- **New Phytologist Supporting Information** 1 2 3 Article title Sequence based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat 4 5 Authors: Noah DeWitt, Mohammed Guedira, Edwin Lauer, Martin Sarinelli, Priyanka Tyagi, Daolin Fu, QunQun Hao, J. Paul Murphy, David Marshall, Alina Akhunova, Katherine 6 7 Jordan, Eduard Akhunov and Gina Brown-Guedira 8 9 Article Acceptance date: 16 August 2019 10 The following supporting information is available for this article: 11 12 Figure S1: Expression of TraesCS5A02G542800 and TraesCS4D01G476700LC in different 13 14 tissue. Figure S2: Expression patterns of TraesCS5A02G542800. 15 Figure S3: Expression patterns of TraesCS4D01G476700LC. 16 Figure S4: Expression patterns of TraesCS5A01G542700. 17 18 Figure S5: Expression of TraesCS5A02G542700 in apical meristems of awned and awnless 19 wheat. 20
 Table S1: Positions and descriptions of KASP markers.
 21 Table S2: Sequences of KASP markers. 22 Table S3: Haplotypes and awn status of sequenced lines. 23 Table S4: Sequences of RT-qPCR markers.
 Table S5: SNP significantly associated with awn suppression.
 24 Table S6: QTL results for yield components in LA95135 x SS-MPV57 population. 25
 Table S7: Geographic distribution of *B1* haplotypes.
 26 27 28 29 30 31 32
 - 0

- 1 Fig. S1. Expression of *TraesCS5A02G542800* and *TraesCS4D01G476700LC* in different
- 2 tissues. Expression is quantified in transcripts per million (TPM), representing raw reads scaled
- 3 by gene length and total reads sequenced (Source: <u>https://wheat.pw.usda.gov/WheatExp/)</u>.
- 4

- 1 Fig. S2. Expression patterns of *TraesCS5A02G542800*. Wheat eFP browser output displaying
- 2 regions with no or low expression of *B1*candidate gene *TraesCS5A02G542800* (yellow), and
- 3 regions with higher expression (orange to red) in the awned spring wheat Azhurnaya. The
- 4 *TraesCS5A02G542800* zinc finger protein is primarily expressed within the developing spike, as
- 5 well as expressed in the awns, developing grain, and ovary. Source:
- 6 (<u>http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi</u>) (Ramirez-Gonazales *et al.*, 2018, Winter *et*
- 7 *al.*, 2007).
- 8

Wheat eFP Browser (Triticum aestivum) or A Antumaya Developmental Time Course by Y. Knedkar, A. Pasha and N. Provart, Wheat plants from Bayer Crop Science Likranian spring wheat cultivar Azhumaya were grown in grown cabinels with 16 8 hours ad any inplit height ad 25:15 °C. Three biological registrates, consisting of the individual plants each, were sampled at the developmental times and tissues show above. All tissues were harvested between 75 and 5.5 in the day and immediately frazen in juid hittogen upon collection. Seeding root samples were collected from wheat plants cultivated in agar. RNA was extracted from 100 mg fresh weight material using the Spectrum Plant Total RNA KII (Sigma-Addrich) and DNA contamination removed using the RNase-Fee DNase Set 50 bip insert size and sequenced on an illumina Histog 2500 bio specific chemistry verse pecific chemistry verse Addrich) to mage the RNase-Fee DNase Set 50 bip insert size and asequenced on an illumina Histog 2500 bip insert size and asequenced and an equivalent engine. A kallisto VA 25 (Siray et al., 2016) to mage the RNa-seq samples to the Chinese Spring RefSeqv1 0-UTR transcriptome reference. Details of this transcriptome reference are provided eswhere (WGSC, 2017). Detault parameters previously shown to result in accurate homoeolog-specific remistry verse using timport vir 2.0.

