
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
In this study, Kim and colleagues devised a two-stage Markov decision task in which state-
transition uncertainty (low vs high) and task complexity (low vs high) were systematically varied. 
The logic behind the design was state predictions errors would be abundant under high 
uncertainty, promoting a model-free strategy; while model-based would be preferential under 
circumstances of low uncertainty. Model comparison analysis of >100 possible models revealed a 
single model that captured behavioral performance. In this model, increasing complexity increased 
the likelihood of transitioning to a model-based strategy, but that increased complexity coupled 
with increased uncertainty favored a model-free strategy. While performing the Markov decision 
task, 22 subjects were scanned with fMRI. FMRI analyses replicated a number of previous findings. 
The novel finding was that, when compared to a prior study only examining uncertainty, signals 
from the model incorporating reliability and uncertainty prevailed over that only taking uncertainty 
into account. While no a priori regions showed a main effect of complexity, complexity and 
reliability interacted in the inferior lateral prefrontal cortex. 
 
The Markov task design is clever and the Bayesian model selection analysis provides a rigorous 
approach to model testing. That said, there are two main weaknesses. No descriptive account of 
participant behavior is provided. This omission is particularly surprising given that the 
experimental design is one of the more innovative components of the study. Perhaps the biggest 
issue is the incremental nature of the finding. The experiment heavily references a previous study 
(Lee et al. 2014) which manipulated only uncertainty and examined model-free/model-based 
arbitration. 
This manuscript read as if the goal was to see how the inclusion of complexity changed or better 
accounted for the patterns observed in Lee et al 2014. Specific comments below. 
 
Main points 
 
1. The rationale for systematically varying complexity was to provide a simple means of varying 
computational cost. The idea was that high complexity equaled high computational cost and that 
such cost should promote model-free (MF) mechanisms. However, in this particular Markov 
decision task, increasing task complexity actually promoted a model-based (MB) mechanism. This 
is not a problem in and of itself. However, this potentially means that instead of investigating 
computational cost, as was the original intent, the authors were investigating the factor of 
complexity. This factor may or may not be related to computational cost. This concern would be 
reduced if there was a way to objectively measure computational cost or if other factors that 
should promote computational cost would produce the same behavioral and neural effect as 
increasing task complexity. 
 
2. Key to the study’s innovation is the Markov decision task and the reader is treated to a detailed 
account of the task (Figure 1). This was very helpful and allowed me to visualize not only the task 
but the state-space in which the task operates. However, no descriptive analysis of the behavior is 
performed and no direct measure of behavior is reported. This prevents any deeper 
thinking/understanding of the neural results. Later, a proxy for behavior (choice optimality) is 
shown but the authors even point out that ‘model fits’ are being shown. These model fits are not 
directly indicative of the participant’s actual behavior. The manuscript would be better served by 
either removing Figure 2 and replacing it with descriptors of participant behavior or at least adding 
the behavior to Figure 2. 
 
3. Large sections of the results are dedicated to showing replications of previous studies, e.g. p. 14 
“Neural representations of MB and MF RL” and p. 14/15 “Arbitration signals in prefrontal cortex”. 
The initial results of the first section are replications and it appears that some of the later results 
are new. But it was hard to tell. Replicating key findings is a strength but these results should be 



clearly divided from the novel findings being reported in the current data set. 
 
4. The Bayesian model selection analysis was thorough and it was impressive that it settled on a 
single model. However, comparison to 117 other models seems like overkill. Is it possible that by 
simultaneously comparing this number of models, many of which were highly similar to one 
another, that these would effectively compete against one another? If this is not possible, it would 
be helpful to include a description of why this is the case. If the model were run on only the five 
models with the highest exceedance probabilities would the identified model prevail to the same 
degree? 
 
5. It does not seem surprising that when a task manipulates uncertainty and complexity, a model 
that only incorporates uncertainty (as in Lee et al 2014) more poorly accounts for ilPFC/vmPFC 
activity compared to a model using an uncertainty x complexity interaction. Does the current 
model provide for a better account of the ilPFC/vmPFC activity pattern observed in the Lee et al 
2014 study? If yes, then the current model is an advance. If not, it is more likely that the current 
model only better captures ilPFC/vmPFC activity in this study. 
 
For example, imagine designing a Markov decision task that systematically varied trial density 
(high vs low). This would likely impact MB and MF arbitration. Bayesian model testing would likely 
identify a single model that best captured behavior. Would that model most likely be different than 
of Lee et al 2014 and the current study? If so, what would this tell us about the nature of 
arbitration in prefrontal cortex? I don’t bring this up to be nitpicky. The core aspects of this 
experiment are solid (fMRI analysis, Markov design, model testing). I am just wondering how to 
best use this approach to advance understanding of prefrontal arbitration rather than producing a 
model tailored to the specific finding of an experiment. 
 
Minor points 
 
1. F statistics and degrees of freedom are never provided for ANOVA results. 
 
2. The main effect of uncertainty and the complexity x uncertainty interaction for the model 
preference (Figure 4A) are not visually apparent visually. Rerunning the ANOVA and report F 
statistic and p values would be prudent. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
This manuscripts presents data on a very timely and exciting topic, namely the arbitration process 
between model-free and model-based RL. This is an extension of previous work by the authors 
(Lee et al., Neuron, 2014). In general, the experimental set out including manipulations of state-
uncertainty and task complexity (computational cost via choice availability) is plausible and a 
logical next step. The neural data presented could potentially be highly informative. My major 
concern with this paper, which substantially limits my initial enthusiasm, is one that (on the 
second glance) disappointed me with its ancestor: there is lack of a clear link between the model 
predictions and distinct behavioural readouts. This being combined with what the authors refer to 
as ‘large scale’ model comparison is somehow more worrisome. While the use of such model 
selection techniques is overall supported, the necessity to a priori demonstrate the distinct 
prediction of models or classes of models related to distinct features in the data still remains 
inevitable. In short, the manuscript as presented (and maybe the task in general) misses a clear 
presentation of distinct model-free and model-based behavioural readouts. It could be that I 
missed some aspects of distinct predictions possible on this task because of the way the authors 
present their data (by neglecting my main critique). I will elaborate on this issue in detail below. 
The fMRI data presented could be very interesting, however, the issues regarding their overall 



approach to distinct behavioural predictions based on the model(s) needs to be resolved first as 
their fMRI analyses is essentially based on model predictions inferred from the choice data. 
Behavioural readout: 
As noted, there is a lack of a clear and distinct behavioural readout per condition (at least in the 
way the data is presented). 
- First, and surprisingly, choosing right or left on the first actions somehow does not matter (at 
least from the model-based perspective) because all possible outcomes can be reached from each 
second state. The second state is designed to show a sensitivity to the (on every trial) instructed 
value. Thus, based on well-known effects of reinforcement on choice repetition through model-free 
control, I assume there will be an effect of reward in the previous trial on the first action (e.g. 
repeating R after choosing a R and L1 sequence that got rewarded), which would thus constitute a 
measure of model-free control as a model-based controller knows that it could have chosen L as 
first action to reach the same outcome with same likelihood. 
- Second, depending on having only some outcomes available at a second state and still their 
value being instructed at the beginning of each trial, a model-based controller could make a 
specific choice for the first action by planning ahead to reach a certain outcome, thus, resulting in 
a specific measure of model-based control (I am not sure whether this is possible at all based on 
their design: so far, I believe not) 
- Having established clear behavioural readouts of each controller (e.g. in logistic regression model 
on choice repetition), one can test straightforward the influence of uncertainty and complexity on 
these. 
- Subsequently, making very clear, which parameter(s) in their model(s) influence(s) what kind of 
behaviour (and how) seems necessary and it should be straightforward to be demonstrated in 
simulations. 
- The “high uncertainty condition” with 50/50 transitions remains conceptually unclear to me. 
While it is obvious that this induces high levels of uncertainty and reduces model-based control, 
the authors mention themselves that this results in a random transition, thus, rendering any kind 
of model-based control meaningless because there is essentially no structure to be detected. I can 
see why this is under certain circumstances an interesting condition to be included but think that 
for demonstrating their argument using an additional shift from 90/10 to 70/30 or 60/40 would 
have been more informative because model-based behaviour (if distinctly detectable with this task 
at all) would still have been possible 
- The way how the exact number (or range) of trials per block and per condition was determined 
cannot be clearly followed from the manuscript. Please specify in a way that other researcher could 
reproduce the task based on the manuscript 
If the authors can show clear distinct behavioural readouts for model-free and model-based control 
in this task (or could present a stringent and thus convincing argument why they feel this is not 
necessary), they still need to demonstrate whether their inferred parameters can actually recover 
the key behavioural features of their task. This is essentially necessary. Please also include the 
per-subject negative log-likelihood to the supplemental table showing model parameters and 
please use histograms or a table with percentiles to show distribution of parameters and the 
likelihood (and there measure of model evidence). Although it is very much appreciated that the 
authors share behavioural data and code, there is no word on how they infer parameters from the 
behavioural data and how they approximate or estimate the log model evidence, which they have 
to enter in the RFX BMS. 
As mentioned before, the fMRI results could be very interesting but I refrain to comment on them 
because all fMRI analyses crucially rest upon regressors extracted from the model. 
I hope the authors can find these comments helpful as they are not meant to devalue their work. 
However, I feel it is necessary to present clear behavioural readouts when talking about model-
free and model-based control and their arbitration. I believe the authors might agree on this 
perspective. Distinct behavioural readouts have already been challenging to understand in their 
previous paper from 2014. 
 
 
 



 
 
 
Reviewer #3 (Remarks to the Author): 
 
Kim et al. present a study that builds on previous work from Lee and O’Doherty investigating the 
arbitration between putative model-free and model-based controllers. In this study they 
additionally modulate the “complexity” of the task, by manipulating the number of choice options 
(low: 2 vs high: 4) at the second choice stage of the task. This leads to a 2x2 factorial design in 
which state uncertainty (low: 0.5/0.5 vs high: 0.9/0.1) is crossed with complexity. Behaviorally 
they show that somewhat counterintuitively, increased complexity (defined in this way) leads to 
more model-based control, whereas increased uncertainty leads to more model-free control, as 
expected. Furthermore, they show that there is a logical interaction which shows that with greater 
uncertainty the effect of complexity is attenuated, unsurprisingly. This is an interesting pattern of 
behavioral patterns that adds to the field’s understanding of these putative control systems. In 
their fMRI results, they first nicely replicate their previous work showing reliability effects in 
bilateral ilPFC and integrated value signals (which in effect reflect a comparison between model-
based and model-free controllers) in vmPFC. They then show that a) their new model that 
incorporates task complexity better accounts for the BOLD signals in these areas; and b) there is 
an interaction with task complexity, although I do have a query about its interpretation. Overall, 
this is an impressive, rigorous study that advances our understanding of the conditions under 
which model-based versus model-free systems win out to control behavior, a topic likely to be of 
interest to a broad audience. 
 
More details of the task could be provided and I have a few questions about the task/model: 
 
How often does the task transition between high and low states of uncertainty? Do the interaction 
effects depend on whether this has just happened or many trials earlier (in particular for the 
transition from high to low uncertainty)? 
 
How is the goal change regressor defined? 
 
I could not work it out but does not task complexity influence the computation of reliability in the 
model, since higher number of choice options should increase the entropy of the choice? Is this 
relation already taken into consideration in the computation of reliability in the model? 
 
Figure 7 suggests that the ilPFC effect goes in the opposite direction of the behavioral results. 
When complexity is higher, the MB reliability signal is lower, and vice versa? How should we 
conceptualize this interaction then? 
 
Behaviorally the results show that somewhat counterintuitively, increased complexity leads to 
more model-based control. This suggests that having to plan more carefully, or to consider more 
options, actually makes people more model-based. A suggestion I hope will be helpful: it would be 
interesting to explore at what point this breaks down due to over-taxed cognitive demands. 



Editor’s comment (on the issue raised by the reviewer#1 and #2) 
 
We feel it will be important to address the question of the potential mismatch between model 
prediction and behavioral readout as raised by Reviewers #1 and #2. We will need this and 
other technical concerns of the referees to be alleviated by the next round of re-review. 
 
>> We appreciate both the editor and the reviewers’ insightful comments about behavioral 
readout. To fully address this concern, we have provided a clear read-out for model-based 
control, called choice optimality. As a result, we have added three new figures (Figure 2, Figure 
5, and one supplementary figure; see below). 
  
1. Behavioral readout of model-based control - subjects’ data (Figure 2) 
  
We showed in an independent computer simulation that the choice optimality measure allows us 
to not only distinguish between model-based and model-free control (Fig. 2A; shown below), but 
also successfully separate out the effect of model-based control from model-free for each 
experimental condition (Fig. 2B). 
  
In a behavioral analysis in which we computed choice optimality of subjects’ actual behavior 
data, we found that the behavioral profile of subjects (Fig. 2C) are highly consistent with our 
prediction (Fig. 2B). We also found that the two experimental variables, uncertainty and 
complexity, are the two key factors that influence choice optimality (Fig. 2D). 
  
These results fully support our hypothesis that subjects combine model-based and model-free 
control during performing the task, and the degree of engagement of model-based control is 
affected by both uncertainty and complexity. 
  



