Reviewer 1

The velocity parameter v linearly scales the item drift rates in the race process (Eq. 5)
and thereby predominantly affects the response times produced by the model (lower
values of v produce longer response times, whereas larger values of v produce shorter
response times). It creates speed-accuracy tradeoffs in conjunction with the
accumulation noise (or “diffusion”) parameter 0. This implementation is similar to other
diffusion-to-bound models like the aDDM (where there is a speed parameter d and a
diffusion parameter o) or some implementations of the DDM (although some DDM
parameterizations fix the diffusion parameter and estimate the boundary separation,
instead).

We have added additional information about the velocity parameter v and its function in
the model section:

Resulting changes in the manuscript:

II. 110ff.

At each time step t, the amount of accumulated evidence is determined by the
accumulation rate vR;, and zero-centered normally distributed noise with standard
deviation o. The velocity parameter v linearly scales the item drift rates in the race
process and thereby affects the response times produced by the model: Lower values of
v produce longer response times, larger v result in shorter response times.

A choice for an item is made as soon as one accumulator reaches the decision
boundary b. To avoid underdetermination of the model, either the velocity parameter v,
the noise parameter o or the decision boundary b has to be fixed. Similar to the aDDM,
the GLAM fixes the decision boundary to a value of 1. [...]



We thank the reviewer for indicating this error in equation 4 of our manuscript. We have
accordingly added the missing parentheses to equation 4 of our revised manuscript.

We thank the reviewer for this valuable remark. We adapted the description of this
(fictitious) experiment to be more consistent with published experimental procedures,
where liking ratings are collected before the choice task (e.g., Krajbich, Armel & Rangel,
2010; Krajbich & Rangel, 2011, Folke et al., 2017).

Resulting changes in the manuscript:

Il. 283ff.
While participants perform the task, their eye movements, choices and RTs are
measured. completing the choice trials, participants asked to indicate their

liking rating for each of the items used in the choice task on a liking rating scale between
1 and 10 (with 10 indicating strong liking and 1 indicating little liking).

We thank the reviewer for pointing out that our initial manuscript was not clear enough
on the number of posterior chains that we recommend for model sampling. We now
explicitly include the chains argument in our code examples of the revised manuscript,
when calling the fit method of the GLAM model class (see pp. 11, 12, 15, and 17).

We would further like to point the reviewer to p. 11, Il. 340 of our manuscript, where we
state that the chains arguments “[...] defaults to four and should be set to at least two, in
order to allow convergence diagnostics”. At least two posterior chains are needed in
order to compute several common convergence diagnostic measures, such as the R-hat



measure. We recommend four chains, in accordance with the recommendations of the
PyMC3 development team.

We thank the reviewer for bringing this to our attention. We agree that this section was
difficult to follow and have revised it substantially: The toolbox now includes a dedicated
function to perform model comparisons. It wraps the PyMC3 compare function that was
used previously, and simplifies the inputs required from the user.

We have included a paragraph describing how to perform model comparisons into the
Basic Usage section of the manuscript and revised Example 1 accordingly.

Resulting changes in the manuscript:

II. 248ff.

Comparing model variants

Model comparisons between multiple GLAM variants (e.g., full and restricted variants)
can be performed using the compare function, which wraps the function of the same
name from the PyMC3 library. The compare function takes as input a list of fitted model
instances that are to be compared. Additional keyword arguments can be given and are
passed on to PyMC3 function. This allows the user, for example, to specify the
information criterion used for the comparison via the ic argument '"WAIC' or 'LOO" for
Leave-One-Out cross validation). It returns a table containing an estimate of the
specified information criterion, standard errors, difference to the best-fitting model,
standard error of the difference, and other output variables from PyMC3 for each
inputted model (and subiject, if individually estimated models were given). We refer the
reader to Example 2 for a usage example and exemplary output from the compare
function.

