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Supplementary Figure 1. Illustration of four different types of conditions in the task (low/high x 

uncertainty/complexity) Note that the association between goal types and coin types (color) were 

randomized for each subject. Shown in the rounded green box are the quantitative assessment 

of computational cost in each condition. Since there is no unique way of numerically coding or 

quantifying computational cost, our task design introduced three variables as a proxy for this: the 

size of state space, action space, and goal space, each of which can be numerically coded as the 

number of nodes, routes, and available coins, respectively. The estimated computational costs 

show that our task design can simulate conditions with different levels of computational load (the 

total computational load varying between 15 and 34).  
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Supplementary Figure 2. Choice switching. (A) Choice switching is contingent on goal change. 

We examined choice behavior in a situation in which subjects need to set a new goal. A goal 

change necessitates a change in strategy, the degree to which people switch their strategy would 

relate to the extent to which they are engaging model-based control. Shown are subjects’ ratio of 

choice switching in the second stage following goal change vs no goal change. (paired t-test; left 

p = 1.2e-4). Note that this measure is valid for only the second stage because in the first stage, 

each of the choices are optimal in half of the trials (in the high uncertainty condition). The goal-

stay condition refers to the trials in which the *same* token values are being used on trial t and 

trial t+1 or at least token values even if different that would promote the same optimal choice on 

the proceeding compared to the next trial. The goal-change condition refers to the situation where 

the change in token values from trial t to trial t+1 necessitates a *change* in choice behavior from 

trial t to t+1. (B) Choice switching is sensitive to experimental conditions. To see if this choice 

behavior is affected by the experimental manipulation, we then examined the ratio of choice 

switching separately for each level of uncertainty and complexity. We found both a significant  

main and interaction effect of uncertainty and complexity on choice switching (two-way repeated 

measure ANOVA; p<0.001 for both main and interaction effects). The effect patterns are mostly 

consistent with that for choice optimality. Note however that the pattern of choice switching shown 

above does not completely align with choice optimality. This can be seen for the case of high 

uncertainty where choice switching frequency increases relative to the low uncertainty conditions, 
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whereas a decrease in choice optimality occurs in high uncertainty relative to low uncertainty 

conditions. This difference can be explained by the fact that switching choice can lead to 

subsequent choice of a good option or a poor option. To do the task effectively, one needs to 

switch to a good option (not merely increase switching rate per se). In the high uncertainty 

conditions we found that switching to the objectively better choice is indeed significantly reduced 

in this condition, compared to the low uncertainty conditions (p<0.01; paired t-test). We also found 

that subjects’ earning ratio (= actual reward / maximum possible reward in each trial) is 

significantly reduced in the high uncertainty conditions relative to the other conditions (p<0.001; 

paired t-test). Taken together these findings provide an explanation for the behavioral 

underpinnings of the choice optimality measure reported in Figure 3C. (C) Link between choice 

switching and model-based control. We further investigated whether choice switching behavior 

can be diagnostic of model-based control. For this, we examined the ratio of choice switching is 

different as a function of the degree of model-based control (PMB : the probability of choosing 

model-based strategy). We found both a significant main and interaction effect of model-based 

control (PMB) and goal change on choice switching (two-way repeated measure ANOVA; 

p<0.001 for the main effects and p=0.001 for the interaction effect). (D) Link between choice 

switching and choice optimality. Finally, in order to establish the relationship between choice 

switching and choice optimality, our behavioral measure indicating model-based control, we 

quantified the average correlation for each participant between choice optimality and the choice 

switching ratio. Specifically, we ran GLM analyses to compute an effect size for each individual 

subject, and found that all of the individual effect sizes are positive (mean effect size = 0.6; p=1.1e-

16). We obtained the same result with the logistic regression analysis (mean effect size = 0.57; 

p=1.7e-8) Taken together, our findings help establish a link between the experimental 

manipulations (goal changes, uncertainty, and complexity), and the participants’ choice behavior 

(choice switching), choice optimality, and learning strategy (model-based control). All error bars 

are SEM across subjects. 
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Supplementary Figure 3. Distributions of estimated parameter values of the model. 
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Supplementary Figure 4. Bayesian model selection (BMS) on top 5 models, and computational 

hypotheses of those models.  
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Supplementary Figure 5. Parameter recovery analysis. The parameter recovery analysis 

evaluates consistency between data-to-model parameter and model parameter-to-data 

conversion. The parameters from the best fitting model originally trained on actual subjects’ data 

(“original parameter”) were compared with the parameters from the models that were re-trained 

on simulated data (“recovered parameter”). The simulated data were generated by running 

simulations with the best fitting model on the original task. 
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Supplementary Figure 6. Related to Figure 5. (A) The figures show the effect size of uncertainty 

and complexity on choice optimality of different models, including the best version of the model 

incorporating both uncertainty and complexity (Our model), the model incorporating uncertainty 

only (Lee2014), a pure model-based agent (Model-based), a pure model-free agent (Model-free). 

