributed according to the subject parameters 
and the GLAM likelihood (Eq (8); inner trial plate). 
 
Fig. 6. Aggregated view of the simulated data for Example 2. (A) Mean RT binned 
by trial difficulty (the difference between the highest item value in a choice set and the 
maximum value of all others). (B) The probability that an item is chosen based on its 
relative value (the difference of the item’s value and the maximum value of all other 
items in the choice set). (C) The probability of choosing an item based on its relative 
gaze (the difference between the gaze towards this item and the maximum gaze 
towards all others). (D) The probability of choosing an item based on its relative gaze, 
when correcting for the influence of its value. Bars correspond to the pooled data, while 
coloured lines indicate individual groups. 
 
Fig 7. Pairwise comparison of posterior group-level parameter estimates 
between groups. Each row corresponds to one model parameter. The leftmost column 
shows the estimated  posterior distributions for each parameter and group. Pairwise 
differences between the group posterior distributions are shown in all other columns. 
For each posterior distribution of the difference, the mean and 95% HPD are indicated, 
as well as the proportion of samples below and above zero (in red). All three groups 



 

differ on the 𝛾 parameter (row B). No evidence for differences on any of the other model 
parameters is found (the 95% HPD of the pairwise differences between groups all 
include zero). 

 
7. I could not install the toolbox using pip or conda. If the authors could make it available (or at 
least inform how to install on a local computer), it would help researchers access the toolbox. 
 

We agree that the toolbox should be easily installable. We therefore packaged and 
distributed the toolbox on the Python Package Index (PyPi) to make it pip-installable. In 
addition we added a “Installation” section to the toolbox documentation (available at 
https://glambox.readthedocs.io), that includes instructions on installation of the toolbox 
and its requirements. 

 
Minor points 
 
8. I am not sure this is a technical issue or not, but the figures were not clear. Some letters were 
broken too. Please check the clarity of the figures. 
 

We thank the reviewer for pointing this out. The figures that we have, and that we 
submitted to PLOS One, look clear on our computers and do not exhibit any broken 
letters. We formatted figures as .tiff files, as PLOS guidelines require. To resolve this 
issue, which seems technical to us, we have recreated all figures and again formatted to 
comply with PLOS guidelines. We hope that figures appear correctly now. 

 
9. The number label in page 5 for “individual parameter estimation details” seems quite abrupt. 
Please drop the numbers. 
 

We thank the reviewer for bringing this formatting error to our attention. We have 
removed the numbering. 

  



 

Reviewer 2 
Summary: this paper provides an overview of how to use the authors’ toolbox to measure 
individual and group differences in the extent to which gaze information influences decision-
making. The GLAMbox approach was first introduced in an empirical paper published this year 
(Thomas et al., 2019), and the current paper expands upon the method to enable other 
researchers to use it in an informed way. This new method is useful for researchers who use 
eye tracking as a tool to understand decision-making, and the GLAMbox adds a contribution to 
the field as a whole. Past research has focused on one overall discount value for unattended 
information, whereas this allows fitting of individual differences. Moreover, it seems to be a more 
efficient implementation than past work, which makes it more accessible. The authors are 
thorough in both describing model-fitting as well as parameter recovery to promote best 
practices. I think that a few clarifications and additions could make this paper stronger: 
 
1. It would be helpful in the introduction and/or discussion to explain more how different 
individual gaze biases might arise (familiarity with items, more goal-driven approach, etc.). 
There is not one obvious reason, but I think some discussion of why this is important is useful. 
For example, Smith & Krajbich (2018) discuss “tunnel vision” as one possible mechanism. 
 

We fully agree with the reviewer’s suggestion, that adding a discussion of mechanisms 
underlying individual differences in the gaze bias would be interesting. We have added a 
paragraph in the introduction of the manuscript. 
 
Resulting changes in the manuscript: 
 
ll. 27ff. 
Furthermore, recent findings indicate strong individual differences in the association 
between gaze allocation and choice behaviour (Smith & Krajbich, 2018; Thomas et al., 
2019) as well as individual differences in the decision mechanisms used (Ashby et al., 
2016).  
While the nature of individual differences in gaze biases is still not fully understood, 
different mechanisms have been suggested: Smith and Krajbich (2018) showed that 
gaze bias differences can be related to individual differences in attentional scope 
(“tunnel vision”). Vaidya and Fellows (2015) found stronger gaze biases in patients with 
damage in dorsomedial prefrontal cortex (PFC). Further, recent empirical work has 
investigated the roles of learning and attitude accessibility in gaze dependent decision 
making (Cavanagh et al., 2019; Gwinn & Krajbich, 2020). 
However, more systematic investigations of these differences are needed, as the 
majority of model-based investigations of the relationship between gaze allocation and 
choice behaviour were focused on the group level, disregarding differences between 
individuals. 