  
Figure 2. Behavioral results. (A) Choice optimality (a proxy for assessing the degree of agents’ 
engagement in model-based control), of a model-based and model-free reinforcement learning agent. 
Choice optimality depicts the degree of match between agents’ actual choices and an ideal agent’s 
choice corrected for the number of available options. For full details of this measure, refer to 
Experimental Procedures. (B) Difference in choice optimality between a model-based and model-free 
reinforcement learning agent for the four experimental conditions (low/high state-transition uncertainty 
x low/high task complexity). Shown in red boxes are the effect of the two experimental variables on 
each measure (2-way repeated measures ANOVA). (C) Participants’ choice optimality for the four 
experimental conditions. Shown in red boxes are the effect of the two experimental variables on each 
measure (2-way repeated measures ANOVA; also see Table S3 for full details). (D) Results of a 
general linear model analysis (dependent variable: choice optimality, independent variables: 
uncertainty, complexity, reward values, choices in the previous trial, and goal values). Uncertainty 
and complexity, the two key experimental variables in our task, significantly influence choice 
optimality (t-test; p<0.001). Error bars are SEM across subjects. 

  
2. Behavioral readout of model-based control - model’s prediction (Figure 5) 
  
Next, we found that the subjects’ choice optimality patterns (Fig. 2C) are predicted by our 
computational model (Fig. 5A). In addition to the model’s behavioral prediction, we also 
examined the latent variable of the computational model that represents control weights 
allocated to the model-based system, and showed that this behavioral pattern might be 



attributable to engagement of model-based control in task performance affected by uncertainty 
and complexity (Fig. 5B). 
  
We further checked whether the model’s free parameters encapsulate the effect of uncertainty 
and complexity on choice optimality. For this, we ran a parameter recovery analysis. The 
parameter recovery analysis evaluates the degree of consistency between data-to-model 
parameter and model parameter-to-data conversion. It consists of the following sequence of 
processes: Subjects’ data → model fitting 1 (original parameters) → simulated data → model 
fitting 2 (recovered parameters). Note that the two model fittings are independent processes; the 
model fitting 1 is performed on the participants’ behavioral data while the model fitting 2 is 
performed on the behavior of the model obtained from the model fitting 1. The simulated data 
was generated by running simulations with the best fitting model performing on the behavioral 
task. 
  
If the model parameter(s) successfully encode the key features of behavior, then the 
corresponding parameters should be well recovered. In other words, the original and the 
recovered parameter values should be significantly correlated. If the model’s predictions are 
based on less important dimensions of behavior (e.g., overfitting), then the principal dimensions 
of the simulated data would likely diverge from those of the original subjects’ data, leading to an 
unsuccessful recovery of parameter values. 
  
We found that the four key parameters of the model (the sensitivity of reward and state 
prediction error, learning rates for model-based and model-free control, exploration sensitivity) 
are necessary for accounting for subjects’ behavior patterns (Fig. 5C and 5D). The significant 
correlations between the original and the recovered parameter values highlight the necessity of 
the key parameters of the model, as well as helping to rule out a substantive effect of overfitting. 
Moreover, our computational model exhibits the best explanatory account of this effect, 
compared to alternative models (Supplementary Figure S6). This fully establishes a link 
between model parameters and choice optimality. 
  



 
Figure 5. Computational model fitting results. (A) Patterns of choice optimality generated by the 
best fitting version of the arbitration model, using parameters obtained from fitting to participants 
behavior. For this, the model was run on the task (1000 times), and we computed choice optimality 
measures in the same way as in Fig. 2B and 2C. (B) Degree of engagement of model-based control 
predicted by the computational model, based on the model fits to individual participants. PMB 
corresponds to the weights allocated to the MB strategy. Shown in the red box are the effect of the 
two experimental variables on each measure (2-way repeated measures ANOVA; also see Table S4 
for full details). Error bars are SEM across subjects. (C, D) Behavioral effect recovery analysis. The 
individual effect sizes of uncertainty (C) and complexity (D) on choice optimality of subjects (true data) 
were compared with those of our computational model (simulated data). 
  



 
Figure S6. Related to Figure 5. (A) The figures show the effect size of uncertainty and complexity 
on choice optimality of different models, including the best version of the model incorporating both 
uncertainty and complexity (Our model), the model incorporating uncertainty only (Lee2014), a pure 
model-based agent (Model-based), a pure model-free agent (Model-free). The effect sizes were 
computed by running a general linear model analysis with the choice optimality being included as a 
dependent variable, and uncertainty, complexity, reward values, choices in the previous trial, and goal 
values as independent variables (the same way as in Figure 5). The uncertainty and complexity, the 
two experimental variables of our task, are the two key factors that influences choice optimality (t-test; 
p<0.001). Error bars are SEM across subjects. (B) Behavioral effect recovery analysis. The individual 
effect sizes of uncertainty/complexity on choice optimality of subjects (behavioral data) were 
compared with those of each model (simulated data). 

 
 
  



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
In this study, Kim and colleagues devised a two-stage Markov decision task in which state-
transition uncertainty (low vs high) and task complexity (low vs high) were systematically varied. 
The logic behind the design was state predictions errors would be abundant under high 
uncertainty, promoting a model-free strategy; while model-based would be preferential under 
circumstances of low uncertainty. Model comparison analysis of >100 possible models revealed 
a single model that captured behavioral performance. In this model, increasing complexity 
increased the likelihood of transitioning to a model-based strategy, but that increased 
complexity coupled with increased uncertainty favored a model-free strategy. While performing 
the Markov decision task, 22 subjects were scanned with fMRI. FMRI analyses replicated a 
number of previous findings. The novel finding was that, when compared to a prior study only 
examining uncertainty, signals from the model incorporating reliability and uncertainty prevailed 
over that only taking uncertainty into account. While no a priori regions showed a main effect of 
complexity, complexity and reliability interacted in the inferior lateral prefrontal cortex.  
 
The Markov task design is clever and the Bayesian model selection analysis provides a rigorous 
approach to model testing. That said, there are two main weaknesses. No descriptive account 
of participant behavior is provided. This omission is particularly surprising given that the 
experimental design is one of the more innovative components of the study. Perhaps the 
biggest issue is the incremental nature of the finding. The experiment heavily references a 
previous study (Lee et al. 2014) which manipulated only uncertainty and examined model-
free/model-based arbitration.  
This manuscript read as if the goal was to see how the inclusion of complexity changed or better 
accounted for the patterns observed in Lee et al 2014. Specific comments below. 
 
Main points 
 
1. The rationale for systematically varying complexity was to provide a simple means of varying 
computational cost. The idea was that high complexity equaled high computational cost and that 
such cost should promote model-free (MF) mechanisms. However, in this particular Markov 
decision task, increasing task complexity actually promoted a model-based (MB) mechanism. 
This is not a problem in and of itself. However, this potentially means that instead of 
investigating computational cost, as was the original intent, the authors were investigating the 
factor of complexity. This factor may or may not be related to computational cost. This concern 
would be reduced if there was a way to objectively measure computational cost or if other 
factors that should promote computational cost would produce the same behavioral and neural 
effect as increasing task complexity.  
 
>> Reply 1-(1). 
 
We appreciate the reviewer’s thoughtful comments about computational cost. The original 
intention of this study was to study computational cost, but we acknowledge that we focus on 
complexity and uncertainty as one potential way to manipulate computational cost and that our 



findings may not be deemed to generalize to other forms of computational cost. To reflect the 
reviewer’s concern, we have added caveats and toned down claims of the paragraph in the 
discussion session as follows: 
 
“We also acknowledge that we focus on complexity and uncertainty as one potential way to manipulate 
computational cost and that our findings may not be deemed to generalize to other forms of 
computational cost. Future studies could therefore focus on more clearly separating these effects of 
computational load from other factors that may be related to computational cost.” 
 
To further resolve the reviewer’s concern, we have tried to quantify the effect of complexity x 
uncertainty on the computational cost. There is no unique way of numerically coding or 
quantifying computational cost, so our task design introduced three variables as a proxy for this: 
the size of the state space, action space, and goal space, each of which can be numerically 
coded as the number of nodes, routes, and available coins, respectively. 
 
Shown below are the four experimental conditions (uncertainty x complexity) and corresponding 
quantitative assessments of computational cost (see the green rounded box). Although the 
quantification may depend on the agent’s ability (e.g., agent’s sensitivity to state-transition 
probability), it clearly shows that our task is designed to simulate conditions with different levels 
of computational load (the total computational load varying between 15 and 34). To the best of 
our knowledge, this is the first attempt to manipulate computational cost by using a combination 
of an explicit (complexity) and an implicit (uncertainty) task variable. To reflect this, we have 
updated the Figure S1 (see below) and have added details to its caption. 
 



 
Figure S1. Illustration of four different types of conditions in the task (low/high x 
uncertainty/complexity) Shown in the rounded green box are the quantitative assessment of 
computational cost in each condition. Since there is no unique way of numerically coding or 
quantifying computational cost, our task design introduced three variables as a proxy for this: the size 
of state space, action space, and goal space, each of which can be numerically coded as the number 
of nodes, routes, and available coins, respectively. The estimated computational costs show that our 
task design can simulate conditions with different levels of computational load (the total computational 
load varying between 15 and 34). 

 
 



2. Key to the study’s innovation is the Markov decision task and the reader is treated to a 
detailed account of the task (Figure 1). This was very helpful and allowed me to visualize not 
only the task but the state-space in which the task operates. However, no descriptive analysis of 
the behavior is performed and no direct measure of behavior is reported. This prevents any 
deeper thinking/understanding of the neural results. Later, a proxy for behavior (choice 
optimality) is shown but the authors even point out that ‘model fits’ are being shown. These 
model fits are not directly indicative of the participant’s actual behavior. The manuscript would 
be better served by either removing Figure 2 and replacing it with descriptors of participant 
behavior or at least adding the behavior to Figure 2. 
 
>> Reply 1-(2). 
 
Thank you very much for the constructive suggestion. 
 
To fully reflect the reviewer’s concern, we have added a new figure (Figure 2; see below) 
providing a descriptive analysis of behavior associated with model-based control (choice 
optimality). Full details of these behavioral measures are provided in Experimental Procedures 
(see below). 
 
In Figure 2, we used a computer simulation with pure model-based and model-free 
reinforcement learning agents to demonstrate that choice optimality is a good proxy of the 
extent to which participants engage in model-based control (Figure 2A), and that it is sensitive 
to the two experimental variables of our task: uncertainty and complexity (Figure 2B). This is 
confirmed by the choice optimality of participants’ behavior (Figure 2C). Moreover, both 
uncertainty and complexity are the two main factors that influences choice optimality (Figure 
2D). 
 



  
Figure 2. Behavioral results. (A) Choice optimality (a proxy for assessing the degree of agents’ 
engagement in model-based control), of a model-based and model-free reinforcement learning agent. 
Choice optimality depicts the degree of match between agents’ actual choices and an ideal agent’s 
choice corrected for the number of available options. For full details of this measure, refer to 
Experimental Procedures. (B) Difference in choice optimality between a model-based and model-free 
reinforcement learning agent for the four experimental conditions (low/high state-transition uncertainty 
x low/high task complexity). Shown in red boxes are the effect of the two experimental variables on 
each measure (2-way repeated measures ANOVA). (C) Participants’ choice optimality for the four 
experimental conditions. Shown in red boxes are the effect of the two experimental variables on each 
measure (2-way repeated measures ANOVA; also see Table S3 for full details). (D) Results of a 
general linear model analysis (dependent variable: choice optimality, independent variables: 
uncertainty, complexity, reward values, choices in the previous trial, and goal values). Uncertainty 
and complexity, the two key experimental variables in our task, significantly influence choice 
optimality (t-test; p<0.001). Error bars are SEM across subjects. 
 
“Behavioral measure (choice optimality). Choice consistency, a conventional behavioral measure 
used to quantify insensitivity to changes in the environmental structure (one of the key characteristics 
of model-free RL), works well for conventional two-step task paradigms in which the environment is 
stable for a certain period [Daw, Neuron 2011; Miller, Nature neurosci 2017]. Unfortunately, it is not a 
suitable measure for our highly dynamic task design in which we manipulate task complexity for the 
following reasons: First, reward values fluctuate on a trial-by-trial basis. This manipulation 
encourages trial-by-trial arbitration between model-free and model-based control. Choice behavior on 



each trial is affected by the relative values of each coins, nullifying the choice consistency effect. 
Second, the level of state-space complexity also varies on a trial-by-trial basis. State-space 
complexity is manipulated by varying the number of available choices. The choice consistency rate 
would plummet when the number of available choices increases from 2 to 4. Third, the independent 
manipulation of the first two factors (state-space complexity and reward value) further promotes 
arbitration. For example, if the values of the three coins remain constant on each trial, then it’s likely 
that choice behavior would converge to a specific sequence of choices for each task complexity 
condition, which does not necessitate arbitration control. Fourth, most of the goals are achievable in 
state1 regardless of experimental conditions. This means that there are usually more than two 
different behavioral policies or pathways/outcome states that enable a subject to achieve a goal 
(coin). These factors make it difficult to apply choice consistency to the present task design. 
To deal with all the above issues, we devised an alternative behavioral measure that is robust against 
the above-mentioned experimental issues: choice optimality. This measure quantifies the extent to 
which participants on a given trial took the objectively best choice had they complete access to the 
task state-space, and a perfect ability to plan actions in that state-space. It is based on the choice of 
the ideal agent assumed to have a full, immediate access to information of the environmental 
structure, including state-transition uncertainty and task complexity. The choice optimality is defined 
as the degree of match between subjects’ actual choices and an ideal agent’s choice corrected for 
the number of available options. To compute the degree of choice match between the subject and the 
ideal agent, for each condition, we calculated an average of normalized values (i.e., likelihood) of the 
ideal agent for the choice that a subject actually made on each trial. To correct for the number of 
options, we then multiplied it by 2 for the high complexity condition; this is intended to compensate for 
the effect that the baseline level of the likelihood in the high complexity condition (# of available 
options =4) becomes half of that in the low complexity condition (# of available options =2). In other 
words, this adjustment effectively compensates the effect of # of available options on normalization 
without biasing the correspondence between participant’s choices and optimal choices. The choice 
optimality value would have a maximum/minimum value if a subject made the same/opposite choice 
as the ideal agent’s in all trials, regardless of complexity condition changes. 
Owing to the fact that the ideal agent’s behavioral policy is not affected by the variability of such 
experimental variables, this measure serves as a reasonable proxy for assessing the degree of 
participants’ engagement in model-based control. In principle, provided that the model-based agent 
has complete knowledge of the state-space and no cognitive constraints, it will always choose more 
optimally than a model-free agent.” 
 