- 1 Fig. S3. Expression patterns of *TraesCS4D01G476700LC*. Wheat eFP browser output
- 2 displaying regions with no or low expression of *TraesCS4D01G476700LC* (yellow), and regions
- 3 with higher expression (orange to red) in the awned spring wheat *Azhurnaya*.
- 4 *TraesCS4D01G476700LC* is primarily expressed in the spike after the development of awn
- 5 tissue. Source: (http://bar.utoronto.ca/efp wheat/cgi-bin/efpWeb.cgi) (Ramirez-Gonazales et al.,
- 6 2018, Winter *et al.*, 2007).
- 7

Wheat GFP Browser (*Triticum aestivum*) cv. Azhurnaya Developmental Time Course by Y. Khedikar, A. Pasha and N. Provart: Wheat plants from Bayer Cop Science Ukranian spring wheat cultivar Azhurnaya were grown in growth cabinels with 16.8 hours day night length at 25:15°C. Three biological replicates, consisting of five individual plants each, were sampled at the developmental lines and to susses shown above. All tissues were harvested between 7.5 and 8.5 hinto the day and immediately forces in liquid nitrogen upon collection. Incertain the day and immediately forces in liquid nitrogen upon collection. Incertain the day and immediately forces in liquid nitrogen upon collection. Incertain the day and immediately forces in liquid nitrogen upon collection. Incertain the day and immediately forces in liquid nitrogen upon collection. Incertain the day and immediately forces in liquid nitrogen upon collection. Incertain the day and the day

- 1 Fig. S4. Expression patterns of *TraesCS5A01G542700*. Wheat eFP browser output displaying
- 2 regions with no or low expression of predicted gene TraesCS5A01G542700 (yellow), and
- 3 regions with higher expression (orange to red) in the awned spring wheat *Azhurnaya*.
- 4 *TraesCS5A01G542700* is annotated as universal stress protein family with protein kinase
- 5 domain and expressed in most tissues, with higher expression in the spike and in grain tissues
- 6 after the development of awns. Source: (<u>http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi</u>)
- 7 (Ramirez-Gonazales et al., 2018, Winter et al., 2007).
- 8

Wheat GFP Browser (Triticum aestivum) or Autumaya Developmental Time Course by Y Khedikar, A Pasha and N. Provart, Wheed Jpants from Bayer Crop Science Ukranian spring whead cullivar Azhumaya were grown in growth calibrar Mith 16.8 hours at 25.15 °C. Three biological enginetiates, consisting of the individual plants each, were sampled at the developmental times and tissues show above. All tissues were have been biological enginetiates, constraint of the day and immediately fozon in juid httogen upon collection. Seeding root samples were collected from wheat plants cultivated in agar. RNA was extracted from 100 mg fresh weight material using the Spectrum Plant Total RNA KII (Sigma Addrich) and DNA contamination removed using the RNase-Fee DNase Set Dis plants cultivated in agar. RNA was extracted from 100 mg fresh weight material using the Spectrum Plant Total RNA KII (Sigma Addrich) and DNA contamination removed using the RNase-Fee DNase Set Dis plants size and sequenced on an illumina Hisled 2000 bio graft zize and sequenced on an illumina Hisled 2000 bio graft zize and sequences and sequenced on an illumina Hisled 2000 bio graft zize and sequences and seque

1 **Fig. S5.** Expression of *TraesCS5A02G542700* in apical meristems of awned and awnless

2 wheat. (a) Expression of *TraesCS5A02G542700* in apical meristems of awned (blue) and

- 3 awnless (red) wheat plants at different developmental stages where 1 = younger meristems and
- 4 4 = older meristems. Number of biological replicates (n) is given per group, with three technical
- 5 replications per biological replicate. (b) Representative spikes at each developmental stage.