 
 



 

2a: Section 0.0.1 “Individual parameter estimation details” says that the ranges chosen were 
derived from “sensible limits based on previous applications” (line 118). It would be helpful to 
have more discussion of how these sensible limits are arrived at, whether they will apply broadly 
to all data sets, or how to determine appropriate ranges for one’s own data including theoretical 
constraints.  
 

We thank the reviewer for the suggestion to further clarify the model parameter bounds 
used by GLAMbox in our manuscript.  
 
All parameter bounds were derived from an analysis of four empirical choice datasets 
with the GLAM (see S1 Fig and S1 Table). The estimated individual subject parameters 
of these four datasets, encompassing value-based and perceptual choices from up to 
three items (and a wide range of response times, gaze biases and choice accuracy 
levels), are well covered by the revised broad parameter bounds. We have revised ll. 
146ff. of the manuscript to highlight this more strongly (see below). 
 
To be certain, however, that GLAMbox can capture a wide range of possible response 
patterns that go beyond previous applications, we have extended the parameter bounds 
to cover double the range of parameters previously observed (See S1 Fig): The new 
ranges are: 
 
𝑣: [0, 4] 
𝛾: [-2, 1] 
𝜎: [0, 4] 
𝜏: [0, 10] 
 
We think that these bounds realistically cover most observable behaviour, as the v and σ 
parameters are naturally bound at 0, and can produce arbitrarily slow (as v approaches 
zero) responses and accurate (as σ approaches zero) responses. 
 
In addition, we recommend to re-scale all item values to a range between 1 and 10, 
when using GLAMbox (ll. 176ff. of the revised manuscript). This, in combination with the 
fixed scale of gaze values ([0,1]), increases transferability of parameters between 
datasets. We believe that the revised parameter bounds thereby correspond to a wide 
range of possible response behaviours of human decision makers in simple choice 
tasks. 

 
 

Resulting changes in the manuscript: 
 
ll. 142ff. 
The GLAM is implemented in a Bayesian framework using the Python library PyMC3 
[24]. The model has four parameters (v, γ, σ, τ ). By default, uninformative, uniform priors 
between sensible limits are placed on all parameters: 



 

 
v ∼ U (0, 4) 

γ ∼ U (-2, 1) 

σ ∼ U (0, 4) 

τ ∼ U (0, 10) 
 

These limits were derived by extending the range of observed parameter estimates in 
earlier applications of the GLAM to four different empirical choice datasets. These 
datasets encompass data of 117 participants in value-based and perceptual choice 
tasks with up to three choice alternatives (including a wide range of possible response 
times, gaze bias strengths and choice accuracies; for further details [21]). Parameter 
estimates for these datasets are illustrated and summarised in S1 Table, S1 Fig and S2 
Fig. 
 
The velocity parameter v and the noise parameter σ must be strictly positive, with 
smaller values producing slower and more accurate responses. The gaze bias 
parameter γ has a natural upper bound at 1 (indicating no gaze bias), while decreasing γ 
values indicate an increasing gaze bias strength. The sensitivity parameter τ has a 
natural lower bound at 0 (resulting in no sensitivity to differences in average absolute 
decision signals 𝐴"), which larger values indicating increased sensitivity. 

 
2b: Furthermore, the aDDM that this method seems to draw its inspiration from, uses a discount 
range for attention of [0-1] (Krajbich et al., 2010; Krajbich et al., 2015). However, the authors 
here use a range including large negative values (-10) up to 1. I think it’s important to explain 
why negative values are used, how to interpret them (active forgetting or leaky accumulation?) 
and to provide a theoretical justification for their inclusion here given the context of previous 
literature. 
 

We thank the reviewer for this valuable comment. We interpret negative γ values as 
indication of a leakage mechanism. For negative γ the sign of the absolute decision 
signal Ā (see Eq. 1) changes and evidence is actively lost for these items, when they are 
not fixated. This results in an overall even stronger gaze bias than for γ = 0 (the 
maximum gaze bias strength of the aDDM). Such gaze dependent leakage mechanisms 
are also supported by recent empirical work (see for example, Ashby et al., 2016). 
 