II. 342ff.
After convergence has been established for all parameter traces (for details on the
suggested convergence criteria, see Methods),

analysis



compare_models

We thank the reviewer for this valuable remark. In line with the reviewer’s suggestion,
we have shortened the (previously very long) captions of Figures 2, 6 and 7 of our
revised manuscript.

Resulting changes in the manuscript:




We agree that the toolbox should be easily installable. We therefore packaged and
distributed the toolbox on the Python Package Index (PyPi) to make it pip-installable. In
addition we added a “Installation” section to the toolbox documentation (available at
https://glambox.readthedocs.io), that includes instructions on installation of the toolbox
and its requirements.

We thank the reviewer for pointing this out. The figures that we have, and that we
submitted to PLOS One, look clear on our computers and do not exhibit any broken
letters. We formatted figures as .1iff files, as PLOS guidelines require. To resolve this
issue, which seems technical to us, we have recreated all figures and again formatted to
comply with PLOS guidelines. We hope that figures appear correctly now.

We thank the reviewer for bringing this formatting error to our attention. We have
removed the numbering.



Reviewer 2

We fully agree with the reviewer’s suggestion, that adding a discussion of mechanisms
underlying individual differences in the gaze bias would be interesting. We have added a
paragraph in the introduction of the manuscript.

Resulting changes in the manuscript:

Il. 27ff.
Furthermore, recent findings indicate strong individual differences in the association
between gaze allocation and choice behaviour (Smith & Krajbich, 2018; Thomas et al.,
2019) as well as individual differences in the decision mechanisms used (Ashby et al.,
2016).
While the nature of individual differences in gaze biases is still not fully understood,
different mechanisms have been suggested: Smith and Krajbich (2018) showed that
gaze bias differences can be related to individual differences in attentional scope
(“tunnel vision”). Vaidya and Fellows (2015) found stronger gaze biases in patients with
damage in dorsomedial prefrontal cortex (PFC). Further, recent empirical work has
investigated the roles of learning and attitude accessibility in gaze dependent decision
making (Cavanagh et al., 2019; Gwinn & Krajbich, 2020).

the
majority of model-based investigations of the relationship between gaze allocation and
choice behaviour were focused on the group level, disregarding differences between
individuals.



We thank the reviewer for the suggestion to further clarify the model parameter bounds
used by GLAMbox in our manuscript.

All parameter bounds were derived from an analysis of four empirical choice datasets
with the GLAM (see S1 Fig and S1 Table). The estimated individual subject parameters
of these four datasets, encompassing value-based and perceptual choices from up to
three items (and a wide range of response times, gaze biases and choice accuracy
levels), are well covered by the revised broad parameter bounds. We have revised II.
146ff. of the manuscript to highlight this more strongly (see below).

To be certain, however, that GLAMbox can capture a wide range of possible response
patterns that go beyond previous applications, we have extended the parameter bounds
to cover double the range of parameters previously observed (See S1 Fig): The new
ranges are:

v: [0, 4]
y:[-2, 1]
a: [0, 4]
7: [0, 10]

We think that these bounds realistically cover most observable behaviour, as the vand o
parameters are naturally bound at 0, and can produce arbitrarily slow (as v approaches
zero) responses and accurate (as o approaches zero) responses.

In addition, we recommend to re-scale all item values to a range between 1 and 10,
when using GLAMbox (II. 176ff. of the revised manuscript). This, in combination with the
fixed scale of gaze values ([0,1]), increases transferability of parameters between
datasets. We believe that the revised parameter bounds thereby correspond to a wide
range of possible response behaviours of human decision makers in simple choice
tasks.

Resulting changes in the manuscript:

II. 142ff.

The GLAM is implemented in a Bayesian framework using the Python library PyMC3
[24]. The model has four parameters (v, y, g, 7). By default, uninformative, uniform priors
between sensible limits are placed on all parameters:



These limits were derived by extending the range of observed parameter estimates in
earlier applications of the GLAM to four different empirical choice datasets. These
datasets encompass data of 117 participants in value-based and perceptual choice
tasks with up to three choice alternatives (including a wide range of possible response
times, gaze bias strengths and choice accuracies; for further details [21]). Parameter
estimates for these datasets are illustrated and summarised in S1 Table, S1 Fig and S2
Fig.