 

Please note that this figure is followed by a computational hypothesis (Figure3), model 
comparison (Figure 4), and model-based analyses (Figure 5) in which we fully establish a link 
between all these behavioral measures and the model (refer to our reply 2-(3)).  
 
In addition to our analysis on choice optimality, we have added another supplementary figure 
showing conventional behavioral measures for reward-based learning (Figure S2). Note that this 
measure also allows us to distinguish model-based control from model-free control (Figure S2A), 
and we found evidence in subjects data to fully dismiss the possibility that subjects use a pure 
model-free control strategy. The results from that additional analysis are also fully consistent 
with the predictions of our model, suggesting that our computational model encapsulated the 
essence of subjects’ choice behavior (Figure S2B; see below). Full details of these measures 
are provided in Supplementary Methods. 
  



 

 
Figure S2. (A) Predicted choice bias patterns of model-free (MF) and model-based (MB) control, 
calculated for the three goal conditions defined as the trials according to which coin has the maximum 
monetary outcome value (low, medium, and high token value for the L choice). Owing to the 
asymmetric association between outcome states and coin types (For full details, see Supplementary 
Methods – Choice bias), participants would exhibit distinct choice bias patterns for each goal 
condition that distinguishes model-based from model-free control; the MF control agent would exhibit 
a balanced choice bias pattern, whereas the MB control agent would show a slight left bias pattern. 
For full details of this measure, refer to Supplementary Methods - Behavioral measure. (B) 
Participants’ choice bias and choice consistency, the conventional behavioral markers indicating 
reward-based learning. Error bars are SEM across subjects. The prediction about the choice bias 
matches subjects’ actual choice bias (the left of the below figure). In particular, the data shows a clear 
left bias pattern, rejecting the null hypothesis that subjects used a pure model-free control strategy. 
This bias is also reflected in choice consistency (the right plot). These results also indicate that 
participants’ choice behavior is guided by reward-based learning more generally. (C) Choice bias 
(left), choice consistency (middle), and the average value difference (right) of our computational 
model of arbitration control (Figure 4B). For this, we ran a deterministic simulation in which our 
computational model experiences exactly the same episode of events as each individual subject, and 
we generated the trial-by-trial outputs. The max goal conditions are defined in the same way as in the 
Figure 2A. Error bars are SEM across subjects. Note that both the choice bias and choice 



consistency patterns of the model (the left and the middle plot) are fully consistent with the behavioral 
results (B). Second, the values difference (right – left choice) of the model is also consistent with this 
finding (the right plot), suggesting that these behavioral patterns are originated from value learning. In 
summary, our computational model encapsulates the essence of subjects’ choice behavior as guided 
by reward-based learning. 

 
“Behavioral measure (choice bias). In our task design, a left/right choice bias in the first stage can 
be interpreted as a behavioral marker indicating reward-based learning. 
Our task design involves delicate manipulation of the goal. Note that the association between goal 
types and coin colors were randomized for each subject, and here we show one particular example 
(see the above figure). Let’s define the R branch as the bottom left routes (accessible by making the 
R choice in the first stage) and the L branch as the top right routes (accessible by making the L 
choice in the first stage), respectively. The agent is not informed about task complexity until the 
second stage, so in the first stage a rational agent would make the following assumptions: in the first 
stage, outcome states associated with a silver coin are accessible by making a primary choice in both 
branches. An outcome state associated with a red coin are accessible by making a primary and a 
secondary choice in the R and L branch, respectively. An outcome state associated with a blue coin 
are accessible by making a secondary choice in both the R and the L branch. 
Accommodating this situation, we can roughly calculate the expected value of the L/R choice of the 
optimal agent (the same agent used to compute choice optimality) for the first stage. The probability 
of transitioning to a desired outcome state by making a primary and a secondary choice is given by 
(0.7, 0.3), which is computed by taking average of the two state-transition probability values: (0.9, 0.1) 
and (0.5, 0.5). Note that this setting is used to simulate average experimental conditions. For the sake 
of simplicity, reward values were normalized to 1 (for the goal coin), 0.5 (for the other coins), and 0 
(unrewarded). 
If we assume that an agent relies on model-free control and that the agent makes a greedy choice, 
we can compute the expected values and the corresponding choice biases by using the uniform 
state-transition probability distribution (0.5,0.5) (meaning that the agent is agnostic about state-
transition uncertainty and thus cannot afford to accommodate state-transition probability value 
changes) as follows. Note that the low, medium, and high value coin corresponds to silver, red, and 
blue coins in Figure 1 and Figure S1; again, the coin colors are randomized for each subject. 
- Silver coin : (the expected value of L branch) 1x0.5 + 0x0.5 = 0.5. (the expected value of R branch) 
1x0.5 + 0.5x0.5 = 0.75. The expected value difference (L-R) = -0.25. We expect a R choice bias. 
- Red coin : (the expected value of L branch) 1x0.5 + 0.5x0.5 = 0.75. (the expected value of R 
branch) 0.5x0.5 + 1x0.5 = 0.75. Therefore expected value difference (L-R) = 0. We expect no L 
choice bias. 
- Blue coin : (the expected value of L branch) 0.5x0.5 + 1x0.5 = 0.75. (the expected value of R 
branch) 0x0.5 + 1x0.5 = 0.5. Therefore expected value difference (L-R) = +0.25. We expect L choice 
bias. 
Therefore, if subjects performed the task using pure model-free control, they would show a well-
balanced choice bias pattern: R bias, zero bias, and L bias for each goal, respectively. 
On the other hand, if we assume that an agent relies on model-based control, we can compute the 
expected values and the corresponding choice biases, this time by using the average state-transition 
probability set (0.7,0.3) (meaning that the agent actively accommodates state-transition probability 
value changes between (0,9,0.1) and (0.5,0.5)) as follows. 
- Silver coin : (the expected value of L branch) 1x0.7 + 0x0.3 = 0.7. (the expected value of R branch) 
1x0.7 + 0.5x0.3 = 0.85. The expected value difference (L-R) = -0.15. We expect a weak R choice 
bias. 
- Red coin : (the expected value of L branch) 1x0.7 + 0.5x0.3 = 0.85. (the expected value of R 
branch) 0.5x0.7 + 1x0.3 = 0.65. Therefore expected value difference (L-R) = +0.2. We expect a weak 
L choice bias. 



- Blue coin : (the expected value of L branch) 0.5x0.7 + 1x0.3 = 0.65. (the expected value of R 
branch) 0x0.7 + 1x0.3 = 0.3. Therefore expected value difference (L-R) = +0.35. We expect L choice 
bias. 
Therefore, if subjects performed the task using model-based control, they would exhibit a slight left 
bias pattern: weak R bias, weak L bias, and L bias for each goal, respectively.” 

 
 
3. Large sections of the results are dedicated to showing replications of previous studies, e.g. p. 
14 “Neural representations of MB and MF RL” and p. 14/15 “Arbitration signals in prefrontal 
cortex”. The initial results of the first section are replications and it appears that some of the 
later results are new. But it was hard to tell. Replicating key findings is a strength but these 
results should be clearly divided from the novel findings being reported in the current data set. 
 
>> Reply 1-(3). 
 
Here we clarify whether the neural results of each section are replications of the existing 
findings or new findings: 
 

- Section “Neural representations of model-based and model-free RL” : replications + new 
findings 

- Section “Arbitration signals in prefrontal cortex” : replications 
- Section “Model comparison against fMRI data” : new findings 
- Section “Modulation of inferior prefrontal reliability signal by complexity” : new findings 

 
To fully reflect the reviewer’s suggestion, we have added clarifications, by making it very clear to 
distinguish between the replications of existing findings and novel findings in each section. For 
example, please refer to the below. 
 

- In the section, Neural representations of model-based and model-free RL, 
“... In summary, we replicated existing findings about variables necessary to implement MB and 
MR RL, including a prediction error and value signal for each system, and an integrated value 
signal to guide an actual choice.” 
“In addition, we found new evidence for the implementation of the goal-driven MF model (Table 
S2; the definition of the regressor is provided in Supplementary Methods), which ...” 
 

- In the section, Arbitration signals in prefrontal cortex, 
“... These findings are again successful replications of findings from our previous study (Lee et 
al., 2014).” 
 

- In the section, Model comparison against fMRI data, 
“Note that these are the new findings (beyond the original findings of our 2014 study) that support 
our hypothesis that the model in which complexity is taken into account provides a better account 
of prefrontal mediated arbitration control.” 
 

- In the section, Modulation of inferior prefrontal reliability signal by complexity, 
“This provides new evidence that these two signals relevant for driving arbitration interact with 
each other in ilPFC.” 

 



4. The Bayesian model selection analysis was thorough and it was impressive that it settled on 
a single model. However, comparison to 117 other models seems like overkill. Is it possible that 
by simultaneously comparing this number of models, many of which were highly similar to one 
another, that these would effectively compete against one another? If this is not possible, it 
would be helpful to include a description of why this is the case. If the model were run on only 
the five models with the highest exceedance probabilities would the identified model prevail to 
the same degree? 
 
>> Reply 1-(4). 
 
The reason why the Bayesian model selection (BMS) analysis settled on a single model is 
because the fitness values of the best version of the model are consistently higher than all the 
other versions across all the subjects. 
 
In addition, as the reviewer suggested, we have now  re-run the BMS on only the five best fitting 
models from the original BMS analysis to check if the identified model dominates the BMS 
analysis to the same degree. The model we identified in our original analysis is indeed the best 
version of the model with a very high probability (p=0.97; see the below figure), fully dismissing 
the possibility that there is an effect of competition among similar models on BMS results. 
 

 
This result has been included in Supplementary information (Figure S4). 
 
 



5. It does not seem surprising that when a task manipulates uncertainty and complexity, a 
model that only incorporates uncertainty (as in Lee et al 2014) more poorly accounts for 
ilPFC/vmPFC activity compared to a model using an uncertainty x complexity interaction. Does 
the current model provide for a better account of the ilPFC/vmPFC activity pattern observed in 
the Lee et al 2014 study? If yes, then the current model is an advance. If not, it is more likely 
that the current model only better captures ilPFC/vmPFC activity in this study.  
 
>> Reply 1-(5). 
 
We apologize for the confusion about the relationship between the models and the two tasks. 
This model is designed in a way that it becomes equivalent to the Lee2014 model when the 
complexity stays at a low constant level, which is the situation considered in the Lee 2014 study. 
It is apparent that the current model would make the same predictions as the original model on 
the 2014 dataset simply because we did not perturb complexity. So there is no need to re-run 
the current model in the old scenario. (A Bayesian model selection analysis would show that it 
performs worse on the behavioral data from 2014 because the extra degrees of freedom would 
be penalized in the model fitting without any advantage.) In summary, 
 

- In the Lee 2014 task (environment with a varying degree of uncertainty), both the current 
model and the Lee2014 model make the same predictions. 

- In the current task (environment with a varying degree of uncertainty and complexity), 
we showed that the current model makes significantly better predictions than the Lee 
2014 model. 

 
We designed this task to discriminate a model that is sensitive to complexity from one that is 
not. The main claim of our paper is that a model that incorporates complexity better accounts of 
vlPFC activity. We believe that this is not trivial but a real advance. 
 
To resolve the reviewer’s concern, we have added clarifications to the main text. 
 
“Note that this model is designed in a way such that it becomes equivalent to the previous arbitration 
process (Lee et al., 2014) when the complexity stays at a low constant level. That is, it is apparent that 
the current model would make the same predictions as the original model on such a simple two-stage 
Markov decision task without complexity perturbation. It is also noted that when the environment is 
perfectly stable (i.e., a fixed amount of state-transition uncertainty and a fixed level of task complexity), 
the particulars of this model converge to a stable mixture of MB and MF RL (Daw et al., 2011).” 
 
 
For example, imagine designing a Markov decision task that systematically varied trial density 
(high vs low). This would likely impact MB and MF arbitration. Bayesian model testing would 
likely identify a single model that best captured behavior. Would that model most likely be 
different than of Lee et al 2014 and the current study? If so, what would this tell us about the 
nature of arbitration in prefrontal cortex? I don’t bring this up to be nitpicky. The core aspects of 
this experiment are solid (fMRI analysis, Markov design, model testing). I am just wondering 
how to best use this approach to advance understanding of prefrontal arbitration rather than 
producing a model tailored to the specific finding of an experiment. 
 



>> Reply 1-(6). 
 
We appreciate the reviewer’s constructive comments. This is certainly an interesting point that 
can apply to other studies in general that rely on a combination of computational modelling and 
tasks designed to test variables from those models. 
 