To better illustrate the function of negative γ (and the leakage mechanism), we have 
extended the section on the Gaze-weighted linear accumulator model details of our 
revised manuscript (see below). 
 
Resulting changes in the manuscript: 
 
ll. 86ff. 



 

If γ = 1, there is no difference between the biased and unbiased state, resulting in no 
influence of gaze allocation on choice behaviour. For γ values less than 1, the absolute 
decision signal 𝐴" is discounted, resulting in generally higher choice probabilities for 
items that have been looked at longer. For γ values less than 0, the sign of the absolute 
decision signal 𝐴" changes, when the item is not looked at, leading to an overall even 
stronger gaze bias, as evidence for these items is actively lost, when they are not looked 
at. This type of gaze-dependent leakage mechanism is supported by a variety of recent 
empirical findings (Ashby et al., 2016; Thomas et al., 2019). 

 
 
3. The GLAM is explained in an option-wise manner. Given that recent research has shown that 
some individuals compare options with multiple attributes in an attribute-wise manner, would 
there be a way to incorporate attribute-wise comparisons into the GLAM? This may be outside 
the scope of the paper, but if there is a relatively easy way to implement it, that could be worth 
including. 
 

We strongly agree with the reviewer that an extension to the GLAM to multi-alternative 
multi-attribute choice would be very interesting.  
However, an extension to multiple attributes would entail changes to the format of the 
data that are fed into the model, and a substantial rewrite of the toolbox code. 
Furthermore, how exactly attribute comparisons should be implemented specifically into 
the GLAM is not trivial and many possible solutions exist, which would not necessarily 
share code implementations: Should attribute comparisons be performed between only 
two alternatives? This would mean that gaze would have to be partitioned differently 
than only by alternatives. Comparisons between more than two alternatives could be 
made using an item-vs-max or item-vs-mean implementation. What happens with 
unattended attributes? Is their information biased or not? Would this bias be different 
from the alternative-wise gaze bias? 
Again, we think this is a highly interesting point and we look forward to including it in a 
future version of GLAMbox. We think, however, that it is outside the scope of the toolbox 
in its current form. 
 
Resulting changes in the manuscript: 
None. 

 
4. Figure 4 shows a strong correlation between gamma and the behavioral gaze bias. This is a 
good confirmation, but the behavioral measure of gaze-choice association (lines 242-246) is 
only very briefly mentioned. If they are so highly correlated, what does gamma add beyond the 
behavioral gaze bias measure? Is its main advantage including it as part of the full model 
estimation process? 
 

We thank the reviewer for this valuable remark, which connects to the more general 
question of the contribution of a model-based analysis of behaviour vs. an analysis of 
purely behavioural measures (such as our behavioural gaze bias measure). We believe 



 

that there are several key differences between our behavioural gaze bias measure and 
our model-based analysis of individuals’ gaze bias strength (as quantified by the γ 
parameter): First, the model-based analysis poses several strict assumptions on the 
data generation process, by explicitly stating how we assume gaze to be involved in the 
decision process. The behavioural measure, on the other hand, does not include such 
constraints, as it purely quantifies the correlation between gaze allocation and choice, 
when corrected for the items’ values. If we find that the model describes the data well, 
we therefore have more evidence for the data generating mechanism, when compared 
to our purely behavioural measure. Second, by fitting a model to the data, we are able to 
make out-of-sample choice and response time predictions and compare these to the 
empirical data, thereby allowing for a more rigorous test of the fit of the model to the 
data. Lastly, a model-based analysis also allows for a comparison of different decision 
processes through a likelihood-based model comparison analysis.   

 
 
5. Example 2: does it make sense to expect similar parameter ranges for patients compared to 
a young, healthy sample? Parameters such as noise might be higher and drift rate might be 
slower. I don’t think that this should affect the gaze bias estimation, but it might affect which 
parameters are used to constrain hierarchical estimation. 
 