The velocity parameter v and the noise parameter o must be strictly positive, with
smaller values producing slower and more accurate responses. The gaze bias
parameter y has a natural upper bound at 1 (indicating no gaze bias), while decreasing y
values indicate an increasing gaze bias strength. The sensitivity parameter 7 has a
natural lower bound at 0 (resulting in no sensitivity to differences in average absolute
decision signals 4;), which larger values indicating increased sensitivity.

We thank the reviewer for this valuable comment. We interpret negative y values as
indication of a leakage mechanism. For negative y the sign of the absolute decision
signal A (see Eq. 1) changes and evidence is actively lost for these items, when they are
not fixated. This results in an overall even stronger gaze bias than for y = 0 (the
maximum gaze bias strength of the aDDM). Such gaze dependent leakage mechanisms
are also supported by recent empirical work (see for example, Ashby et al., 2016).

To better illustrate the function of negative y (and the leakage mechanism), we have
extended the section on the Gaze-weighted linear accumulator model details of our

revised manuscript (see below).

Resulting changes in the manuscript:

II. 86ff.



If y =1, there is no difference between the biased and unbiased state, resulting in no
influence of gaze allocation on choice behaviour. For y values less than 1, the absolute
decision signal 4; is discounted, resulting in generally higher choice probabilities for
items that have been looked at longer.

We strongly agree with the reviewer that an extension to the GLAM to multi-alternative
multi-attribute choice would be very interesting.

However, an extension to multiple attributes would entail changes to the format of the
data that are fed into the model, and a substantial rewrite of the toolbox code.
Furthermore, how exactly attribute comparisons should be implemented specifically into
the GLAM is not trivial and many possible solutions exist, which would not necessarily
share code implementations: Should attribute comparisons be performed between only
two alternatives? This would mean that gaze would have to be partitioned differently
than only by alternatives. Comparisons between more than two alternatives could be
made using an item-vs-max or item-vs-mean implementation. What happens with
unattended attributes? Is their information biased or not? Would this bias be different
from the alternative-wise gaze bias?

Again, we think this is a highly interesting point and we look forward to including it in a
future version of GLAMbox. We think, however, that it is outside the scope of the toolbox
in its current form.

Resulting changes in the manuscript:
None.

We thank the reviewer for this valuable remark, which connects to the more general
question of the contribution of a model-based analysis of behaviour vs. an analysis of
purely behavioural measures (such as our behavioural gaze bias measure). We believe



that there are several key differences between our behavioural gaze bias measure and
our model-based analysis of individuals’ gaze bias strength (as quantified by the y
parameter): First, the model-based analysis poses several strict assumptions on the
data generation process, by explicitly stating how we assume gaze to be involved in the
decision process. The behavioural measure, on the other hand, does not include such
constraints, as it purely quantifies the correlation between gaze allocation and choice,
when corrected for the items’ values. If we find that the model describes the data well,
we therefore have more evidence for the data generating mechanism, when compared
to our purely behavioural measure. Second, by fitting a model to the data, we are able to
make out-of-sample choice and response time predictions and compare these to the
empirical data, thereby allowing for a more rigorous test of the fit of the model to the
data. Lastly, a model-based analysis also allows for a comparison of different decision
processes through a likelihood-based model comparison analysis.

We thank the reviewer for the comment. We are not sure, however, if we understand it
correctly. Indeed, in Example 2, we simulate an experiment with three fictitious patient
groups, that only differ on their gaze bias parameter, and not on other model
parameters, such as the velocity parameter v or the accumulation noise g. We think that
this scenario is not unrealistic. For example, the study that we modeled this example
after (Vaidya & Fellows, 2015) did not find systematic differences between different
patient groups and healthy controls on integration speed or the threshold parameter
controlling speed accuracy tradeoffs.