The effect sizes were computed by running a general linear model analysis with the choice 

optimality being included as a dependent variable, and uncertainty, complexity, reward values, 

choices in the previous trial, and goal values as independent variables (the same way as in Figure 

5). The uncertainty and complexity, the two experimental variables of our task, are the two key 

factors that influences choice optimality (t-test; p<0.001). Error bars are SEM across subjects. (B) 
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Behavioral effect recovery analysis. The individual effect sizes of uncertainty/complexity on choice 

optimality of subjects (behavioral data) were compared with those of each model (simulated data). 
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Supplementary Figure 7. Neural correlates of goal change. Medial frontal gyrus encodes a goal 

change signal indicating whether the goal needs to be changed from a previous trial. This signal 

is necessary for goal-driven MF RL. In all the brain images, statistical significancy of effects is 

illustrated by the heat colormap. Threshold set at p<0.005. 

 

 

 



11 
 

 

Supplementary Figure 8. Given that we have used choice optimality as a non-model-based 

index of model-based control (Figure 3), we have also now conducted an additional analysis in 

which we show evidence for choice optimality in the ilPFC ROI that we also identified as showing 

the computational signatures of the arbitration process. Consistent with the relationship between 

our computational model predictions, computational regressors found to be correlated with activity 

in the brain, and the relationship between choice optimality and model-based predictions, here 

we show that choice optimality is also reflected in our ROIs.  Shown is a comparison between the 

trials in which choice optimality is high and low. This is consistent with the notion that when model-

based control is increased, there is an increased activation in the vlPFC associated with an 

increased engagement of model-based control, and a decreased engagement of model-free 

control (the exact p-values for the contrast are shown above each plot). Error bars are SEM across 

subjects.  
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Supplementary Table 1. Estimated parameter values of the model (the best version according 

to the model comparison). Related to Fig. 4B. 

Parameter 

 

Subject 

1 2 3 4 5 6 
Sum of negative 

log likelihood 

1 0.3039 0.1476 1.1474 4.9426 0.3998 0.1467 320.2304 

2 0.4099 0.3898 1.7325 7.2658 0.1251 0.0983 515.2891 

3 0.3273 0.0641 1.0149 9.9897 0.2474 0.1500 369.7944 

4 0.4531 0.3963 6.1229 1.6000 0.3540 0.0500 493.0697 

5 0.6669 0.1782 8.5423 5.8020 0.1001 0.0501 518.4002 

6 0.5085 0.1553 2.4221 1.6583 0.3363 0.0953 431.9479 

7 0.5298 0.1970 8.1945 1.0182 0.2462 0.0675 565.2123 

8 0.5934 0.1596 1.1625 4.2577 0.4000 0.0722 428.6207 

9 0.5148 0.0760 6.6298 1.3031 0.3999 0.1500 176.0509 

10 0.3015 0.2655 9.6187 1.0402 0.3979 0.0581 388.1172 

11 0.3840 0.1493 1.0913 3.1196 0.3603 0.1211 403.4938 

12 0.5837 0.1333 1.8027 6.7621 0.1137 0.1498 507.4127 

13 0.3841 0.0540 1.0013 9.9992 0.2381 0.1497 464.7968 

14 0.4858 0.1710 2.0061 2.7555 0.2732 0.1309 456.7124 

15 0.6117 0.3467 3.8635 1.9669 0.3958 0.0533 423.1681 

16 0.6662 0.1181 3.1976 1.2406 0.1345 0.1498 302.5826 

17 0.7322 0.4402 1.0022 9.3621 0.3817 0.0739 485.2175 

18 0.4333 0.1671 6.2510 1.2109 0.4000 0.1341 267.4762 

19 0.4260 0.1986 1.8499 2.6964 0.2915 0.1179 441.3160 

20 0.5091 0.2434 1.3119 1.9792 0.3996 0.0660 397.4218 

21 0.4707 0.3337 5.4166 1.2503 0.1446 0.0917 509.1616 

22 0.7432 0.0500 1.0114 8.0928 0.1650 0.1500 497.1235 

23 0.4739 0.1642 1.0013 9.9274 0.3972 0.1361 385.1757 

24 0.4397 0.2298 3.4788 3.4961 0.2193 0.1070 479.7771 

Parameter: 1- the threshold for defining zero state prediction error, 2- learning rate for the estimate 