We thank the reviewer for the comment. We are not sure, however, if we understand it 
correctly. Indeed, in Example 2, we simulate an experiment with three fictitious patient 
groups, that only differ on their gaze bias parameter, and not on other model 
parameters, such as the velocity parameter v or the accumulation noise σ. We think that 
this scenario is not unrealistic. For example, the study that we modeled this example 
after (Vaidya & Fellows, 2015) did not find systematic differences between different 
patient groups and healthy controls on integration speed or the threshold parameter 
controlling speed accuracy tradeoffs. 
We agree with the reviewer, however, that in other settings different groups (e.g., 
patients and healthy controls) can of course differ on more than just the gaze bias 
parameter. This is why the model that is used in this example contains group-
dependencies on all model parameters, not just the gaze bias parameter γ (specified 
using the depends_on keyword). In the resulting model, individual estimates from one 
subject are informed by all other subjects in the same group, and group-level estimates 
are obtained per group. However, no hierarchical structure across groups is built for a 
parameter, when it is specified as having a group-dependency. If a researcher wishes a 
parameter to be estimated across groups, then she can opt to not list dependencies for 
this parameter. We revised the manuscript to better communicate these details to the 
reader. 

 
Resulting changes in the manuscript: 
 
ll. 411ff. 



 

We simulate data of three patient groups (N1 = 5, N2 = 10, N3 = 15), with 50 trials per 
individual, in a simple three item value-based choice task, where participants are 
instructed to simply choose the item they like the best. These numbers are roughly 
based on a recent clinical study on the role of the prefrontal cortex in fixation-dependent 
value representations (Vaidya & Fellows, 2015). Here, the authors found no systematic 
differences between frontal lobe patients and controls on integration speed or the 
decision threshold, controlling speed-accuracy trade-offs. Therefore, in our example we 
only let the gaze bias parameter γ differ systematically between the groups, with means 
of γ = 0.7 (weak gaze bias), γ = 0.1 (moderate gaze bias) and γ = −0.5 (strong gaze 

bias), respectively. We do not assume any other systematic differences between the 

groups and sample all other model parameters from the estimates obtained from fitting 

the model to the data of Krajbich and Rangel (2011) (for an overview of the generating 

parameters, see S4 Fig). 
 
 ll. 443ff. 

In this model, each parameter is set up hierarchically within each group, so that 
individual estimates are informed by other individuals in the same group. If the 
researcher does not expect group differences on a parameter, this parameter can simply 
be omitted from the depends_on dictionary. The resulting model would then assume that 
all parameter estimates of all individuals (across all groups) come from the same group-
level distribution. 

 
 
6. In Fig. 6, choice difficulty is defined as the highest value is compared with the average of the 
other values. However, I think a choice would be more difficult if the second highest value were 
quite similar to the highest value, regardless of the lower value options. For example, a choice 
with two similarly high value options and one very low value option would be harder than one 
with one high value option and 2 medium value options, but both would be similar difficulty by 
the metric currently used. Is there a reason this is favored over comparing the best and next 
best options? 
 

We thank the reviewer for this insightful remark. We agree that the difference between 
the highest item value and the second highest value is a more common and intuitive 
measure of choice difficulty than the difference to the mean. For this reason, we have 
adapted the choice difficulty measure of Figure 6A accordingly. We have also adapted 
the relative item value and gaze measures in Figure 6B-D to follow the same 
comparison strategy, by always computing the difference between an item’s value / gaze 
and the maximum of all others. 
 
Resulting changes in the manuscript: 
Figure 6 (and caption) 



 

 
 
 
7. A different number of draws and burn in samples are used in model-fitting from Example 1 to 
Example 2; is there a reason for this? Perhaps briefly explain why if it is relevant to users. 
 

We thank the reviewer for raising this point. We agree that the different numbers should 
be justified. The reason to increase the number of burn-in and kept samples is a higher 
autocorrelation of samples from the hierarchical model, which contains many more 
parameters than individual models. To obtain enough effective samples (Kruschke, 
2014) for each parameter, the total number of samples is increased. We have added a 
paragraph and corresponding references to the manuscript. 
We also changed the number of burn-in samples and samples to keep to 20.000 for this 
model. 

 
Resulting changes in the manuscript: 

 
ll. 450ff. 
After the model is built, the next step is to perform statistical inference over its 
parameters. As we have done with the individual models, we can use MCMC to 
approximate the parameters' posterior distributions (see Methods for details). Due to the 
more complex model structure and drastically increased number of parameters, the 
chains from the hierarchical model usually have higher levels of autocorrelation. To still 
obtain a reasonable number of effective samples (Kruschke, 2014), we increase the 
number of tuning- and draw steps: 
 

hglam.fit(method='MCMC', 
       draws=20000, 
       tune=20000, 
       chains=4) 

 
 
Small clarifications/phrasing corrections: 
 



 

8 • In the abstract, I would rephrase the middle sentence beginning with “However, only few 
decision models exist…” to something like, “However, few decision models exist that enable a 
straightforward characterization of the gaze-choice association at the individual level…” 
 

We thank the reviewer for this helpful suggestion. We have changed the referenced 
sentence in the abstract of our manuscript accordingly. 