We agree with the reviewer, however, that in other settings different groups (e.g.,
patients and healthy controls) can of course differ on more than just the gaze bias
parameter. This is why the model that is used in this example contains group-
dependencies on all model parameters, not just the gaze bias parameter y (specified
using the depends_on keyword). In the resulting model, individual estimates from one
subject are informed by all other subjects in the same group, and group-level estimates
are obtained per group. However, no hierarchical structure across groups is built for a
parameter, when it is specified as having a group-dependency. If a researcher wishes a
parameter to be estimated across groups, then she can opt to not list dependencies for
this parameter. We revised the manuscript to better communicate these details to the
reader.

Resulting changes in the manuscript:

Il. 411ff.



We simulate data of three patient groups (N1 =5, N2 = 10, N3 = 15), with 50 trials per
individual, in a simple three item value-based choice task, where participants are
instructed to simply choose the item they like the best. These numbers are roughly
based on a recent clinical study on the role of the prefrontal cortex in fixation-dependent
value representations (Vaidya & Fellows, 2015). Here, the authors found no systematic
differences between frontal lobe patients and controls on integration speed or the
decision threshold, controlling speed-accuracy trade-offs. we
only let the gaze bias parameter y differ systematically between the groups, with means

of y = 0.7 (weak gaze bias), y = 0.1 (moderate gaze bias) and y = —-0.5 (strong gaze
bias), respectively. We do not assume any other systematic differences between the
groups and sample all other model parameters from the estimates obtained from fitting
the model to the data of Krajbich and Rangel (2011) (for an overview of the generating

parameters, see S4 Fig).

Il. 44 3ff.

In this model, each parameter is set up hierarchically within each group, so that
individual estimates are informed by other individuals in the same group. If the
researcher does not expect group differences on a parameter, this parameter can simply
be omitted from the depends_on dictionary. The resulting model would then assume that
all parameter estimates of all individuals (across all groups) come from the same group-
level distribution.

We thank the reviewer for this insightful remark. We agree that the difference between
the highest item value and the second highest value is a more common and intuitive
measure of choice difficulty than the difference to the mean. For this reason, we have
adapted the choice difficulty measure of Figure 6A accordingly. We have also adapted
the relative item value and gaze measures in Figure 6B-D to follow the same
comparison strategy, by always computing the difference between an item’s value / gaze
and the maximum of all others.

Resulting changes in the manuscript:
Figure 6 (and caption)
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We thank the reviewer for raising this point. We agree that the different numbers should
be justified. The reason to increase the number of burn-in and kept samples is a higher
autocorrelation of samples from the hierarchical model, which contains many more
parameters than individual models. To obtain enough effective samples (Kruschke,
2014) for each parameter, the total number of samples is increased. We have added a
paragraph and corresponding references to the manuscript.

We also changed the number of burn-in samples and samples to keep to 20.000 for this
model.

Resulting changes in the manuscript:

II. 450ff.

After the model is built, the next step is to perform statistical inference over its
parameters. As we have done with the individual models, we can use MCMC to
approximate the parameters' posterior distributions (see Methods for details). Due to the
more complex model structure and drastically increased number of parameters, the
chains from the hierarchical model usually have higher levels of autocorrelation. To still
obtain a reasonable number of effective samples (Kruschke, 2014), we increase the
number of tuning- and draw steps:

hglam.fit(method="MCMC",
draws=20000,
tune=20000,
chains=4)



We thank the reviewer for this helpful suggestion. We have changed the referenced
sentence in the abstract of our manuscript accordingly.

Resulting changes in the manuscript:

(Abstract)

Thank you for pointing this out.

Resulting changes in the manuscript:

. 3f.
For example, in value-based decision making, it that longer
gaze towards one option is associated [...]