Please note that we started with a specific hypothesis that computational complexity (or at least 
task complexity) would be utilized in the arbitration process because it is relevant for the 
decision whether to deploy model-based or model-free inference. Given our specific hypothesis, 
we found at least partial support for that. Of course there are likely to be many other factors that 
influence arbitration — and it is going to be important to test for the effects of those other 
potential variables in future studies. It stands to reason that if a variable influences the 
arbitration process, then we would expect a model that incorporates that variables would 
perform better than a model that does not. This is our main claim. 
 
Of course, if we pick an experimental manipulation that does not have any relevance to the 
arbitration process, then we would easily anticipate that the manipulation would fail, and the 
model comparison would provide no support for such a manipulation. This is of course a 
hypothetical argument as we haven’t run that. That being said, trial density to take the 
reviewers’ example could potentially be relevant for the arbitration because there might be “ego 
depletion” type effects going on for the model-based controller — in that if the agent has more 
time to rest between trials maybe she can utilize model-based control more effectively or 
something. So, if it is the case that this is relevant for the allocation of model-based vs model-
free control, it is very possible we would find evidence that this is reflected in the arbitration 
process. This would not be a trivial result in our opinion, but an interesting one. 
 
 
Minor points 
 
1. F statistics and degrees of freedom are never provided for ANOVA results. 
 
>> Reply 1-(7). We have provided details of statistical tests, including F statistics and degrees 
of freedom. 
 
2. The main effect of uncertainty and the complexity x uncertainty interaction for the model 
preference (Figure 4A) are not visually apparent visually. Rerunning the ANOVA and report F 
statistic and p values would be prudent. 
 
>> Reply 1-(8). We have double checked both the main effect of uncertainty and the interaction 
effect of complexity and uncertainty using different statistical toolboxes, and have confirmed the 
original ANOVA results are correct (see below). Note that Figure 4A in the previous version of 
the manuscript becomes Figure 5B in the revised version. 



 
 
The reason it does not visually apparent is that there is "high individual variability", which is fairly 
common in decision making tasks designed to test the effect of multiple different strategies on 
behavior. Note that most of individual subjects' PMB (y-axis) decreases as uncertainty increases. 
(see below; paired t-test p=1.5174e-05). 

 
To assure potential readers that there are significant main and interaction effects, we have 
made a very explicit mention of this in the main text and added an additional plot as a 
supplementary Table S4 including F statistics and p-values.   
 
 



Reviewer #2 (Remarks to the Author): 
 
This manuscripts presents data on a very timely and exciting topic, namely the arbitration 
process between model-free and model-based RL. This is an extension of previous work by the 
authors (Lee et al., Neuron, 2014). In general, the experimental set out including manipulations 
of state-uncertainty and task complexity (computational cost via choice availability) is plausible 
and a logical next step. The neural data presented could potentially be highly informative. My 
major concern with this paper, which substantially limits my initial enthusiasm, is one that (on 
the second glance) disappointed me with its ancestor: there is lack of a clear link between the 
model predictions and distinct behavioural readouts. This being combined with what the authors 
refer to as ‘large scale’ model comparison is somehow more worrisome. While the use of such 
model selection techniques is overall supported, the necessity to a priori demonstrate the 
distinct prediction of models or classes of models related to distinct features in the data still 
remains inevitable. In short, the manuscript as presented (and maybe the task in general) 
misses a clear presentation of distinct model-free and model-based behavioural readouts. It 
could be that I missed some aspects of distinct predictions possible on this task because of the 
way the authors present their data (by neglecting my main critique). I will elaborate on this issue 
in detail below. The fMRI data presented could be very interesting, however, the issues 
regarding their overall approach to distinct behavioural predictions based on the model(s) needs 
to be resolved first as their fMRI analyses is essentially based on model predictions inferred 
from the choice data.  
 
>> First of all, we greatly appreciate the reviewers’ constructive comments which have helped 
us significantly improve our paper. We fully clarified all the issues by running behavioral, GLM, 
and parameter recovery analyses (please see below). 

           
Behavioural readout:  
As noted, there is a lack of a clear and distinct behavioural readout per condition (at least in the 
way the data is presented). 

 
- First, and surprisingly, choosing right or left on the first actions somehow does not matter (at 
least from the model-based perspective) because all possible outcomes can be reached from 
each second state. The second state is designed to show a sensitivity to the (on every trial) 
instructed value. Thus, based on well-known effects of reinforcement on choice repetition 
through model-free control, I assume there will be an effect of reward in the previous trial on the 
first action (e.g. repeating R after choosing a R and L1 sequence that got rewarded), which 
would thus constitute a measure of model-free control as a model-based controller knows that it 
could have chosen L as first action to reach the same outcome with same likelihood.  
 
>> Reply 2-(1). 
 
We greatly appreciate the reviewer’s insightful suggestion. While choice repetition is a useful 
behavioral measure that can in some task implementations provide a distinctive behavioral 
profile indicating model-free control, unfortunately, this measure is not directly applicable in our 



case. In the following sections, we first explain in detail why choice repetition is not an ideal 
behavioral measure for our task, and then we present a more effective behavioral measure: 
choice optimality. 
 
(i) Remarks on choice repetition 
 
Since choice repetition (also known as choice consistency) is proposed to quantify insensitivity 
to changes in the environmental structure (one of the key characteristics of model-free RL), it 
would work for a conventional simple two-step task paradigm in which the environment is stable 
for a certain period [Daw, Neuron 2011; Miler, Nature neurosci 2017]. However, it is not directly 
applicable to our highly dynamic task design with a varying degree of task complexity for the 
following reasons: 
 

First, reward values fluctuate on a trial-by-trial basis in the present task. This manipulation 
encourages trial-by-trial arbitration between model-free and model-based control. Choice 
behavior on each trial is affected by relative values of each coins. This feature complicates 
interpretation of the choice repetition effect. 
 
Second, state-space complexity also varies on a trial-by-trial basis in our current design via 
manipulating the number of available choices. However, state-space complexity also 
complicates interpretation of a choice repetition metric, because the repetition rate 
necessarily decreases as the number of available choices increases from 2 to 4. 
 
Third, in order to further promote arbitration and allow us to test for the effects of  
independent manipulation of the first two factors (state-space complexity and reward value) 
further promotes arbitration. For example, if the values of the three coins remain constant on 
each trial, then it’s likely that choice behavior would converge to a specific sequence of 
choices for each task complexity condition, which does not necessitate arbitration control. 
 
Fourth, due to uncertainty in the state-transitions and varying degree of task complexity there 
are usually more than two behavioral policies or pathways/outcome states that enable a 
subject to achieve a goal (coin). These factors made it very difficult to find a simple 
behavioral measure, including choice consistency or the effect of reward/state-transition type 
on choice repetition. 

 
Thus in our study, the application of the choice consistency measure is confined to a simple 
readout of reward-based value learning guided by model-free control. 
 
(ii) Behavioral readout : choice optimality 
 
To deal with all the above issues, we devised an alternative behavioral measure that is robust 
against the above-mentioned experimental variables: choice optimality. It quantifies the extent 
to which participants on a given trial took objectively the best choice had they complete access 
to the task state-space, and a perfect ability to plan actions in that state-space. It is based on 



the choice of the ideal agent assumed to have a full, immediate access to information of the 
environmental structure, including state-transition uncertainty and task complexity.  
 
Owing to the fact that the ideal agent’s behavioral policy is not affected by the variability of such 
experimental variables, it serves as a good proxy for assessing the degree of participants’ 
engagement in model-based control. In principle, provided that the model-based agent has 
complete knowledge of the state-space and no cognitive constraints, it will always choose more 
optimally than a model-free agent. 
 
To establish a clear link between behavior, experimental variables, and a computational model, 
we have added a new figure (Figure 2; see below). The figure shows that  

- the choice optimality is clear behavioural readouts of each controller and is influenced by 
uncertainty and complexity (see our reply 2-(3) for more details), and 

- the effect of those variables on choice behavior is well explained by key parameters of 
our model (see our reply 2-(4) for more details). 

 
 

  



Figure 2. Behavioral results. (A) Choice optimality (a proxy for assessing the degree of agents’ 
engagement in model-based control), of a model-based and model-free reinforcement learning agent. 
Choice optimality depicts the degree of match between agents’ actual choices and an ideal agent’s 
choice corrected for the number of available options. For full details of this measure, refer to 
Experimental Procedures. (B) Difference in choice optimality between a model-based and model-free 
reinforcement learning agent for the four experimental conditions (low/high state-transition uncertainty 
x low/high task complexity). Shown in red boxes are the effect of the two experimental variables on 
each measure (2-way repeated measures ANOVA). (C) Participants’ choice optimality for the four 
experimental conditions. Shown in red boxes are the effect of the two experimental variables on each 
measure (2-way repeated measures ANOVA; also see Table S3 for full details). (D) Results of a 
general linear model analysis (dependent variable: choice optimality, independent variables: 
uncertainty, complexity, reward values, choices in the previous trial, and goal values). Uncertainty 
and complexity, the two key experimental variables in our task, significantly influence choice 
optimality (t-test; p<0.001). Error bars are SEM across subjects. 

 
 
- Second, depending on having only some outcomes available at a second state and still their 
value being instructed at the beginning of each trial, a model-based controller could make a 
specific choice for the first action by planning ahead to reach a certain outcome, thus, resulting 
in a specific measure of model-based control (I am not sure whether this is possible at all based 
on their design: so far, I believe not) 
 
>> Reply 2-(2). 
 
It is possible. Although we haven’t made clear in our original manuscript (we apologize for this!), 
our task design does incorporate a specific behavioral marker, a choice bias, which could 
indicate goal-specific planning of the model-based controller. In the following sections, we show 
(i) how this behavioral measure is incorporated into the task design, (ii) behavioral results, and 
(iii) that this is reflected in valuation of the model. 
 
(i) Left/right choice bias : a behavioral marker indicating reward-based learning and model-
based control 
 



 
 
Our task design involves an explicit manipulation of the goal. Note that the association between 
goal types and coin colors were randomized for each subject, and here we show one particular 
example (see the above figure). Let’s define the L branch as the bottom left routes (accessible 
by making the L choice in the first stage) and the R branch as the top right routes (accessible by 
making the R choice in the first stage), respectively. The agent is not informed about task 
complexity until the second stage, so in the first stage a rational agent would make the following 
assumptions: in the first stage, outcome states associated with a silver coin are accessible by 
making a primary choice in both branches. An outcome state associated with a red coin are 
accessible by making a primary and a secondary choice in the L and R branch, respectively. An 
outcome state associated with a blue coin are accessible by making a secondary choice in both 
branches.  

 
Accommodating this situation, we can roughly calculate the expected value of the L/R choice of 
the optimal agent (the same agent used to compute choice optimality) for the first stage. The 
probability of transitioning to a desired outcome state by making a primary and a secondary 
choice is given by (0.7, 0.3), which is computed by taking average of the two state-transition 
probability values: (0.9, 0.1) and (0.5, 0.5). Note that this setting is used to simulate average 



experimental conditions. For the sake of simplicity, reward values were normalized to 1 (for the 
goal coin), 0.5 (for the other coins), and 0 (unrewarded).  
 
If we assume that an agent relies on model-free control and that the agent makes a greedy 
choice, we can compute the expected values and the corresponding choice biases by using the 
uniform state-transition probability distribution (0.5,0.5) (meaning that the agent is agnostic 
about state-transition uncertainty and thus cannot afford to accommodate state-transition 
probability value changes) as follows. 
 
-        Silver coin : (the expected value of L branch) 1x0.5 + 0x0.5 = 0.5. (the expected value of 
R branch) 1x0.5 + 0.5x0.5 = 0.75. The expected value difference (L-R) = -0.25. We expect a R 
choice bias. 
-        Red coin : (the expected value of L branch) 1x0.5 + 0.5x0.5 = 0.75. (the expected value of 
R branch) 0.5x0.5 + 1x0.5 = 0.75. Therefore expected value difference (L-R) = 0. We expect no 
L choice bias. 
-        Blue coin : (the expected value of L branch) 0.5x0.5 + 1x0.5 = 0.75. (the expected value of 
R branch) 0x0.5 + 1x0.5 = 0.5. Therefore expected value difference (L-R) = +0.25. We expect L 
choice bias. 
 
Therefore, if subjects performed the task using pure model-free control, they would show a well-
balanced choice bias pattern: R bias, zero bias, and L bias for each goal, respectively. 
 
On the other hand, if we assume that an agent relies on model-based control, we can compute 
the expected values and the corresponding choice biases, this time by using the average state-
transition probability set (0.7,0.3) (meaning that the agent actively accommodates state-
transition probability value changes between (0,9,0.1) and (0.5,0.5)) as follows. 
 
-        Silver coin : (the expected value of L branch) 1x0.7 + 0x0.3 = 0.7. (the expected value of 
R branch) 1x0.7 + 0.5x0.3 = 0.85. The expected value difference (L-R) = -0.15. We expect a 
weak R choice bias. 
-        Red coin : (the expected value of L branch) 1x0.7 + 0.5x0.3 = 0.85. (the expected value of 
R branch) 0.5x0.7 + 1x0.3 = 0.65. Therefore expected value difference (L-R) = +0.2. We expect 
a weak L choice bias. 
-        Blue coin : (the expected value of L branch) 0.5x0.7 + 1x0.3 = 0.65. (the expected value of 
R branch) 0x0.7 + 1x0.3 = 0.3. Therefore expected value difference (L-R) = +0.35. We expect L 
choice bias. 
 