 
Resulting changes in the manuscript: 

 
(Abstract) 
However, few decision models exist that enable a straightforward characterization of the 
gaze-choice association at the individual level, due to the high cost of developing and 
implementing them. 

 
 
9. In the introduction line 4, “It was repeatedly shown” should be changed to “It has been 
repeatedly shown” 
 

Thank you for pointing this out. 
 
Resulting changes in the manuscript: 

 
ll. 3f. 
For example, in value-based decision making, it has been repeatedly shown that longer 
gaze towards one option is associated [...] 

 
 
10. Line 66, “i” is not explained. It can be inferred that it indexes each item, but it should be 
explicitly mentioned. 
 

We thank the reviewer for pointing out the missing clarification of the i index used in the 
Gaze-weighted linear accumulator model details section. It indeed indexes the items in a 
choice set. We have added a clarification as follows: 
 
Resulting changes in the manuscript: 

 
ll. 80ff. 
Throughout the trial, the absolute signal of an item i can be in two states: An unbiased 
state, equal to the item’s value 𝑟" while the item is looked at, and a biased state while 
any other item is looked at, where the item value 𝑟" is discounted by a parameter γ. 

 
 
11. Figure 1 and equation 2 (lines 76-77). What does the “maximum of all other decision signals 
mean”? The highest average absolute decision signal among the item options? My 



 

interpretation is that you are subtracting the highest value option from all others as a sort of 
normalization, but this isn’t quite coming through clearly. 

 
We thank the reviewer for the comment. We agree that this section was unclear. We 
have reworded it to be more specific about the arithmetic operations performed. We 
have also revised the notation in the equation, changing J to “j ≠ i” to be more explicit 
about the group of variables that the maximum operator entails (also see next point). 

 
Resulting changes in the manuscript: 
 
ll. 93ff. 
To determine the relative decision signals, the average absolute decision signals 𝐴" are 
transformed in two steps: First, for each item i, the relative evidence 𝑅"∗ is computed as 
the difference between the average absolute decision signal of the item 𝐴" (Eq. 1) and 
the maximum of all other average absolute decision signals 𝐴/0" (also obtained from Eq. 
2) is computed [...] 

 
 
12. Line 76, equation 2. What does J represent? From reading the empirical paper using the 
same method, Thomas et al., 2019, it sounds like J represents the set of all items, but it should 
also be defined in this paper. 
  

We thank the reviewer for pointing out the missing clarification of the J index used in the 
Gaze-weighted linear accumulator model details section. In its current form, J represents 
the set of all the items in a choice set except for item i. 
 
To avoid any further confusion, we have adapted Eq 2 and 8, by directly specifying j ≠ i. 
(also see previous point). 
 
Resulting changes in the manuscript: 
 
ll. 93ff. 
To determine the relative decision signals, the average absolute decision signals 𝐴" are 
transformed in two steps: First, for each item i, the relative evidence 𝑅"∗ is computed as 
the difference between the average absolute decision signal of the item 𝐴" (Eq. 1) and the 
maximum of all other average absolute decision signals 𝐴/0" (also obtained from Eq. 2) is 
computed [...] 
 
ll. 125ff. 
Hence, the joint probability 𝑝(𝑡)" that accumulator 𝐸" crosses b at time t, and that no other 
accumulator 𝐸/0" has reached b first, is given by: 

 



 

 
13. Figure 1e is above panel d in a way that violates expectations of reading/processing 
material, and I think it would be clearer if the panel positions for d and e were switched (even 
though I understand it was likely put there for design reasons). 
 

We have changed the panel labeling and figure caption so that labels only go from left to 
right. 
 
Resulting changes in the manuscript: 
Figure 1 (including caption) 

 
 

 
 
 
14. Figure 3 flips the orientation of the axes between D, E, and F so that the same variables are 
on the x versus y axes, which makes it harder to process them all at once. It would better fit 
your description for “gaze influence on choice” to be on the x-axis in F. I realize that these are 
non-directional correlations and that the axes may be flipped to better align with the above 
histograms, but I find it harder to parse this way (instead of just including the histogram 
distributions with their own separate x-axis labels). 
 