We thank the reviewer for pointing out the missing clarification of the i index used in the
Gaze-weighted linear accumulator model details section. It indeed indexes the items in a
choice set. We have added a clarification as follows:

Resulting changes in the manuscript:

Il. 80ff.

An unbiased
state, equal to the item’s value r; while the item is looked at, and a biased state while
any other item is looked at, where the item value r; is discounted by a parameter y.



We thank the reviewer for the comment. We agree that this section was unclear. We
have reworded it to be more specific about the arithmetic operations performed. We

have also revised the notation in the equation, changing J to “/ # /”to be more explicit
about the group of variables that the maximum operator entails (also see next point).

Resulting changes in the manuscript:

Il. 93ff.
To determine the relative decision signals, the average absolute decision signals 4; are
transformed in two steps: First, , the

between the average absolute decision signal of the item 4; and
the Aj:ti

is computed [...]

We thank the reviewer for pointing out the missing clarification of the J index used in the
Gaze-weighted linear accumulator model details section. In its current form, J represents
the set of all the items in a choice set except for item .

To avoid any further confusion, we have adapted Eq 2 and 8, by directly specifying j # /.

(also see previous point).

Resulting changes in the manuscript:

Il. 93ff.
To determine the relative decision signals, the average absolute decision signals 4; are
transformed in two steps: First, , the
between the average absolute decision signal of the item 4; and the
Aja is

computed [...]

II. 125ff.
Hence, the joint probability p(t); that accumulator E; crosses b at time f, and that no other
accumulator has reached b first, is given by:



We have changed the panel labeling and figure caption so that labels only go from left to

right.

Resulting changes in the manuscript:

Figure 1 (including caption)
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We thank the reviewer for this valuable suggestion. Unfortunately, it is, to our
knowledge, not possible to plot the same variable on the x-axis of all three pairwise
correlation panels of Figure 3. To make the figure more consistent, however, we adapted
Figure 3 to plot the variables in the following configuration (notation: panel: x-axis, y-

axis):

- D: P(choose best), Mean RT
- E: Gaze influence on P(choice | value), Mean RT
- F: Gaze influence on P(choice | value), P(choose best).



Frequency

Mean RT (s)

In this new configuration, panels D and E share the same y-axis (Mean RT), while
panels E and F share the same x-axis (Gaze influence on P(choice | value)).

As a result of this change, we have also detached the marginal histograms (panels A-C)
from the pairwise correlation plots (panels D-E). The histograms are now plotted
independently.

Resulting changes in the manuscript:
Figure 3 (including caption)
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We thank the reviewer for this suggestion. We agree that this is more transparent and
reduces risk of confusion. We have adapted the axis label and figure caption.

Resulting changes in the manuscript:

Figure 5 caption and axis labels:
Comparison of individuals' observed response behaviour with the out-of-
sample predictions of a GLAM variant [...]



Reviewer 3

We thank the reviewer for pointing this out. We agree that this would be an important
feature of a toolbox. We have therefore included an additional subsection to the “Basic
usage” section of the manuscript, detailing the toolbox’s functionality to perform and
visualize Bayesian parameter comparisons between multiple groups (like in Example 2)
or conditions (which was previously not documented).

We have also explicitly included a similar section that describes how to perform
comparisons between different model variants.

Resulting changes to the manuscript:

II. 229ff.

Comparing parameters between groups or conditions

Parameter estimates can be compared between different experimental groups or
conditions (specified with the depends_on keyword when calling make _model) using the
compare_parameters function from the analysis module. It takes as input the fitted
GLAM instance, a list of parameters ('v', 's', "gamma’, "tau'), and a list of pairwise
comparisons between groups or conditions. The comparison argument expects a list of
tuples (e.g., [('groupl', 'group2'), ('groupl', 'group3')]). For example, given
a fitted model instance (here glam) a comparison of the y parameter between two
groups (groupl and group2) can be computed as:

from gb.analysis import compare_parameters

comparison = compare_parameters(model=glam,
parameters=[ 'gamma'],
comparisons=[('groupl', 'group2')])



The function then returns a table with one row per specified comparison, and columns
containing the mean posterior difference, percentage of the posterior above zero, and
corresponding 95% HPD interval. If supplied with a hierarchical model, the function
computes differences between group-level parameters. If an individual type model is
given, it returns comparison statistics for each individual.