of absolute reward prediction error, 3- the amplitude of a transition rate function (MB→MF), 4- the 

amplitude of a transition rate function (MF→MB), 5- inverse softmax temperature, and 6- learning 

rate of the model- based and the model-free, respectively. 
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Supplementary Table 2. Neural signatures of the model-based, the model-free, and the 

arbitration system signals. 

x y z Peak in region Hemi 
 

p # of voxels in the cluster 
Z 

score 

T 

score 

 State prediction error (SPE) 

48 17 28 lPFC R  0.000 73 5.62* 8.98 

-36 14 28 lPFC L  0.003 23 5.27* 7.92 

33 20 1 Insula R  0.013 8 4.97* 7.11 

-30 17 1 Insula L  0.069 - 2.76(1) 3.09 

 Reward prediction error (RPE) 

-9 5 -8 Ventral striatum L  0.010 - 3.52(2) 4.21 

15 5 -8 Ventral striatum R  0.046 - 2.42(3) 2.64 

 Goal change 

-24 -4 52 MFG R  0.009 13 4.98* 7.16 

27 -1 55 MFG L  0.013 14 4.89* 6.92 

 Max reliability 

45 23 -11 ilPFC R  0.000 197 4.55+ 6.13 

6 38 46 FPC R  0.003 133 4.46+ 5.94 

-42 26 -2 ilPFC L  0.021 84 4.53+ 6.09 

 Complexity (negative correlation) 

-18 5 58 SMA/MFG L  0.039 98 3.58+ 4.30 

 Interaction of complexity and Max reliability – negative correlation 

54 23 7 ilPFC R  0.003 157 4.75+ 6.59 

57 -40 4 STG R  0.021 98 4.43+ 5.88 

-45 23 4 ilPFC L  0.023 - 3.30(4) 3.86 

 Chosen value of the goal-driven model-free (QMF) 

-27 -1 61 SMA L  0.000 123 5.80* 9.55 

21 2 55 SMA R  0.000 61 5.85* 9.73 
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-33 41 25 lPFC L  0.002 31 5.34+ 8.13 

30 44 31 lPFC R  0.000 225 4.68+ 6.43 

-36 -4 1 
Posterior 

putamen 
L 

 
0.032 - 3.20(5) 3.71 

 Chosen value of the goal-driven model-free (QMB) 

0 8 55 SMA L/R  0.009 24 5.07* 7.37 

-27 2 61 MFG L  0.001 26 5.51* 8.63 

27 8 49 MFG R  0.016 6 4.93* 7.02 

-30 53 13 lPFC L  0.000 429 4.86+ 6.86 

 Value difference of the arbitration system (chosen – unchosen) 

-12 23 -5 vmPFC L  0.041 - 3.11(6) 3.57 

* : threshold p < 0.05 FWE (voxel-level), the number of voxels in the cluster counted with the voxel-level 

threshold 

+ : survives after whole-brain correction at the cluster-level (height threshold T = 3.55, threshold p < 0.05 

FWE (cluster-level)), the number of voxels in the cluster counted with the cluster-level threshold 

(1), (2), (3), (4), (5), (6) : survives after small-volume correction within the coordinate for each of the relevant 

contrasts from our original paper 1. The number of voxels in the cluster is not indicated here since we are 

using voxel-based small-volume correction. 

(1) : survives after small-volume correction within a 10-mm sphere centered coordinate (-30, 20, -2) 

(2) : survives after small-volume correction within a 10-mm sphere centered coordinate (-9, 2, -8) 

(3) : survives after small-volume correction within a 10-mm sphere centered coordinate (9, 5, -8) 

(4) : survives after small-volume correction within a 10-mm sphere centered coordinate (-54, 38, 3) 

(5) : survives after small-volume correction within a 10-mm sphere centered coordinate (-27, -4, 1) 

(6) : survives after small-volume correction within a 10-mm sphere centered coordinate (-9, 29, -11) 

lPFC : lateral prefrontal cortex, MFG : medial frontal gyrus, ilPFC : inferior lateral prefrontal cortex, FPC : 

frontopolar cortex, SMA : supplementary motor area, STG : superior temporal gyrus, vmPFC : ventromedial 

prefrontal cortex  
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Supplementary Table 3. Results of two-way repeated measures ANOVA. Related to Figure 3C.  