We thank the reviewer for this valuable suggestion. Unfortunately, it is, to our 
knowledge, not possible to plot the same variable on the x-axis of all three pairwise 
correlation panels of Figure 3. To make the figure more consistent, however, we adapted 
Figure 3 to plot the variables in the following configuration (notation: panel: x-axis, y-
axis):  

- D: P(choose best), Mean RT 
- E: Gaze influence on P(choice | value), Mean RT 
- F: Gaze influence on P(choice | value), P(choose best). 

 



 

In this new configuration, panels D and E share the same y-axis (Mean RT), while 
panels E and F share the same x-axis (Gaze influence on P(choice | value)). 
 
As a result of this change, we have also detached the marginal histograms (panels A-C) 
from the pairwise correlation plots (panels D-E). The histograms are now plotted 
independently. 
 
Resulting changes in the manuscript: 
Figure 3 (including caption) 

 

 
 
 
15. Figure 5, I might put “simulated observed” instead of just “observed” on the x-axis to make 
sure that readers don’t get confused and think that the data is actual raw data rather than data 
simulated from inputted parameters. Alternatively you could mention it in the figure caption. 
 

We thank the reviewer for this suggestion. We agree that this is more transparent and 
reduces risk of confusion. We have adapted the axis label and figure caption. 
 
Resulting changes in the manuscript: 
 
Figure 5 caption and axis labels: 
Comparison of individuals' simulated observed response behaviour with the out-of-
sample predictions of a GLAM variant [...] 

  



 

Reviewer 3 
 
This study presents a python toolbox to fit parameters for the authors’ gaze-weighted linear 
accumulator model, capitalizing on python’s Bayesian package PyMC3. Fitting a DDM is quite 
computationally complex, with many researchers who are interested in the theory perhaps not 
having the skills required to write their own estimation code. Moreover, it is typically a very time-
consuming process to fit these kinds of models, so a faster methods are always welcome 
additions. They use a race model which can handle non-binary choices will help better 
approximate real-world settings. 
I really like that they have included parameter recovery into their toolbox. In addition, doing 
model comparison with and without the gaze bias parameter is nice – particularly as it can help 
other researchers understand under which situations gaze is and is not important. 
 
Some guidance on what to do to compare multiple conditions/tasks would be a nice feature 
 

We thank the reviewer for pointing this out. We agree that this would be an important 
feature of a toolbox. We have therefore included an additional subsection to the “Basic 
usage” section of the manuscript, detailing the toolbox’s functionality to perform and 
visualize Bayesian parameter comparisons between multiple groups (like in Example 2) 
or conditions (which was previously not documented). 
We have also explicitly included a similar section that describes how to perform 
comparisons between different model variants. 

 
Resulting changes to the manuscript: 
 
ll. 229ff. 
Comparing parameters between groups or conditions 
Parameter estimates can be compared between different experimental groups or 
conditions (specified with the depends_on keyword when calling make_model) using the 
compare_parameters function from the analysis module. It takes as input the fitted 
GLAM instance, a list of parameters ('v', 's', 'gamma', 'tau'), and a list of pairwise 
comparisons between groups or conditions. The comparison argument expects a list of 
tuples (e.g., [('group1', 'group2'), ('group1', 'group3')]). For example, given 
a fitted model instance (here glam) a comparison of the γ parameter between two 
groups (group1 and group2) can be computed as:  

 

from gb.analysis import compare_parameters 
comparison = compare_parameters(model=glam,  
                                parameters=['gamma'], 
                                comparisons=[('group1', 'group2')]) 

 



 

The function then returns a table with one row per specified comparison, and columns 
containing the mean posterior difference, percentage of the posterior above zero, and 
corresponding 95% HPD interval. If supplied with a hierarchical model, the function 
computes differences between group-level parameters. If an individual type model is 
given, it returns comparison statistics for each individual. 
Comparisons can be visualized using the compare_parameters function from the plots 
module. It takes the same input as its analogue in the analysis module. It plots 
posterior distributions of parameters and the posterior distributions of any differences 
specified using the comparisons argument. For a usage example and plot see Example 
2 and Fig. 7. 
 
Comparing model variants 
Model comparisons between multiple GLAM variants (e.g., full and restricted variants) 
can be performed using the compare_models function, which wraps the function of the 
same name from the PyMC3 library. The compare_models function takes as input a list 
of fitted model instances that are to be compared. Additional keyword arguments can be 
given and are passed on to the underlying  PyMC3 compare function. This allows the 
user, for example, to specify the information criterion used for the comparison via the ic 
argument ('WAIC' or 'LOO' for Leave-One-Out cross validation). It returns a table 
containing an estimate of the specified information criterion, standard errors, difference 
to the best-fitting model, standard error of the difference, and other output variables from 
PyMC3 for each inputted model (and subject, if individually estimated models were 
given). We refer the reader to Example 1 for a usage example and exemplary output 
from the compare_models function. 
 