Therefore, if subjects performed the task using model-based control, they would exhibit a slight 
left bias pattern: weak R bias, weak L bias, and L bias for each goal, respectively. 
 
The below figure illustrates these two cases. 
 



 
 
(ii) Behavioral results 
 
We found that the above-mentioned prediction about the choice bias matches subjects’ actual 
choice bias (the left of the below figure). In particular, the data shows a clear left bias pattern, 
rejecting the null hypothesis that subjects used a pure model-free control strategy. This bias 
also affects choice consistency (the right of the below figure).  
 

 
 
(iii) Model prediction 
 
Furthermore, this choice bias and the corresponding choice consistency patterns are well 
predicted by the model (see below).  

 
 
The following value difference pattern of the model further supports this finding, suggesting that 
these behavioral patterns are originated from the value learning. 



 
 
Taken together, these results clearly indicate that subjects’ choices are guided by reward-based 
learning, and further that their learning processes are guided by model-based control. We have 
added to the supplement, new figures that present these results (see Supplementary Figure S2 
and Supplementary Methods). 
 
 

 



Figure S2. (A) Predicted choice bias patterns of model-free (MF) and model-based (MB) control, 
calculated for the three goal conditions defined as the trials according to which coin has the maximum 
monetary outcome value (low, medium, and high token value for the L choice). Owing to the 
asymmetric association between outcome states and coin types (For full details, see Supplementary 
Methods – Choice bias), participants would exhibit distinct choice bias patterns for each goal 
condition that distinguishes model-based from model-free control; the MF control agent would exhibit 
a balanced choice bias pattern, whereas the MB control agent would show a slight left bias pattern. 
For full details of this measure, refer to Supplementary Methods - Behavioral measure. (B) 
Participants’ choice bias and choice consistency, the conventional behavioral markers indicating 
reward-based learning. Error bars are SEM across subjects. The prediction about the choice bias 
matches subjects’ actual choice bias (the left of the below figure). In particular, the data shows a clear 
left bias pattern, rejecting the null hypothesis that subjects used a pure model-free control strategy. 
This bias is also reflected in choice consistency (the right plot). These results also indicate that 
participants’ choice behavior is guided by reward-based learning more generally. (C) Choice bias 
(left), choice consistency (middle), and the average value difference (right) of our computational 
model of arbitration control (Figure 4B). For this, we ran a deterministic simulation in which our 
computational model experiences exactly the same episode of events as each individual subject, and 
we generated the trial-by-trial outputs. The max goal conditions are defined in the same way as in the 
Figure 2A. Error bars are SEM across subjects. Note that both the choice bias and choice 
consistency patterns of the model (the left and the middle plot) are fully consistent with the behavioral 
results (B). Second, the values difference (right – left choice) of the model is also consistent with this 
finding (the right plot), suggesting that these behavioral patterns are originated from value learning. In 
summary, our computational model encapsulates the essence of subjects’ choice behavior as guided 
by reward-based learning. 

 
“Behavioral measure (choice bias). In our task design, a left/right choice bias in the first stage can 
be interpreted as a behavioral marker indicating reward-based learning. 
Our task design involves delicate manipulation of the goal. Note that the association between goal 
types and coin colors were randomized for each subject, and here we show one particular example 
(see the above figure). Let’s define the R branch as the bottom left routes (accessible by making the 
R choice in the first stage) and the L branch as the top right routes (accessible by making the L 
choice in the first stage), respectively. The agent is not informed about task complexity until the 
second stage, so in the first stage a rational agent would make the following assumptions: in the first 
stage, outcome states associated with a silver coin are accessible by making a primary choice in both 
branches. An outcome state associated with a red coin are accessible by making a primary and a 
secondary choice in the R and L branch, respectively. An outcome state associated with a blue coin 
are accessible by making a secondary choice in both the R and the L branch. 
Accommodating this situation, we can roughly calculate the expected value of the L/R choice of the 
optimal agent (the same agent used to compute choice optimality) for the first stage. The probability 
of transitioning to a desired outcome state by making a primary and a secondary choice is given by 
(0.7, 0.3), which is computed by taking average of the two state-transition probability values: (0.9, 0.1) 
and (0.5, 0.5). Note that this setting is used to simulate average experimental conditions. For the sake 
of simplicity, reward values were normalized to 1 (for the goal coin), 0.5 (for the other coins), and 0 
(unrewarded). 
If we assume that an agent relies on model-free control and that the agent makes a greedy choice, 
we can compute the expected values and the corresponding choice biases by using the uniform 
state-transition probability distribution (0.5,0.5) (meaning that the agent is agnostic about state-
transition uncertainty and thus cannot afford to accommodate state-transition probability value 
changes) as follows. Note that the low, medium, and high value coin corresponds to silver, red, and 
blue coins in Figure 1 and Figure S1; again, the coin colors are randomized for each subject. 
- Silver coin : (the expected value of L branch) 1x0.5 + 0x0.5 = 0.5. (the expected value of R branch) 
1x0.5 + 0.5x0.5 = 0.75. The expected value difference (L-R) = -0.25. We expect a R choice bias. 



- Red coin : (the expected value of L branch) 1x0.5 + 0.5x0.5 = 0.75. (the expected value of R 
branch) 0.5x0.5 + 1x0.5 = 0.75. Therefore expected value difference (L-R) = 0. We expect no L 
choice bias. 
- Blue coin : (the expected value of L branch) 0.5x0.5 + 1x0.5 = 0.75. (the expected value of R 
branch) 0x0.5 + 1x0.5 = 0.5. Therefore expected value difference (L-R) = +0.25. We expect L choice 
bias. 
Therefore, if subjects performed the task using pure model-free control, they would show a well-
balanced choice bias pattern: R bias, zero bias, and L bias for each goal, respectively. 
On the other hand, if we assume that an agent relies on model-based control, we can compute the 
expected values and the corresponding choice biases, this time by using the average state-transition 
probability set (0.7,0.3) (meaning that the agent actively accommodates state-transition probability 
value changes between (0,9,0.1) and (0.5,0.5)) as follows. 
- Silver coin : (the expected value of L branch) 1x0.7 + 0x0.3 = 0.7. (the expected value of R branch) 
1x0.7 + 0.5x0.3 = 0.85. The expected value difference (L-R) = -0.15. We expect a weak R choice 
bias. 
- Red coin : (the expected value of L branch) 1x0.7 + 0.5x0.3 = 0.85. (the expected value of R 
branch) 0.5x0.7 + 1x0.3 = 0.65. Therefore expected value difference (L-R) = +0.2. We expect a weak 
L choice bias. 
- Blue coin : (the expected value of L branch) 0.5x0.7 + 1x0.3 = 0.65. (the expected value of R 
branch) 0x0.7 + 1x0.3 = 0.3. Therefore expected value difference (L-R) = +0.35. We expect L choice 
bias. 
Therefore, if subjects performed the task using model-based control, they would exhibit a slight left 
bias pattern: weak R bias, weak L bias, and L bias for each goal, respectively.” 

 
 
- Having established clear behavioural readouts of each controller (e.g. in logistic regression 
model on choice repetition), one can test straightforward the influence of uncertainty and 
complexity on these.  
 
>> Reply 2-(3). 
 
Since we have established a clear behavioral measure to read out model-based/model-free 
control (choice optimality; reply 2-(1)), we have tested the influence of the two experimental 
variables (uncertainty and complexity) on the choice optimality. 
 
(i) Influence of uncertainty and complexity on choice optimality 
 
For this, we ran a GLM analysis with the choice optimality being included as a dependent 
variable, and uncertainty, complexity, reward values, choices in the previous trial, and goal 
values as independent variables. The figure shown below is the beta estimates of the GLM 
analysis. We found that both uncertainty and complexity significantly affected to choice 
optimality (t-test p<0.001); influence of the other three variables on choice optimality were not 
significant. 
 



 
 

Note that this is fully consistent with our behavioral results (below). 
 

 
 
(ii) Uncertainty and complexity effect on choice optimality are explained by the model 
 
Notably, when having the best fitting model perform the task, we found that the model exhibits 
choice optimality patterns similar to subjects. 



 
 

To further compare the degree of influence of uncertainty and complexity on choice optimality in 
subjects’ behavior with model’s prediction, we ran the same type of the GLM analysis as in (i) 
on model’s behavioral data, and compared this effect with the effect on actual subjects’ 
behavioral data. The model’s behavioral data was generated by having our model perform the 
task, the same task previously used to collect each individual subject’s behavioral data. 
 
We found a significant correlation between the effect sizes of these two cases (see the figure 
below; it is included as Figure 5C and 5D in the revised version of our manuscript), suggesting 
that our model encapsulates the essence of behavior guided by model-based control.  
 

 
 

Note that our model, which incorporates both uncertainty and complexity, accounts for this 
effect significantly better than alternative models including a pure model-free version, a pure 
model-based version, and the Lee2014 model that incorporates only the effects of uncertainty 
on arbitration (see below; Supplementary Figure S6B and S6C in the revised version of our 
manuscript). 
 



 
 
These results clearly suggest that our model encapsulates the essence of subjects’ choice 
behavior associated with uncertainty and complexity significantly better than the alternative 
model that does not accommodate complexity. 
 
In summary, we have shown in Section (i) that manipulation of the two task variables 
successfully influences the dimension of choice behavior that can read out model-based/model-
free control, and in Section (ii) that the behavioral patterns associated with this effect is well 
encapsulated by the model. 
 
As a result, the figures produced in our reply 2-(2) and 2-(3) are included in Figure 2 and Figure 
5 of the revised version of the manuscript respectively (reproduced below).  
 



  
Figure 2. Behavioral results. (A) Choice optimality (a proxy for assessing the degree of agents’ 
engagement in model-based control), of a model-based and model-free reinforcement learning agent. 
Choice optimality depicts the degree of match between agents’ actual choices and an ideal agent’s 
choice corrected for the number of available options. For full details of this measure, refer to 
Experimental Procedures. (B) Difference in choice optimality between a model-based and model-free 
reinforcement learning agent for the four experimental conditions (low/high state-transition uncertainty 
x low/high task complexity). Shown in red boxes are the effect of the two experimental variables on 
each measure (2-way repeated measures ANOVA). (C) Participants’ choice optimality for the four 
experimental conditions. Shown in red boxes are the effect of the two experimental variables on each 
measure (2-way repeated measures ANOVA; also see Table S3 for full details). (D) Results of a 
general linear model analysis (dependent variable: choice optimality, independent variables: 
uncertainty, complexity, reward values, choices in the previous trial, and goal values). Uncertainty 
and complexity, the two key experimental variables in our task, significantly influence choice 
optimality (t-test; p<0.001). Error bars are SEM across subjects. 

  



 
Figure 5. Computational model fitting results. (A) Patterns of choice optimality generated by the 
best fitting version of the arbitration model, using parameters obtained from fitting to participants 
behavior. For this, the model was run on the task (1000 times), and we computed choice optimality 
measures in the same way as in Fig. 2B and 2C. (B) Degree of engagement of model-based control 
predicted by the computational model, based on the model fits to individual participants. PMB 
corresponds to the weights allocated to the MB strategy. Shown in the red box are the effect of the 
two experimental variables on each measure (2-way repeated measures ANOVA; also see Table S4 
for full details). Error bars are SEM across subjects. (C, D) Behavioral effect recovery analysis. The 
individual effect sizes of uncertainty (C) and complexity (D) on choice optimality of subjects (true data) 
were compared with those of our computational model (simulated data). 

 
 
- Subsequently, making very clear, which parameter(s) in their model(s) influence(s) what kind 
of behaviour (and how) seems necessary and it should be straightforward to be demonstrated in 
simulations. 
 
>> Reply 2-(4). 
 
To establish a link between model parameters and behavior patterns, we ran a parameter 
recovery analysis.  
 



The parameter recovery analysis evaluates the degree of consistency between data-to-model 
parameter and model parameter-to-data conversion. It consists of the following sequence of 
processes: Subjects’ data → model fitting 1 (original parameters) → simulated data → model 
fitting 2 (recovered parameters). The simulated data were generated by running simulations with 
the best fitting model on the original task. 
 
If the model parameter(s) successfully encoded the key features of behavior, then the 
corresponding parameters should be well recovered. In other words, the original and the 
recovered parameter values are significantly correlated. If the model’s predictions are based on 
less important dimensions of behavior (e.g., overfitting), then the principal dimensions of the 
simulated data would likely diverge from those of the original subjects’ data, leading to 
unsuccessful recovery of parameter values.  
 
Here we show that the four key parameters of the model (the sensitivity of reward and state 
prediction error, learning rates for model-based and model-free control, exploration sensitivity) 
are necessary for accounting for subjects’ behavior patterns. We found significant correlations 
between the original and the recovered parameter values (see the figure below), highlighting the 
necessity of the key parameters of the model, as well as helping to rule out a substantive effect 
of overfitting. 
 

 
 
This result has been included in Supplementary Information (Figure S5), and the discussion has 
been added to the main text (see below). 
 

“The best fitting model we identified in the previous section encapsulates the extent to which 
participants’ choice behavior is guided by reward-based learning more generally (Figure S2). Note 
that this measure also allows us to distinguish model-based control from model-free control (Figure 
S2A), and we found evidence in subjects’ data to fully dismiss the possibility that subjects use a pure 
model-free control strategy (Figure S2B). In addition, we ran a parameter recovery analysis to further 
establish a link between choice behavior and the computations underlying arbitration control, and 
found that the model’s key parameters were successfully recovered from the behavior of the best 
fitting model (Parameter recovery analysis; Figure S5).” 