	SNP	-	<u> </u>	0.110	0	Annotated Functional
Name	Position	гуре	Source	SNP	Gene la	Domains
5A814	696993814	Intergenic	GBS	G/C	NA	NA
5A78871	697887148	Intron variant	Exome capture	G/A	TraesCS5A02G540400	Formyl transferase
5A208800	698208800	Intron variant	Exome capture	A/C	TraesCS5A02G541400	SNF2 family domain, Helicase conserved domain
BW8226_227	698508163	Missense exon 2	Illuminia SNP array (Mackay et. al 2014)	T/G	TraesCS5A02G542600	Sugar -and other - Transporter
5A13057	698513057	Intron variant	Exome Capture	T/G	TraesCS5A02G542700	Universal stress protein family, protein kinase
5A15019	698515019	Intron variant	Exome Capture	A/G	TraesCS5A02G542700	Universal stress protein family, protein kinase
5A16541	698516541	Missense exon 9	Sequence Alignment	A/G	TraesCS5A02G542700	Universal stress protein family, protein kinase
5A28417	698528417	Upstream	GBS	T/C	TraesCS5A02G542800	C2H2 Zinc Finger
5A29396	698529396	Downstream	Sequence alignment	G/A	TraesCS5A02G542800	C2H2 Zinc Finger
5A32641	698532641	Intergenic	Sequence alignment	Del	NA	NA
5A91913	698591913	Intergenic	Sequence alignment	C/T	NA	NA
5A10592	698610592	Intergenic	Sequence alignment	A/G	NA	NA

Table S1. Positions and descriptions of KASP markers (NA where information non-applicable).

5A13482	698613482	Intergenic	Sequence alignment	AA/CT	NA	NA
5A14919	698614919	Intergenic	Sequence alignment	Del	NA	NA
5A30334	698630334	Synonymous variant	Exome capture	C/T	TraesCS5A02G542900	F-box-like, Armadillo -beta- catenin-like repeat
5A48195	702748195	Upstream	Exome capture	T/G	TraesCS5A02G548800	Helicase domain, P- loop_NTPase superfamily, EBV_NA3 super family
5A70348	705570348	Missense	Exome capture	C/G	TraesCS5A02G552800	Domain of unknown function - DUF 4220 -, DUF594

Table S2: Sequences of KASP markers.

Name	Allele	Sequence
	A1	GAAGGTGACCAAGTTCATGCTAAATTCCTGCTAGACACTCGTGAG
5A814	A2	GAAGGTCGGAGTCAACGGATTAAATTCCTGCTAGACACTCGTGAC
	С	GTTTGCGCGAATCCTGCAGCGAA
	A1	GAAGGTGACCAAGTTCATGCTGTGCCGCCTCCATTTCCCAC
5A78871	A2	GAAGGTCGGAGTCAACGGATTCGTGCCGCCTCCATTTCCCAT
	С	CCGTCGAACAGGTGTCGGAGC
	A1	GAAGGTGACCAAGTTCATGCTCCTTCCCCGCTGCCCGA
5A208800	A2	GAAGGTCGGAGTCAACGGATTCCTTCCCCGCTGCCCGC
	С	GTGCTCAAGGAGAAGCTAAGAGGTA
	A1	GAAGGTGACCAAGTTCATGCTGGTCGATCCATCCATTCATCATGA
5A13057	A2	GAAGGTCGGAGTCAACGGATTGTCGATCCATCCATTCATT
	С	CCGTTTCATGTTCTAGACTGAATCTGAAT
	A1	GAAGGTGACCAAGTTCATGCTATGAACATCTTCATTGAAACTATATTTACACA
5A15019	A2	GAAGGTCGGAGTCAACGGATTGAACATCTTCATTGAAACTATATTTACACG
	С	GAACCCTGCAATTAACCAAAACAAAAGCTA