Comparisons can be visualized using the compare_parameters function from the plots
module. It takes the same input as its analogue in the analysis module. It plots
posterior distributions of parameters and the posterior distributions of any differences
specified using the comparisons argument. For a usage example and plot see Example
2 and Fig. 7.

Comparing model variants

Model comparisons between multiple GLAM variants (e.g., full and restricted variants)
can be performed using the compare_models function, which wraps the function of the
same name from the PyMC3 library. The compare_models function takes as input a list
of fitted model instances that are to be compared. Additional keyword arguments can be
given and are passed on to the underlying PyMC3 compare function. This allows the
user, for example, to specify the information criterion used for the comparison via the ic
argument ('WAIC' or 'LOO' for Leave-One-Out cross validation). It returns a table
containing an estimate of the specified information criterion, standard errors, difference
to the best-fitting model, standard error of the difference, and other output variables from
PyMC3 for each inputted model (and subject, if individually estimated models were
given). We refer the reader to Example 1 for a usage example and exemplary output
from the compare _models function.

We thank the reviewer for pointing out that our previous documentation of GLAMbox
was not sufficient. To make GLAMbox more accessible for the reader, we have created
a self-contained documentation page of the toolbox (including “Installation”, “Quickstart”,
“Basic Usage” and the use case examples, which can now be viewed comfortably in a
browser, without the need for a running python installation or jupyter). This
documentation is now explicitly referenced in the abstract and can be found at
https://glambox.readthedocs.io. The documentation now states explicitly that the
notebooks can be run interactively by opening them with the Jupyter software. We also
extended the example notebooks by including text from the manuscript in them to better
guide the reader. The thereby notebooks now act as standalone tutorials for GLAMbox.
The documentation also contains full API reference of all functions and methods
available to the user.




We thank the reviewer for this comment. We have added a paragraph to the Discussion
where we discuss other existing approaches to obtaining gaze bias estimates, highlight
differences and commonalities between the GLAM and other approaches.

Resulting changes in the manuscript:

II. 544ff.

The goal of GLAM is to provide a model-based estimate of the gaze bias on the level of
an individual (as indicated by GLAM'’s y parameter), in choice situations involving more
than two choice alternatives. To estimate the gaze bias, GLAM describes the decision
process in the form of a linear stochastic race and aggregates over the specific
sequence of fixations during the decision process (by only utilizing the fraction of the
decision time that each item was looked at). These two characteristics distinguish the
GLAM from other existing approaches of obtaining an estimate of individuals’ gaze bias:

First, the GLAM is focused on quantifying the gaze bias on the individual level. It does
not capture dynamics of the decision process on the level of single fixations. If these
fine-grained dynamics are of interest to the researcher, the aDDM can be used. Here,
the fixation-dependent changes in evidence accumulation rates throughout the trial are
not averaged out. Keeping this level of detail, however, comes at a cost: Fitting the
aDDM relies on extensive model simulations (including a simulation of the fixation
process; for a more detailed discussion see Thomas et al., 2019). The GLAM, on the
other hand, aggregates over the fixation-dependent changes in the accumulator’s drift
rate in order to simplify the estimation process of the gaze bias.