 
 

- The “high uncertainty condition” with 50/50 transitions remains conceptually unclear to me. 
While it is obvious that this induces high levels of uncertainty and reduces model-based control, 



the authors mention themselves that this results in a random transition, thus, rendering any kind 
of model-based control meaningless because there is essentially no structure to be detected. I 
can see why this is under certain circumstances an interesting condition to be included but think 
that for demonstrating their argument using an additional shift from 90/10 to 70/30 or 60/40 
would have been more informative because model-based behaviour (if distinctly detectable with 
this task at all) would still have been possible  
 
>> Reply 2-(5). 
 
Thanks for sharing valuable insights with us. The reviewer is correct in that in a 50/50 transition 
condition model-based control is nullified in the long run, provided that the model-based learner 
fully learned this state-transition probability values. With an ideal learner capable of precisely 
and quickly tracking state-transition probability changes, it would be good to switch between 
90/10 (low uncertainty) and 70/30 (medium uncertainty). However, from our previous study (Lee 
et al., 2014) and following simulation analyses, we learned that switching between 90/10 (low 
uncertainty) and 50/50 (high uncertainty) is a better way to maximize variability in the amount of 
SPE. This condition is thus intended to elicit a large amount of SPE. 
 
We agree that this point should be made clear to preclude any misunderstanding, so we have 
elaborated this point in both the main text and the Experimental Procedures section. 
 
“Note that our high uncertainty condition is intended to maximize variability in the amount of SPE, as 
opposed to making participants perfectly learn the state-transition probabilities (0.5, 0.5). In fact, it would 
be more challenging to test for effects on behavior of other more moderate uncertainty conditions, such 
as (0.7, 0.3) or (0.6, 0.4), within relatively short blocks of trials.” 
 
“... it was previously shown that with (0.9,0.1) participants feel that the state transition is congruent with 
the choice, whereas with (0.5,0.5) the state transition is random (Lee et al., 2014). Furthermore, the 
changes at these rates ensures that tonically varying changes in model-based vs model-free control can 
be detected at experimental frequencies appropriate for fMRI data. ” 
  
 
- The way how the exact number (or range) of trials per block and per condition was determined 
cannot be clearly followed from the manuscript. Please specify in a way that other researcher 
could reproduce the task based on the manuscript  
 
>> Reply 2-(6). Thank you for the suggestion. We have supplemented the Experimental 
Procedures section, which provides full details for task implementation including trial ranges per 
blocks/conditions. In addition, we have make the stimulus program (based on a MATLAB 
psychtoolbox) available to download through our GitHub link (refer to Data and Software 
Availability section), so that other researcher can easily reproduce and revise our task.  
 
 
If the authors can show clear distinct behavioural readouts for model-free and model-based 
control in this task (or could present a stringent and thus convincing argument why they feel this 



is not necessary), they still need to demonstrate whether their inferred parameters can actually 
recover the key behavioural features of their task. This is essentially necessary. 
 
>> Reply 2-(7). This has been fully resolved in addressing the reviewer’s previous comment. 
Please refer to the reply 2-(4). 

 

 
Please also include the per-subject negative log-likelihood to the supplemental table showing 
model parameters and please use histograms or a table with percentiles to show distribution of 
parameters and the likelihood (and there measure of model evidence). Although it is very much 
appreciated that the authors share behavioural data and code, there is no word on how they 
infer parameters from the behavioural data and how they approximate or estimate the log model 
evidence, which they have to enter in the RFX BMS.  
 
>> Reply 2-(8). We have updated Supplementary Table S1 showing all the parameter values 
and likelihood values for each subject, and added a histogram plot (Figure S3) to show the 
parameter distribution. We also have updated the Experimental procedures section as 
requested by the reviewer.  
Likelihood value was calculated by using the model’s softmax function of the action taken by 
each subject. Free parameters were optimized to minimize the sum of negative log likelihood 
using a Nelder-Mead simplex algorithm. For more details, please refer to the supplementary 
document of Lee et al. (Neuron, 2014). The section "Parameter Estimation" in supplementary 
methods provides all the details for inferring parameters.  
 
As mentioned before, the fMRI results could be very interesting but I refrain to comment on 
them because all fMRI analyses crucially rest upon regressors extracted from the model.  
I hope the authors can find these comments helpful as they are not meant to devalue their work. 
However, I feel it is necessary to present clear behavioural readouts when talking about model-
free and model-based control and their arbitration. I believe the authors might agree on this 
perspective. Distinct behavioural readouts have already been challenging to understand in their 
previous paper from 2014.  
 
>> Reply 2-(9). Again, we greatly appreciate the reviewer’s insightful comments. As shown in 
our replies above, we have fully addressed all the issues, including behavioral readouts, its 
relationships to model-based and model-free control, and additional validations using the 
parameter recovery analysis. We thus believe that they truly justify our neural analysis. 
 
 



Reviewer #3 (Remarks to the Author): 
 
Kim et al. present a study that builds on previous work from Lee and O’Doherty investigating the 
arbitration between putative model-free and model-based controllers. In this study they 
additionally modulate the “complexity” of the task, by manipulating the number of choice options 
(low: 2 vs high: 4) at the second choice stage of the task. This leads to a 2x2 factorial design in 
which state uncertainty (low: 0.5/0.5 vs high: 0.9/0.1) is crossed with complexity. Behaviorally 
they show that somewhat counterintuitively, increased complexity (defined in this way) leads to 
more model-based control, whereas increased uncertainty leads to more model-free control, as 
expected. Furthermore, they show that there is a logical interaction which shows that with 
greater uncertainty the effect of complexity is attenuated, unsurprisingly. This is an interesting 
pattern of behavioral patterns that adds to the field’s understanding of these putative control 
systems. In their fMRI results, they first nicely replicate their previous work showing reliability 
effects in bilateral ilPFC and integrated value signals (which in effect reflect a comparison 
between model-based and model-free controllers) in vmPFC. They then show that a) their new 
model that incorporates task complexity better accounts for the BOLD signals in these areas; 
and b) there is an interaction with task complexity, although I do have a query about its 
interpretation. Overall, this is an impressive, rigorous study that advances our understanding of 
the conditions under which model-based versus model-free systems win out to control behavior, 
a topic likely to be of interest to a broad audience.  
 
More details of the task could be provided and I have a few questions about the task/model:  
 
How often does the task transition between high and low states of uncertainty? Do the 
interaction effects depend on whether this has just happened or many trials earlier (in particular 
for the transition from high to low uncertainty)? 
 
>> Reply 3-(1).  
 
The transitions between the low and the high uncertainty block takes place about every 15 trials 
(13-17 trials). Note that the length of trials is determined to ensure that the estimation process of 
the state-transition probability of the model-based learner does not break down. 
 
To answer the reviewer’s question, we examined the interaction effects on choice behavior 
(choice optimality) and model preference (probability of choosing model-based control) in the 
first and the last half of each block, respectively. Despite insufficient sample sizes leading to a 
low statistical power, the interaction effects appear to exist in both cases (see below results). 
The effect seems to be a bit stronger for the late half of the blocks (F score = 6.64 (early) and 
19.73 (late) for choice optimality; F score = 3.08 (early) and 3.98 (late) for model preference), 
suggesting a possibility that the interaction effects arises some time after the condition changes. 
This makes perfect sense because the uncertainty change is recognizable only through a 
change in the average amount of state prediction error. 
 



 
Figure. Effect of the uncertainty and complexity (experimental conditions) on choice optimality, computed 
by using the 1st-50th percentile of trials in each block 
 

 
Figure. Effect of the uncertainty and complexity (experimental conditions) on choice optimality, computed 
by using the 51th-100th percentile of trials in each block 
 

 
Figure. Effect of the uncertainty and complexity (experimental conditions) on model preference, computed 
by using the 1st-50th percentile of trials in each block 
 



 
Figure. Effect of the uncertainty and complexity (experimental conditions) on model preference, computed 
by using the 51st-100th percentile of trials in each block 
 
We were not able to specifically assess the effect for the transition from high to low uncertainty 
due to the lack of a sufficient number of trials for this particular comparison. Testing for this 
would require a modification of our task to provide a clear contrast between low-to-high vs high-
to-low uncertainty transitions, which is an experimental manipulation that we must leave for 
future studies. 
 
 
How is the goal change regressor defined?  
 
>> Reply 3-(2). We use a max rule to define a goal, that is, on each trial the goal is set to the 
token associated with the highest value. The goal change regressor has the value 1 if the goal 
of the current trial is different from that of the previous trial. For example,  
 
- Token values (silver, red, blue) : (7,3,5), (2,9,5), and (3,7,3) in trial 1,2,3, respectively. 
- Goal : silver, red, and red in trial 1,2,3, respectively. 
- Goal change regressor : 0,1,0 in trial 1,2,3, respectively. 
 
Clarification is provided in Supplementary Methods - GLM design. 
“GLM design. A general linear model (GLM) was used to generate voxelwise statistical parametric maps 
(SPMs) from the fMRI data. We created subject-specific design matrices containing the following 
regressors: 
(R1) regressors encoding the average BOLD response at two choice states and one outcome 
states, (R2,R3) two parametric regressors encoding the model-derived prediction error signals – state 
prediction error (SPE) of MB and reward prediction error (RPE) of MF, (R4) a regressor encoding the 
average BOLD response at the start of each choice state (the time of presentation of the values of each 
token in the first stage and the time of the state presentation in the second stage), (R5) a parametric 
regressor encoding the goal change; it is a binary variable indicating whether the type of a coin 
associated with the largest value is different from the one in the previous trial.... (the rest is omitted)” 
 
 
 
 



I could not work it out but does not task complexity influence the computation of reliability in the 
model, since higher number of choice options should increase the entropy of the choice? Is this 
relation already taken into consideration in the computation of reliability in the model?  
 
>> Reply 3-(3). The reliability computation itself does not take into account choice entropy in 
our computational model. Our model is designed in a way that separately computes reliability 
based on prediction error and task complexity based on the number of choices (choice entropy), 
and then these two signals are mixed to arbitrate between model-based and model-free control 
(please refer to Figure 3 for the model structure and Figure 8 for the neural effect). That being 
said, we cannot rule out the possibility that choice entropy influences the sensitivity prediction 
error, which should be left for further study. 
 
 
Figure 7 suggests that the ilPFC effect goes in the opposite direction of the behavioral results. 
When complexity is higher, the MB reliability signal is lower, and vice versa? How should we 
conceptualize this interaction then?  
 
>> Reply 3-(4).  
 
Figure 7 (that became Figure 8 in the revised version), shows that changes in the correlation 
between activity in vlPFC and reliability occur as a function of changes in complexity for both 
MB and MF reliability signals. According to the arbitration theory, choice behavior is determined 
through an interaction between MB and MF reliability and complexity. Given the complex nature 
of this three-way interaction, it is hard to conceptualize the interaction as it is plotted. It is also 
important to take into account, that an additional factor that we think would be important for 
understanding the pattern of vlPFC activity,  is that according to our hypothesis about vlPFC’s 
role in arbitration, we suspect that this region is acting to inhibit MF signals elsewhere, when MB 
control is required. Thus, on top of the reliability and complexity signals, we may expect to see 
changes in vlPFC activity that reflects the act of exerting inhibitory control on the MF system 
when MB control is required. Thus, the expected behavior of the signals in this region is very 
complicated indeed and may not lend itself to a straightforward interpretation. We think that 
what is really needed is a more mechanistic or implementational level model of vlPFC function 
in order to make clearer theoretical predictions of what this region is doing in arbitration. The 
model we have now is essentially an algorithmic or process level model -- it doesn’t say much 
about how these processes are actually likely to be implemented in the brain during the 
arbitration process. Developing such an implementational level model is beyond the scope of 
the current manuscript, and honestly, may be beyond our reach for some time until we have 
much better characterized and measured the neuronal dynamics in vlPFC, likely with more 
refined methods than fMRI (such as single-unit electrophysiology). For now, we think that the 
best we can say is that there is an interaction between these variables in this region which is 
consistent with each of these variables being utilized in the arbitration process. Given these 
issues, we prefer to leave this as a limitation of this study, specifically by pointing out that a 
further study needs to use techniques with a better resolution to understand the nature of this 
computation.  
 



Behaviorally the results show that somewhat counterintuitively, increased complexity leads to 
more model-based control. This suggests that having to plan more carefully, or to consider more 
options, actually makes people more model-based. A suggestion I hope will be helpful: it would 
be interesting to explore at what point this breaks down due to over-taxed cognitive demands.  
 
>> Reply 3-(5). 
Indeed, this is an important question. As we have shown in the manuscript, our results do at 
least to some degree shed light on this question, because we have shown that when state-
space uncertainty is high AND complexity is high, indeed participants become LESS model-
based and more model-free, suggesting that increased recruitment of model-based based on 
increased task demands does eventually break down (as was our original hypothesis). We 
agree that it will be important to further investigate this phenomenon in future studies to 
investigate more comprehensively the conditions under which increased MB control breaks 
down (such that participants essentially give up). We also suspect that individual differences 
such as IQ and WM capacity are going to play a key moderating role in this process.  
 
We have added the following discussion point on this topic to the paper: 
 
“Another way of interpreting these findings is that when task demands increase but yet the MB system is 
capable of meeting those challenges, then MB control can and does step up to meet the challenge, but if 
task demands get too difficult, potentially beyond the capacity of the MB system,  then MF control takes 
over by default. It is likely that individual differences in executive function such as working memory 
capacity will moderate this effect across participants, as has been shown in the case of other challenges 
to MB control such as stress induction (Otto et al., 2013;  Quaedflieg et al 2019).” 