	A1	GAAGGTGACCAAGTTCATGCTTGCGGCCGCTCAG
5A28417	A2	GAAGGTCGGAGTCAACGGATTGCATGCTTGCGGCCGCTCAA
	С	GACAGTAATAATGCTGCAGTAGATGTGTA
	A1	GAAGGTGACCAAGTTCATGCTGCCTAGAGACAAAAATAAAGTTATTATTC
5A29396	A2	GAAGGTCGGAGTCAACGGATTGGCCTAGAGACAAAAATAAAGTTATTATTT
	С	ACCATTGCAATTATAGCACCAAGATATAAA
	A1	GAAGGTGACCAAGTTCATGCTAGCTACGGGCCCACTTRGACA
5A32641	A2	GAAGGTCGGAGTCAACGGATTCTACGGGCCCACTTRGACG
	С	CCTGCGGGGCTCCCAGCAA
	A1	GAAGGTGACCAAGTTCATGCTCACATGCAACACCACCTTGTCA
5A91913	A2	GAAGGTCGGAGTCAACGGATTCACATGCAACACACCACTTGTCG
	С	TTCACACTCCTACTTCCCCAGGTT
	A1	GAAGGTGACCAAGTTCATGCTTTCCAGCAAAGTTGGAAGTACAATTTA
5A613482	A2	GAAGGTCGGAGTCAACGGATTCCAGCAAAGTTGGAAGTACAATTTC
	С	TAGTAAAGCGCGTCCAACCCTTCTA
5A614989	A1	GAAGGTGACCAAGTTCATGCTGATTAAGATATTCAATTTTGGATTTGATTCATA

	A2	GAAGGTCGGAGTCAACGGATTAAGATATTCAATTTTGGATTTGATTCATG
	С	GATCAAAATTGAAAGCGTTGATCTGGTCAA
	A1	GAAGGTGACCAAGTTCATGCTATACACGGCTTTCCACAATTAGTTGT
5A610592	A2	GAAGGTCGGAGTCAACGGATTACACGGCTTTCCACAATTAGTTGC
	С	CCCTAACTAACATATAGCCATGTGCAAT
	A1	GAAGGTGACCAAGTTCATGCTCTTCGAGTGGCAAGCGCAAC
5A30334	A2	GAAGGTCGGAGTCAACGGATTCTCTTCGAGTGGCAAGCGCAAT
	С	CCATGTGGGTTGGTCTCAGGGAT
	A1	GAAGGTGACCAAGTTCATGCTGGTTTCTTCAGAAAATGGAGGTCGA
5A48195	A2	GAAGGTCGGAGTCAACGGATTGTTTCTTCAGAAAATGGAGGTCGC
	С	CTTCATTGATGACCTCCCCATCTTTATAT
	A1	GAAGGTGACCAAGTTCATGCTGCGGTCTTGCAGGATGCTGAC
5A70348	A2	GAAGGTCGGAGTCAACGGATTGCGGTCTTGCAGGATGCTGAG
	С	GGGGTAGCCATACTTCCTCTATAGAT
	A1	CGTCCATGGAGTCGTTCCTCAAT
вүү 8226_22 7	A2	GTCCATGGAGTCGTTCCTCAAG
	С	GTGGTACACGTCCGGGAAGAAT

- **Table S3**. Haplotypes and awn status of sequenced lines. Observed haplotypes and geographic origin of accessions selected for
- 2 sequencing of B1 and the surrounding region.

Name	Haplotype	Origin	Awns
SS_MPV-57	Hap8	Virginia	-
LA-95135	Hap1	Louisiana	+
AR05055-1-1	Нар3	Arkansas	+
Echinoides	Нар3	Afghanistan	+
Ideal	Нар3	Denmark	+
Sandu 22	Hap6	Romania	+
Tadzyksaja 13	Hap8	Tajikstan	-
Winter Bearded	Hap8	UK	-
IWA 8613594	Hap8	Iran	-
IWA 8606785	Нар3	Iran	+

Table S4. Sequences of RT-qPCR markers. Sequences for qPCR primers used for quantifying gene expression.