Source Uncertainty Complexity 
Type III sum 

of squares 

Degree of 

freedom 

Mean 

square 
F p 

Uncertainty Linear  .167 1 .187 38.655 .000 

Error 

(Uncertainty) 

Linear  .111 23 .005   

Complexity  Linear .091 1 .091 31.546 .000 

Error 

(Complexity) 

 Linear .066 23 .003   

Uncertainty * 

Complexity  

Linear Linear .047 1 .047 21.159 .000 

Error 

(Uncertainty * 

Complexity) 

Linear Linear .051 23 .002   

 

  



16 
 

Supplementary Table 4. Results of two-way repeated measures ANOVA. Related to Figure 6C.  

Source Uncertainty Complexity 
Type III sum 

of squares 

Degree of 

freedom 

Mean 

square 
F p 

Uncertainty Linear  .008 1 .008 30.459 .000 

Error 

(Uncertainty) 

Linear  .006 23 .000   

Complexity  Linear .109 1 .109 134.796 .000 

Error 

(Complexity) 

 Linear .019 23 .001   

Uncertainty * 

Complexity  

Linear Linear .003 1 .003 4.803 .039 

Error 

(Uncertainty * 

Complexity) 

Linear Linear .013 23 .001   
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Supplementary Methods 

 

Behavioral measure (choice bias). In our task design, a left/right choice bias in the first stage 

can be interpreted as a behavioral marker indicating reward-based learning. 

Our task design involves delicate manipulation of the goal. Note that the association 

between goal types and coin colors were randomized for each subject, and here we show one 

particular example (see the above figure). Let’s define the R branch as the bottom left routes 

(accessible by making the R choice in the first stage) and the L branch as the top right routes 

(accessible by making the L choice in the first stage), respectively. The agent is not informed 

about task complexity until the second stage, so in the first stage a rational agent would make the 

following assumptions: in the first stage, outcome states associated with a silver coin are 

accessible by making a primary choice in both branches. An outcome state associated with a red 

coin are accessible by making a primary and a secondary choice in the R and L branch, 

respectively. An outcome state associated with a blue coin are accessible by making a secondary 

choice in both the R and the L branch. 

Accommodating this situation, we can roughly calculate the expected value of the L/R 

choice of the optimal agent (the same agent used to compute choice optimality) for the first stage. 

The probability of transitioning to a desired outcome state by making a primary and a secondary 

choice is given by (0.7, 0.3), which is computed by taking average of the two state-transition 

probability values: (0.9, 0.1) and (0.5, 0.5). Note that this setting is used to simulate average 

experimental conditions. For the sake of simplicity, reward values were normalized to 1 (for the 

goal coin), 0.5 (for the other coins), and 0 (unrewarded).  

If we assume that an agent relies on model-free control and that the agent makes a greedy choice, 

we can compute the expected values and the corresponding choice biases by using the uniform 

state-transition probability distribution (0.5,0.5) (meaning that the agent is agnostic about state-

transition uncertainty and thus cannot afford to accommodate state-transition probability value 

changes) as follows. Note that the low, medium, and high value coin corresponds to silver, red, 

and blue coins in Figure 1 and Supplementary Figure 1; again, the coin colors are randomized 

for each subject. 

- Silver coin : (the expected value of L branch) 1x0.5 + 0x0.5 = 0.5. (the expected value of R 

branch) 1x0.5 + 0.5x0.5 = 0.75. The expected value difference (L-R) = -0.25. We expect a R 

choice bias. 
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- Red coin : (the expected value of L branch) 1x0.5 + 0.5x0.5 = 0.75. (the expected value of 

R branch) 0.5x0.5 + 1x0.5 = 0.75. Therefore expected value difference (L-R) = 0. We expect 

no L choice bias. 

- Blue coin : (the expected value of L branch) 0.5x0.5 + 1x0.5 = 0.75. (the expected value of 

R branch) 0x0.5 + 1x0.5 = 0.5. Therefore expected value difference (L-R) = +0.25. We expect 

L choice bias. 