Second, the GLAM directly applies to choice situations involving more than two choice
alternatives. While the GLAM has been shown to also capture individuals’ gaze bias and
choice behaviour well in two-alternative choice situations \cite{thomas_gaze 2019},
there exist other computational approaches that can estimate the gaze bias of an
individual in binary decisions: If response times are of interest to the researcher, the
gaze bias can be estimated in the form of a gaze-weighted DDM (see for example
Cavanagh et al., 2014, Lopez-Persem et al., 2016). Similar to the GLAM, this approach
also aggregates over the dynamics of the fixation process within a trial, by only utilizing
the fraction of trial time that each item was looked at. In contrast to the GLAM, however,
gaze-weighted DDM approaches describe the decision process in the form of a single
accumulator that evolves between two decision bounds (each representing one of the
two choice alternatives). For two-alternative choice scenarios, where response times are
not of interest to the researcher, Smith and colleagues (2019) proposed a method of
estimating the aDDM gaze-bias parameter through a random utility model. Here, the
gaze bias can be estimated in a simple logit model.



We thank the reviewer for the comment. We have revised portions of the introduction
and discussion sections to characterise and contextualize the GLAM more appropriately.
We now state explicitly that the GLAM builds on other existing race models and discuss
drawbacks and benefits of choosing the race framework. Specifically, we state that,
while it has been shown that race models do not necessarily perform optimally (Bogacz
et al., 2006), they can be more efficient in application (as analytical solutions to their
first-passage density exist), they naturally extend to scenarios with more than two items,
and we could show previously that they capture empirical data well (Thomas et al.,
2019).

The manuscript was also revised to better position the GLAM more clearly in contrast to
other existing models for gaze-dependent choices (e.g., the aDDM, gaze-weighted DDM
approaches) (see previous response).

Resulting changes to the manuscript:

Il. 39ff.

With the Gaze-weighted linear accumulator model (GLAM; Thomas et al., 2019), we
have proposed an analytical tool that allows the model-based investigation of the
relationship between gaze allocation and choice behaviour at the level of the individual,
in choice situations involving more than two alternatives, solely requiring participants'
choice, response time (RT) and gaze data, in addition to estimates of the items' values.

Like the attentional Drift Diffusion Model (aDDM; Krajbich et al., 2010; Krajbich &
Rangel, 2011; Krajbich et al, 2012), the GLAM assumes that the decision process is
biased by momentary gaze behaviour: While an item is not fixated, its value
representation is discounted. The GLAM, however, differs from the aDDM in other
important aspects: In contrast to the aDDM, the fixation-dependent value signals are
averaged across the trial, using the relative amount of time individuals spend fixating the
items. This step abstracts away the specific sequence of fixations in a trial, that can be
investigated with the aDDM. This simplification allows for the construction of constant
drift rates in a trial that can enter a basic linear stochastic race framework. While race
models like the GLAM are not statistically optimal (Bogacz et al., 2006) the GLAM has
been shown to provide a good fit to empirical data (Thomas et al., 2019). In general,



race models have at least two practical advantages: First, they often have analytical
solutions to their first-passage density distributions, and secondly, they naturally
generalize to choice scenarios involving more than two alternatives. The analytical
tractability of the race framework further allows for efficient parameter estimation in a
hierarchical Bayesian manner.

The GLAM thereby combines gaze-dependent accumulation with the computational
advantages of linear stochastic race models.

. 771.
Like the aDDM, the GLAM assumes that preference formation, during a simple choice
process, is guided by the allocation of visual gaze (for an overview, see Fig. 1).

II. 106ff.

The relative signals
R; enter a linear stochastic race, where one item accumulator E; is defined for each item
in the choice set:

We have created a self-contained documentation page for the toolbox, which can be
found at https://glambox.readthedocs.io. It now includes more information, including
installation instructions, a “Quickstart” section, full API reference of all the available
functions, and a more extensive section on “Basic Usage”. The documentation also
includes rendered versions of the Example notebook files (that can be directly viewed in
the browser) and information on how to run the notebooks interactively.

We cannot reproduce the issue on multiple machines under different operating systems.
We suspect the issue to be an older version of PyMC3 (<3.7). To further investigate the
issue, we would be glad if the reviewer could share information on their Python
environment (Python version, version of installed packages).

We hope that the PyPi packaged version of the toolbox and our more detailed
installation guide will help prevent such errors in the future.