 
In addition, I think the github documentation needs more details and guidance (e.g., simply to 
tell the reader to use Jupyter to open the readme). In addition, I ran into some errors using the 
code, which could have been the result of poor documentation. 
 

We thank the reviewer for pointing out that our previous documentation of GLAMbox 
was not sufficient. To make GLAMbox more accessible for the reader, we have created 
a self-contained documentation page of the toolbox (including “Installation”, “Quickstart”, 
“Basic Usage” and the use case examples, which can now be viewed comfortably in a 
browser, without the need for a running python installation or jupyter). This 
documentation is now explicitly referenced in the abstract and can be found at 
https://glambox.readthedocs.io. The documentation now states explicitly that the 
notebooks can be run interactively by opening them with the Jupyter software. We also 
extended the example notebooks by including text from the manuscript in them to better 
guide the reader. The thereby notebooks now act as standalone tutorials for GLAMbox. 
The documentation also contains full API reference of all functions and methods 
available to the user. 

 
I have the following suggestions/issues: 



 

I would like to point the authors to Smith, Krajbich, and Webb (Estimating the dynamic role of 
attention via random utility – 2019) which estimates aDDM’s theta parameter using a very fast 
and simple regression method, which seems relevant to their work. 
 

We thank the reviewer for this comment. We have added a paragraph to the Discussion 
where we discuss other existing approaches to obtaining gaze bias estimates, highlight 
differences and commonalities between the GLAM and other approaches.  
 
Resulting changes in the manuscript: 
 
ll. 544ff. 
The goal of GLAM is to provide a model-based estimate of the gaze bias on the level of 
an individual (as indicated by GLAM’s γ parameter), in choice situations involving more 
than two choice alternatives. To estimate the gaze bias, GLAM describes the decision 
process in the form of a linear stochastic race and aggregates over the specific 
sequence of fixations during the decision process (by only utilizing the fraction of the 
decision time that each item was looked at). These two characteristics distinguish the 
GLAM  from other existing approaches of obtaining an estimate of individuals’ gaze bias: 

 
First, the GLAM is focused on quantifying the gaze bias on the individual level. It does 
not capture dynamics of the decision process on the level of single fixations. If these 
fine-grained dynamics are of interest to the researcher, the aDDM can be used. Here, 
the fixation-dependent changes in evidence accumulation rates throughout the trial are 
not averaged out. Keeping this level of detail, however, comes at a cost: Fitting  the 
aDDM relies on extensive model simulations (including a simulation of the fixation 
process; for a more detailed discussion see Thomas et al., 2019). The GLAM, on the 
other hand, aggregates over the fixation-dependent changes in the accumulator’s drift 
rate in order to simplify the estimation process of the gaze bias. 
 
Second, the GLAM directly applies to choice situations involving more than two choice 
alternatives. While the GLAM has been shown to also capture individuals’ gaze bias and 
choice behaviour well in two-alternative choice situations \cite{thomas_gaze_2019}, 
there exist other computational approaches that can estimate the gaze bias of an 
individual in binary decisions: If response times are of interest to the researcher, the 
gaze bias can be estimated in the form of a gaze-weighted DDM (see for example 
Cavanagh et al., 2014,  Lopez-Persem et al., 2016). Similar to the GLAM, this approach 
also aggregates over the dynamics of the fixation process within a trial, by only utilizing 
the fraction of trial time that each item was looked at. In contrast to the GLAM, however, 
gaze-weighted DDM approaches describe the decision process in the form of a single 
accumulator that evolves between two decision bounds (each representing one of the 
two choice alternatives). For two-alternative choice scenarios, where response times are 
not of interest to the researcher, Smith and colleagues (2019) proposed a method of 
estimating the aDDM gaze-bias parameter through a random utility model. Here, the 
gaze bias can be estimated in a simple logit model.  