 
 
 
We greatly appreciate the reviewer’s very insightful and constructive comments, which 
have made it possible for us to significantly improve our paper. 



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have adequately addressed my concerns about computational cost, clarifying new vs. 
replicated findings and Bayesian model selection. 
 
As it stands, I still have major concerns about the conclusions that can be drawn from the findings. 
The entire manuscript hinges on choice optimality, which is an independent behavioral measure 
quantifying how well the subject’s matches that of an ideal MB agent. Indeed, all neural signatures 
of interest to the authors relate to choice optimality, not choice behavior. Yet, at no point are we 
given a complete description of choice behavior used to the generate choice optimality measure. 
 
The authors now include some basic, descriptive data about the subject’s performance in the task. 
Figure S2B shows data for L/R choice in stage 1 as well as a measure of choice consistency in 
stage 2. However, the behavioral data shown in Figure S2B are collapsed across all conditions of 
complexity and uncertainty. The authors argue this is valid for the stage 1 decision because 
complexity is not introduced until stage 2. But rather than speculate or make assumptions, 
behavior could be quantified. This begins to give us an idea of the pattern of choice indicative of 
MB control, and therefore choice optimality, but this is only a start. 
 
A full analysis must include descriptions of subject choice (number, percentage, and latency) at 
each stage for each of the four conditions. For example, when choice optimality is high vs low, 
what does choice behavior look like in the four separate conditions? Is it identical? Independent of 
choice optimality, how do uncertainty and complexity affect reaction time and choice behavior in 
each of the four conditions? 
Further, what is the relationship between the observed neural signatures of arbitration and the 
subject’s actual choice behavior? This is not trivial. Throughout the discussion, the authors link 
neural processes of arbitration to behavior. 
 
These are just excerpts from first paragraph: 
“These behavioral findings were supported by evidence that a region of the brain previously 
implicated in the arbitration process…” 
 
“Taken together, these findings help to advance our understanding of the contribution of two key 
variables to the arbitration process at behavioral and neural levels.” 
 
Yet, the authors have only actually linked neural signatures to choice optimality, which asks if the 
choice behavior pattern matches that of the ideal MB agent. MB and MF strategies are ultimately 
just constructs that allow us to explain patterns of choice behavior. Linking neural signatures of 
arbitration to actual choice behavior is key to the goals of this study. As it stands, this link has not 
conclusively been made. 
 
 
Reviewer #2 (Remarks to the Author): 
 
Overall, the authors performed a thorough revision and were responsive to the critique raised. I do 
have a few rather minor comments. 
 
Re Reply 2-(1), (i) Remarks on choice repetition: At the end of their answer the authors conclude 
‘Thus in our study, the application of the choice consistency measure is confined to a simple 
readout of reward-based value learning guided by model-free control’. This is actually what I asked 
for (‘which could constitute a measure of model-free control’). I do see why measures of choice 
repetition / consistency are not well applicable for model-based control and also do not to indicate 
the arbitration between MF and MB. Thus, I do appreciate the authors’ presentation of choice 



optimality. The reports of choice optimality are overall convincing for indicating the superiority of 
model-based control in this particular environment and the effect of the manipulations that do 
affect on arbitration. However, it does not provide a distinct behavioural readout because it 
assumes that one strategy is simply more optimal than the other which substantially relies upon 
how the environment is designed. You could also design a task the way that MF would be more 
optimal. However, for some measure of model-free control, I think it is possible to demonstrate it 
as outlined before (and the authors actually do that in the supplement). Also by using simulations 
of a model-free learner only, it should be possible to demonstrate this even clearer (once again 
this seems to be done in the supplement now). I think the supplemental analysis presented in S-
Figure 2 is quite interesting and should be moved to the main manuscript (choice bias and choice 
consistency). I find it an important demonstration of the behaviour going on in this task. To be 
enable to incorporate this, the choice optimality section could be shortened a bit or parts be 
moved to the supplement (it is a bit lengthy at some point). 
 
Behavior and parameter recovery make an important contribution. I value them much more than 
the large scale model comparison. 
 
For the fMRI analysis, I think some more specification of the GLM needs to go to the main 
manuscript. 
 
“Finally, we implemented a second-level random effects analysis for each regressor of interest…” 
what does that mean exactly? Where they all included in one second-level random effects model or 
each in a separate? Please specify and explain the reasoning. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have comprehensively addressed my comments and I have no further concerns. I 
would like to commend them on a very nice paper. 



Reviewers' comments: 

 

We thank the reviewers for their comments. Below we detail our response to the reviewer comments. 

Please also note one other change to the figures was made in the course of this revision. In the original 
Figure 2D and Figure S6A, the error bars had depicted the standard deviation instead of the standard error 
of the mean (SEM). We now changed these plots to show the SEM, so as to use a consistent measure across 
all figures in the manuscript. 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have adequately addressed my concerns about computational cost, clarifying new vs. replicated 
findings and Bayesian model selection. 

As it stands, I still have major concerns about the conclusions that can be drawn from the findings. The entire 
manuscript hinges on choice optimality, which is an independent behavioral measure quantifying how well 
the subject’s matches that of an ideal MB agent. Indeed, all neural signatures of interest to the authors relate 
to choice optimality, not choice behavior. Yet, at no point are we given a complete description of choice 
behavior used to generate choice optimality measure.  

 

>> [Reply 1-1]  

We appreciate the reviewer’s insightful comments about the relationship between choice behavior and choice 
optimality. We believe that choice optimality is a sensible measure that can provide a model independent 
behavioral profile of model-based control on this particular task. We disagree with the reviewer that “the entire 
manuscript hinges on choice optimality”. Instead, choice optimality simply complements the model-driven 
analyses by providing a model independent measure of model-based behavior. That being said, we agree 
with the reviewer that a more detailed description of choice behavior potentially associated with the choice 
optimality would make our findings more convincing. 

1. Choice switching is contingent on goal change. 

To fully reflect the reviewer’s concern, we examined choice behavior in a situation in which subjects need to 
set a new goal. A goal change necessitates a change in strategy, and the degree to which people switch their 
strategy would relate to the extent to which they are engaging model-based control. Thus, we argue that 
choice switching associated with goal change is a possible basis for choice optimality. Indeed, it is sensitive 
to goal change (see the figure below). 

 

Figure. Subjects’ ratio of choice switching in the second stage following goal change vs no goal change. 
(paired t-test; left p = 1.2e-4). Note that this measure is valid for only the second stage because in the first 
stage, each of the choices are optimal in half of the trials (in the high uncertainty condition). The goal-stay 
condition refers to the trials in which the *same* token values are being used on trial t and trial t+1 or at least 



token values even if different that would promote the same optimal choice on the proceeding compared to 
the next trial. The goal-change condition refers to the situation where the change in token values from trial t 
to trial t+1 necessitates a *change* in choice behavior from trial t to t+1. 

 

2. Choice switching is sensitive to experimental conditions. 

To see if this choice behavior is affected by the experimental manipulation, we then examined the ratio of 
choice switching separately for each level of uncertainty and complexity. We found both a significant the main 
and interaction effect of uncertainty and complexity on choice switching (see the below figure and the result 
of two-way repeated measure ANOVA). The effect patterns are mostly consistent with the ones with choice 
optimality.  

 

 

Note however that the pattern of choice switching shown above does not completely align with choice 
optimality. This can be seen for the case of high uncertainty where choice switching frequency increases 
relative to the low uncertainty conditions, whereas a decrease in choice optimality occurs in high uncertainty 
relative to low uncertainty conditions. This difference can be explained by the fact that switching choice can 
lead to subsequent choice of a good option or a poor option. To do the task effectively, one needs to switch 
to a good option (not merely increase switching rate per se). In the high uncertainty conditions we found that 
switching to the objectively better choice is indeed significantly reduced in this condition, compared to the 
low uncertainty conditions (p<0.01; paired t-test). We also found that subjects’ earning ratio (= actual reward 
/ maximum possible reward in each trial) is significantly reduced in the high uncertainty conditions relative to 
the other conditions (p<0.001; paired t-test). Taken together these findings provide an explanation for the 
behavioral underpinnings of the choice optimality measure reported in Figure 3C (in the revised version of 
our manuscript). 

 

3. Link between choice switching and model-based control 

We further investigated whether goal-change driven choice switching behavior can be diagnostic of model-
based control. For this, we examined the ratio of choice switching is different as a function of the degree of 
model-based control (PMB : the probability of choosing model-based strategy). We found both a significant 
main and interaction effect of model-based control (PMB) and goal change on choice switching (see the 
below figure and the result of two-way repeated measure ANOVA).  



 

 

 

4. Link between choice switching and choice optimality measure 

Finally, in order to establish a direct link between choice switching and choice optimality, our behavioral 
measure indicating model-based control, we quantified the average correlation for each participant between 
choice optimality and the choice switching ratio. Specifically, we ran GLM analyses to compute an effect size 
for each individual subject, and found that all of the individual effect sizes are positive. (see below) 

      

We obtained the same result with the logistic regression analysis: 

 

In summary, we formally established a link between the experimental manipulations (goal changes, 



uncertainty, and complexity), subjects’ choice behavior (choice switching), subjects’ choice optimality, and 
subjects’ learning strategy (model-based control). 

These results have been included in the supplementary information (Figure S2) and discussions have been 
added to the main text (see below). 

 

 

Figure S2. Choice switching. (A) Choice switching is contingent on goal change. We examined choice behavior in 
a situation in which subjects need to set a new goal. A goal change necessitates a change in strategy, the degree 
to which people switch their strategy would relate to the extent to which they are engaging model-based control. 
Shown are subjects’ ratio of choice switching in the second stage following goal change vs no goal change. (paired 
t-test; left p = 1.2e-4). Note that this measure is valid for only the second stage because in the first stage, each of 
the choices are optimal in half of the trials (in the high uncertainty condition). The goal-stay condition refers to the 
trials in which the *same* token values are being used on trial t and trial t+1 or at least token values even if different 
that would promote the same optimal choice on the proceeding compared to the next trial. The goal-change 
condition refers to the situation where the change in token values from trial t to trial t+1 necessitates a *change* in 
choice behavior from trial t to t+1. (B) Choice switching is sensitive to experimental conditions. To see if this choice 
behavior is affected by the experimental manipulation, we then examined the ratio of choice switching separately 
for each level of uncertainty and complexity. We found both a significant  main and interaction effect of uncertainty 
and complexity on choice switching (two-way repeated measure ANOVA; p<0.001 for both main and interaction 
effects). The effect patterns are mostly consistent with that for choice optimality. Note however that the pattern of 
choice switching shown above does not completely align with choice optimality. This can be seen for the case of 
high uncertainty where choice switching frequency increases relative to the low uncertainty conditions, whereas a 
decrease in choice optimality occurs in high uncertainty relative to low uncertainty conditions. This difference can 
be explained by the fact that switching choice can lead to subsequent choice of a good option or a poor option. To 
do the task effectively, one needs to switch to a good option (not merely increase switching rate per se). In the high 
uncertainty conditions we found that switching to the objectively better choice is indeed significantly reduced in this 
condition, compared to the low uncertainty conditions (p<0.01; paired t-test). We also found that subjects’ earning 
ratio (= actual reward / maximum possible reward in each trial) is significantly reduced in the high uncertainty 
conditions relative to the other conditions (p<0.001; paired t-test). Taken together these findings provide an 
explanation for the behavioral underpinnings of the choice optimality measure reported in Figure 3C. (C) Link 
between choice switching and model-based control. We further investigated whether choice switching behavior can 
be diagnostic of model-based control. For this, we examined the ratio of choice switching is different as a function 
of the degree of model-based control (PMB : the probability of choosing model-based strategy). We found both a 
significant main and interaction effect of model-based control (PMB) and goal change on choice switching (two-
way repeated measure ANOVA; p<0.001 for the main effects and p=0.001 for the interaction effect). (D) Link 
between choice switching and choice optimality. Finally, in order to establish the relationship between choice 
switching and choice optimality, our behavioral measure indicating model-based control, we quantified the average 
correlation for each participant between choice optimality and the choice switching ratio. Specifically, we ran GLM 
analyses to compute an effect size for each individual subject, and found that all of the individual effect sizes are 
positive (mean effect size = 0.6; p=1.1e-16). We obtained the same result with the logistic regression analysis 
(mean effect size = 0.57; p=1.7e-8) Taken together, our findings help establish a link between the experimental 



manipulations (goal changes, uncertainty, and complexity), and the participants’ choice behavior (choice switching), 
choice optimality, and learning strategy (model-based control). All error bars are SEM across subjects. 

Main text:  

“Although choice optimality provides a model independent behavioral profile of model-based control on this 
particular task, an open question concerns what specific patterns of choice behavior produces high choice 
optimality. To shed light on this, we focused on choice behavior after a change in the token values has occurred 
that would necessitate a change in the goal compared to the previous trial. The degree to which people switch their 
strategy in response to the need to change goal should relate to the extent to which they are engaging model-
based control. Consistent with this possibility, we found that choice switching associated with goal change (in 
combination with also choosing a better alternative on the next trial) provides a good account of choice optimality 
(Figure S2). 

In summary, we formally established a link between the experimental manipulations (goal changes, uncertainty, 
and complexity), subjects’ choice behavior (choice switching), subjects’ choice optimality, and subjects’ learning 
strategy (model-based control).” 