Therefore, if subjects performed the task using pure model-free control, they would show a well-

balanced choice bias pattern: R bias, zero bias, and L bias for each goal, respectively. 

On the other hand, if we assume that an agent relies on model-based control, we can compute 

the expected values and the corresponding choice biases, this time by using the average state-

transition probability set (0.7,0.3) (meaning that the agent actively accommodates state-transition 

probability value changes between (0,9,0.1) and (0.5,0.5)) as follows. 

- Silver coin : (the expected value of L branch) 1x0.7 + 0x0.3 = 0.7. (the expected value of R 

branch) 1x0.7 + 0.5x0.3 = 0.85. The expected value difference (L-R) = -0.15. We expect a 

weak R choice bias. 

- Red coin : (the expected value of L branch) 1x0.7 + 0.5x0.3 = 0.85. (the expected value of 

R branch) 0.5x0.7 + 1x0.3 = 0.65. Therefore expected value difference (L-R) = +0.2. We 

expect a weak L choice bias. 

- Blue coin : (the expected value of L branch) 0.5x0.7 + 1x0.3 = 0.65. (the expected value of 

R branch) 0x0.7 + 1x0.3 = 0.3. Therefore expected value difference (L-R) = +0.35. We expect 

L choice bias. 

Therefore, if subjects performed the task using model-based control, they would exhibit a slight 

left bias pattern: weak R bias, weak L bias, and L bias for each goal, respectively. 

Behavioral measure (choice optimality). Choice consistency, a conventional behavioral 

measure used to quantify insensitivity to changes in the environmental structure (one of the key 

characteristics of model-free RL), works well for conventional two-step task paradigms in which 

the environment is stable for a certain period 2,3. Unfortunately, Choice consistency is not a 

suitable measure for our highly dynamic task design in which we manipulate task complexity for 

the following reasons: First, reward values fluctuate on a trial-by-trial basis. This manipulation 

encourages trial-by-trial arbitration between model-free and model-based control. Choice 

behavior on each trial is affected by the relative values of each coins, nullifying the choice 
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consistency effect. Second, the level of state-space complexity also varies on a trial-by-trial basis. 

State-space complexity is manipulated by varying the number of available choices. The choice 

consistency rate would plummet when the number of available choices increases from 2 to 4. 

Third, the independent manipulation of the first two factors (state-space complexity and reward 

value) further promotes arbitration. For example, if the values of the three coins remain constant 

on each trial, then it’s likely that choice behavior would converge to a specific sequence of choices 

for each task complexity condition, which does not necessitate arbitration control. Fourth, most of 

the goals are achievable in state1 regardless of experimental conditions. This means that there 

are usually more than two different behavioral policies or pathways/outcome states that enable a 

subject to achieve a goal (coin). These factors make it difficult to apply choice consistency to the 

present task design. 

To deal with all the above issues, we devised an alternative behavioral measure that is robust 

against the above-mentioned experimental issues: choice optimality. This measure quantifies the 

extent to which participants on a given trial took the objectively best choice had they complete 

access to the task state-space, and a perfect ability to plan actions in that state-space. It is based 

on the choice of the ideal agent assumed to have a full, immediate access to information of the 

environmental structure, including state-transition uncertainty and task complexity. The choice 

optimality is defined as the degree of match between subjects’ actual choices and an ideal agent’s 

choice corrected for the number of available options. To compute the degree of choice match 

between the subject and the ideal agent, for each condition, we calculated an average of 

normalized values (i.e., likelihood) of the ideal agent for the choice that a subject actually made 

on each trial. To correct for the number of options, we then multiplied it by 2 for the high complexity 

condition; this is intended to compensate for the effect that the baseline level of the likelihood in 

the high complexity condition (# of available options =4) becomes half of that in the low complexity 

condition (# of available options =2). In other words, this adjustment effectively compensates the 

effect of # of available options on normalization without biasing the correspondence between 

participant’s choices and optimal choices. The choice optimality value would have a 

maximum/minimum value if a subject made the same/opposite choice as the ideal agent’s in all 

trials, regardless of complexity condition changes. 

Owing to the fact that the ideal agent’s behavioral policy is not affected by the variability of such 

experimental variables, this measure serves as a reasonable proxy for assessing the degree of 

participants’ engagement in model-based control. In principle, provided that the model-based 
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agent has complete knowledge of the state-space and no cognitive constraints, it will always 

choose more optimally than a model-free agent. 
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