 

 
 
In addition, it would be nice to see a discussion/comparison of this to other race models (an 
unacquainted reader may incorrectly believe that theirs is the first race model to vit ddm-eqsue 
parameters upon reading their introduction), as well as a discussion of the drawbacks of race 
models relative to more traditional aDDM methods. 
Although this reviewer is familiar with the authors’ previous work on the GLAM model, it may be 
useful to have a section with more comprehensive introduction to the model/theory and 
comparison to similar models like the aDDM (subject to editorial guidance – I am not sure what 
is appropriate). 
 

We thank the reviewer for the comment. We have revised portions of the introduction 
and discussion sections to characterise and contextualize the GLAM more appropriately. 
We now state explicitly that the GLAM builds on other existing race models and discuss 
drawbacks and benefits of choosing the race framework. Specifically, we state that, 
while it has been shown that race models do not necessarily perform optimally (Bogacz 
et al., 2006), they can be more efficient in application (as analytical solutions to their 
first-passage density exist), they naturally extend to scenarios with more than two items, 
and we could show previously that they capture empirical data well (Thomas et al., 
2019). 
The manuscript was also revised to better position the GLAM more clearly in contrast to 
other existing models for gaze-dependent choices (e.g., the aDDM, gaze-weighted DDM 
approaches) (see previous response). 

 
Resulting changes to the manuscript: 
 
ll. 39ff. 
With the Gaze-weighted linear accumulator model (GLAM; Thomas et al., 2019), we 
have proposed an analytical tool that allows the model-based investigation of the 
relationship between gaze allocation and choice behaviour at the level of the individual, 
in choice situations involving more than two alternatives, solely requiring participants' 
choice, response time (RT) and gaze data, in addition to estimates of the items' values. 
 
Like the attentional Drift Diffusion Model (aDDM; Krajbich et al., 2010; Krajbich & 
Rangel, 2011; Krajbich et al, 2012), the GLAM assumes that the decision process is 
biased by momentary gaze behaviour: While an item is not fixated, its value 
representation is discounted. The GLAM, however, differs from the aDDM in other 
important aspects: In contrast to the aDDM, the fixation-dependent value signals are 
averaged across the trial, using the relative amount of time individuals spend fixating the 
items. This step abstracts away the specific sequence of fixations in a trial, that can be 
investigated with the aDDM. This simplification allows for the construction of constant 
drift rates in a trial that can enter a basic linear stochastic race framework. While race 
models like the GLAM are not statistically optimal (Bogacz et al., 2006) the GLAM has 
been shown to provide a good fit to empirical data (Thomas et al.,  2019). In general, 



 

race models have at least two practical advantages: First, they often have analytical 
solutions to their first-passage density distributions, and secondly, they naturally 
generalize to choice scenarios involving more than two alternatives. The analytical 
tractability of the race framework further allows for efficient parameter estimation in a 
hierarchical Bayesian manner. 
The GLAM thereby combines gaze-dependent accumulation with the computational 
advantages of linear stochastic race models. 

 
 ll. 77f. 

Like the aDDM, the GLAM assumes that preference formation, during a simple choice 
process, is guided by the allocation of visual gaze (for an overview, see Fig. 1). 

 
 ll. 106ff. 

Unlike more traditional diffusion models (including the aDDM), the GLAM employs a 
linear stochastic race to capture response behaviour as well as RTs. The relative signals 
Ri enter a linear stochastic race, where one item accumulator Ei is defined for each item 
in the choice set: 

 
 
A much more extensive readme file and instructions should be included. For example, this 
reviewer know that the examples/readme are to be opened in jupyter, but some (nay, many – 
esp. those searching for a toolbox rather than writing their own code) may not. A basic guide for 
others would be helpful. 
 

We have created a self-contained documentation page for the toolbox, which can be 
found at https://glambox.readthedocs.io. It now includes more information, including 
installation instructions, a “Quickstart” section, full API reference of all the available 
functions, and a more extensive section on “Basic Usage”. The documentation also 
includes rendered versions of the Example notebook files (that can be directly viewed in 
the browser) and information on how to run the notebooks interactively. 

 
When I attempted to run the parameter recovery exercise, I received an error originating in 
glam.fit (AttributeError: Can't pickle local object 'make_subject_model..lda_logp'), but don’t know 
whether that was my poor execution or a problem in the code. 
 

We cannot reproduce the issue on multiple machines under different operating systems. 
We suspect the issue to be an older version of PyMC3 (<3.7). To further investigate the 
issue, we would be glad if the reviewer could share information on their Python 
environment (Python version, version of installed packages). 
We hope that the PyPi packaged version of the toolbox and our more detailed 
installation guide will help prevent such errors in the future. 