 

5. Effects of task conditions on choice latency. 

We also found an interaction effect of the experimental conditions on reaction time (p=0.032). 

 

 

This result has been included in the appendix (Section 1). 

 

 



The authors now include some basic, descriptive data about the subject’s performance in the task. Figure 
S2B shows data for L/R choice in stage 1 as well as a measure of choice consistency in stage 2. However, 
the behavioral data shown in Figure S2B are collapsed across all conditions of complexity and uncertainty. 
The authors argue this is valid for the stage 1 decision because complexity is not introduced until stage 2. 
But rather than speculate or make assumptions, behavior could be quantified. This begins to give us an idea 
of the pattern of choice indicative of MB control, and therefore choice optimality, but this is only a start.  

 

>> [Reply 1-2] 

Although we have fully addressed the choice behavior issue in our reply 1-1, for the sake of full clarification, 
following the reviewer’s suggestion, we now report choice behaviors plotted for each trial in the decision tree 
across all conditions of complexity and uncertainty. 

However, we do not think that showing disaggregated behavioral data at various stages of the task are 
especially informative. We are of course happy to include a file containing these plots as an appendix to the 
manuscript (indeed we have already included the full trial-by-trial raw behavioral data for consideration by 
reviewers and this data will be made available to all readers when the manuscript is published). However, 
simply plotting these effects are in our opinion not informative because they are not diagnostic of the 
difference between model-based and model-free control, which is the whole point of the manuscript. Given 
that we have a theoretically justified rationale for how model-based and model-free agents should behave, 
the behavioral analyses that we report should be motivated by our theoretical predictions. Simply plotting raw 
behavior as a function of various stages of task performance doesn’t by itself show anything unless one is 
specifically looking for the unique signatures of model-based and model-free behavior. For this one needs to 
look at certain trials and specific instances where the two algorithms are predicted to generate different 
behaviors. This is what we are doing in the analyses we report above -- carefully curating and plotting 
comparisons between trials for which there are theoretically predicted differences in the behavior of the 
controllers. The plots requested do not follow these principles, and are thus in our opinion confusing rather 
than useful for readers. Nevertheless, we are happy to include the appendix as an additional file to be 
published alongside the manuscript at the editor and reviewer’s discretion. 

Below we reproduce all the requested plots below for the reviewer’s information. We also include the 
Appendix in which each of these plots are reproduced. 

Choice behavior in stage 1 

- choice bias: There is a left choice bias because in the left branch, all the main choices (L1,R1) are 
associated with coins, whereas in the right branch, only one main choice (R1) is associated with a 
coin. This indicates that subjects made choices based on value learning. 

 

- choice consistency: We found a main effect of complexity on choice consistency. 



 

 

 

Choice behaviors in stage 2 

- Choice bias (left: state2, right, state3) : All the choice preference reflects value bias. Note that the 
choice bias is not a straightforward measure for quantifying the relationship between experimental 
conditions and behavior.   

 

- choice consistency: We found main effects of uncertainty and complexity. 

 



 

These results have been included in the appendix (Section 2). 

 

 

A full analysis must include descriptions of subject choice (number, percentage, and latency) at each stage 
for each of the four conditions. For example, when choice optimality is high vs low, what does choice behavior 
look like in the four separate conditions? Is it identical?  

 

>> [Reply 1-3]  

To fully accommodate what the reviewer requested, here we provide a full behavioral analysis including the 
number/percentage and the latency of choice for each of the four conditions and for the level of choice 
optimality (low vs high). Note that behavioral analyses as a function of choice optimality is valid for the second 
stage only due to the task design in which all choices in the first stage are optimal in a high uncertainty 
condition.  

1. Percentage of each choice 

Subjects exhibit different choice patterns in each of the four separate conditions and for high vs. low high 
choice optimality. Fully consistent with the results of the choice optimality analysis, the number of non-optimal 
choices increases in the high uncertainty conditions. 

- State 2 

 

- State 3 



 

2. Latency (reaction-time): We found that an interaction effect of experimental conditions on RT is stronger 
when choice optimality is high than when it’s low. 

- Shown below are RT across all the experimental conditions for the low vs. high choice optimality. 

 

 

In summary, the choice behavior (number/percentage and latency) reflects choice optimality. 

These results have been included in the appendix (Section 3). 

 



 

Independent of choice optimality, how do uncertainty and complexity affect reaction time and choice behavior 
in each of the four conditions?  

 

>> [Reply 1-4]  

1. Percentage of each choice: Subjects prefer choices that are not associated with zero-value outcome state 
(state 4 and 10). 

- State 1 

 

- State 2 

 

- State 3 

 

2. Latency (reaction-time): We found an interaction effect of the experimental conditions on RT for the second 
stage. 



 

 

 

 

 

 

In summary, despite the fact that these are very simple and noisy measures, we were still able to find effects 
of experimental conditions, albeit in some cases these effects do not reach statistical significance, likely 
because we are splitting the data in ways that were never intended given our experimental design, thereby 
substantially reducing our statistical power to detect meaningful effects. 

These results have been included in the appendix (Section 4). 

 

 



Further, what is the relationship between the observed neural signatures of arbitration and the subject’s actual 
choice behavior? This is not trivial. Throughout the discussion, the authors link neural processes of arbitration 
to behavior. These are just excerpts from first paragraph: These behavioral findings were supported by 

evidence that a region of the brain previously implicated in the arbitration process…", “Taken together, these 

findings help to advance our understanding of the contribution of two key variables to the arbitration process 
at behavioral and neural levels.” 

Yet, the authors have only actually linked neural signatures to choice optimality, which asks if the choice 
behavior pattern matches that of the ideal MB agent. MB and MF strategies are ultimately just constructs that 
allow us to explain patterns of choice behavior. Linking neural signatures of arbitration to actual choice 
behavior is key to the goals of this study. As it stands, this link has not conclusively been made. 

 

>> [Reply 1-5]  

We respectfully disagree with the reviewer on his/her assessment. We have a theoretical model that specifies 
how we theorize the arbitration process between model-based and model-free RL would function. This model 
suggests that the reliability of the two strategies which are estimated based on the prediction errors incurred 
in the two systems should drive the arbitration process, in combination with a consideration about the 
complexity (which is the new addition to the model beyond our original 2014 paper). We have linked our 
theoretical model of arbitration (which best explains behavior on the task), with the brain activity. Thus we 
have directly linked the model to both behavior and neural substrates. We are not sure what else the reviewer 
is envisaging with regard to his/her request to link neural signatures to actual choice behavior. This linking is 
done via the theoretical model that we have specified, and the formal model comparison conducted BOTH 
on the behavioral data and the neural data formalizes and provides direct evidence for this link.  

Given that we have used choice optimality as a non-model-based index of model-based control, we have 
also now conducted an additional analysis in which we show evidence for choice optimality in the ilPFC ROI 
that we also identified as showing the computational signatures of the arbitration process. Consistent with 
the relationship between our computational model predictions, computational regressors found to be 
correlated with activity in the brain, and the relationship between choice optimality and model-based 
predictions, here we show that choice optimality is also reflected in our ROIs.  Shown is a comparison 
between the trials in which choice optimality is high and low (the exact p-values for the contrast are shown 
above each plot). 

 

This result has been included in the supplementary information (Figure S8). 

 



 

Figure S8. Given that we have used choice optimality as a non-model-based index of model-based control (Figure 
3), we have also now conducted an additional analysis in which we show evidence for choice optimality in the 
ilPFC ROI that we also identified as showing the computational signatures of the arbitration process. Consistent 
with the relationship between our computational model predictions, computational regressors found to be 
correlated with activity in the brain, and the relationship between choice optimality and model-based predictions, 
here we show that choice optimality is also reflected in our ROIs.  Shown is a comparison between the trials in 
which choice optimality is high and low. This is consistent with the notion that when model-based control is 
increased, there is an increased activation in the vlPFC associated with an increased engagement of model-
based control, and a decreased engagement of model-free control (the exact p-values for the contrast are shown 
above each plot). Error bars are SEM across subjects. 



Reviewer #2 (Remarks to the Author): 

 

Overall, the authors performed a thorough revision and were responsive to the critique raised. I do have a 
few rather minor comments. 

Re Reply 2-(1), (i) Remarks on choice repetition: At the end of their answer the authors conclude ‘Thus in 
our study, the application of the choice consistency measure is confined to a simple readout of reward-based 
value learning guided by model-free control’. This is actually what I asked for (‘which could constitute a 
measure of model-free control’). I do see why measures of choice repetition / consistency are not well 
applicable for model-based control and also do not to indicate the arbitration between MF and MB. Thus, I 
do appreciate the authors’ presentation of choice optimality. The reports of choice optimality are overall 
convincing for indicating the superiority of model-based control in this particular environment and the effect 
of the manipulations that do affect on arbitration. However, it does not provide a distinct behavioural readout 
because it assumes that one strategy is simply more optimal than the other which substantially relies upon 
how the environment is designed. You could also design a task the way that MF would be more optimal. 
However, for some measure of model-free control, I think it is possible to demonstrate it as outlined before 
(and the authors actually do that in the supplement). Also by using simulations of a model-free learner only, 
it should be possible to demonstrate this even clearer (once again this seems to be done in the supplement 
now). I think the supplemental analysis presented in S-Figure 2 is quite interesting and should be moved to 
the main manuscript (choice bias and choice consistency).  

 

>> [Reply 2-1]  

We greatly appreciate the reviewer’s effort to lend valuable insight into our study. Yes, we agree that choice 
optimality is a good behavioral indicator of model-based control, albeit in the limited sense. 

As the reviewer pointed out, it would be very interesting to design a task that allows us to discover clearer 
readouts for model-based and model-free control, combined with the simulations of a pure model-free learner. 
We think that properly addressing this issue is critical and requires another set of 
experiments/analyses/simulations, so it would be better to leave it for a future study, rather than providing 
preliminary results as a supplement. 

To fully incorporate the reviewer’s suggestion, we have moved Figure S2 to the main manuscript. Figure S2A 
and 2B, behavior of subjects, have been moved to Figure 2A and 2B; Figure S2C, prediction of the 
computational model, has been moved to Figure 6A. 

 

 

I find it an important demonstration of the behaviour going on in this task. To be enable to incorporate this, 
the choice optimality section could be shortened a bit or parts be moved to the supplement (it is a bit lengthy 
at some point).  

 

>> [Reply 2-2] Thanks a lot for the good suggestion. We have shortened the choice optimality section in the 
revised version of our manuscript, moving details to the supplement. 

 

Main text: 

“Behavioral measure (choice optimality). Choice optimality measure quantifies the extent to which participants on a 
given trial took the objectively best choice had they complete access to the task state-space, and a perfect ability to 
plan actions in that state-space. It is based on the choice of the ideal agent assumed to have a full, immediate access 
to information of the environmental structure, including state-transition uncertainty and task complexity. The choice 
optimality is defined as the degree of match between subjects’ actual choices and an ideal agent’s choice corrected 
for the number of available options. To compute the degree of choice match between the subject and the ideal agent, 



for each condition, we calculated an average of normalized values (i.e., likelihood) of the ideal agent for the choice 
that a subject actually made on each trial. To correct for the number of options, we then multiplied it by 2 for the high 
complexity condition; this is intended to compensate for the effect that the baseline level of the likelihood in the high 
complexity condition (# of available options =4) becomes half of that in the low complexity condition (# of available 
options =2). In other words, this adjustment effectively compensates the effect of # of available options on 
normalization without biasing the correspondence between participant’s choices and optimal choices. The choice 
optimality value would have a maximum/minimum value if a subject made the same/opposite choice as the ideal 
agent’s in all trials, regardless of complexity condition changes. 

Full details of choice optimality are provided in Supplementary Methods - Behavioral measure (choice optimality)).” 

 

 

Behavior and parameter recovery make an important contribution. I value them much more than the large 
scale model comparison.  

 

>> [Reply 2-3] Again we thank the reviewer for providing constructive suggestions, which have greatly 
improved the manuscript. 

 

 

For the fMRI analysis, I think some more specification of the GLM needs to go to the main manuscript.  

 

>> [Reply 2-4] We have moved the GLM section, including its detailed specification, to the main manuscript. 

 

 

“Finally, we implemented a second-level random effects analysis for each regressor of interest…” what does 
that mean exactly? Where they all included in one second-level random effects model or each in a separate? 
Please specify and explain the reasoning. 

 

>> [Reply 2-5] We apologize for the confusion. We mean it by a standard second level GLM analysis. We 
first ran the 1st level GLM including all the regressors of interest, and then ran a one-sample t-test at the 2nd 
level for each separate regressor (i.e., random effects model each in a separate). We have clarified this in 
the main manuscript (Experimental Procedures- GLM design section; see below). 

“Finally, we implemented a standard second-level random effects analysis for each regressor of interest, and applied 
correction for multiple comparisons. Specifically, after running the 1st level GLM including all the regressors of 
interest, we ran a one-sample t-test at the 2nd level for each separate regressor (i.e., random effects model each in 
a separate).” 

 

 

Again, we greatly appreciate the reviewer’s very insightful and constructive comments, which have made it 
possible for us to significantly improve our paper. 



REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The concerns have been adequately addressed. Thank you. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have thoroughly responded to my questions. It's an interesting paper - 
congratulations! There will be ongoing debate what is the best way to validate behavioral 
measures and it remains a challenge to develop tasks with specific and valid model-free vs. model-
based readouts. 
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