Name	Sequence
Actin-SYBR-F1 (Li <i>et al.</i> , 2013)	ATGGAAGCTGCTGGAATCCAT
Actin-SYBR-R1 (Li <i>et al.</i> , 2013)	CCTTGCTCATACGGTCAGCAATAC
B1_24_F	GGAGATGGAAGAGGGGCTCGAT
B1_8_R	TTGAAGCTGCGTGAGCAGTAGG
2700_exon9_F	CGGAACTGGGTCTAATGGGACT
2700_exon9_R	CTTGATTGAAATGCTTGGTACTGGAGG

- 1 **Table S5.** SNPs significantly associated with awn suppression. Genome position and LOD scores of markers significantly associated
- 2 with presence or absence of awns in association mapping panel of 640 soft red winter wheat lines. Most significant marker in the
- 3 region is noted in bold font.

SNP	maf	FDR Adjusted P-values
S5A_681455268	0.163964	0.000321
S5A_684942630	0.320721	3.43E-07
S5A_685141655	0.368468	7.79E-06
S5A_690417237	0.083784	1.56E-09
S5A_693326887	0.227027	0.000183
S5A_695581531	0.451351	2.75E-08
S5A_696479493	0.477477	0.000153
S5A_696993814	0.446847	1.11E-08
S5A_697552811	0.266667	1.56E-09
S5A_697590026	0.252252	7.37E-08
S5A_698003176	0.283784	3.21E-06
S5A_698127281	0.285586	6.38E-07
S5A_698225912	0.263964	1.05E-07
S5A_698320453	0.257658	2.35E-08
S5A_698528417	0.404505	7.19E-57
S5A_699803948	0.308108	2.32E-16
S5A_700181210	0.252252	2.63E-09
S5A_700435349	0.097297	6.16E-14
S5A_702633797	0.223423	4.09E-05

S5A_702908675	0.227027	0.001581
S5A_703364169	0.222523	0.001969
S5A_704142049	0.233333	0.003892
S5A_705293051	0.100901	3.16E-09
S5A_705351694	0.102703	1.11E-08
S5A_705365208	0.097297	1.56E-09
S5A_706065949	0.276577	8.60E-06
S5A_706487909	0.407207	1.70E-08
S5A_706574241	0.384685	1.33E-08
S5A_706673002	0.338739	2.87E-07
S5A_706705101	0.285586	1.94E-06

Table S6. QTL results for yield components in LxM population. Location of significant QTL and estimated effects for thousand kernel weight (TKW), estimated test weight, spikelets per spike (SPS), kernel width (K Width), kernel length (K Length), kernel area (K Area) from data collected in the field in 2018 or in the greenhouse (GH) in 2017. Data was collected in the field in Raleigh in 2018 for most traits, and in Raleigh and Kinston, North Carolina in 2018 for spikelets per spike.

Trait	Exp.	Chr	LOD	Peak Marker	сМ	Mean	Effect	SE
TKW (g)	Field	4D	33.76	RhtD1	13	27.68	-2.56	0.19
TKW (g)	Field	3D	7.4	S3D_476608044	219	27.68	1.09	0.21
TKW (g)	Field	5A	6.51	Awns	269	27.68	0.88	0.17
TKW (g)	Field	7A	4.22	S7A_71631668	82	27.68	0.79	0.19
TKW (g)	GH	4D	23.24	RhtD1	12	28.78	-3.53	0.33
TKW (g)	GH	2D	8.1	PpdD1	60	28.78	1.99	0.32
TKW (g)	GH	5A	4.06	S5A_698528417	269	28.78	1.47	0.31
Test Weight (g)	Field	4D	33.66	RhtD1	12	7.91	-0.42	0.03
Test Weight (g)	Field	7A	6.58	S7A_672150738	187	7.91	0.18	0.03

Test Weight (g)	Field	5A	5.56	S5A_698528417	269	7.91	0.15	0.03
SPS	Field	7A	16.89	S7A_673996636	186	20.4	-0.51	0.05
SPS	Field	2D	9.11	PpdD1	59	20.4	0.41	0.06
SPS	Field	5A	8.44	S5A_698528417	269	20.4	-0.37	0.05
SPS	Field	4D	6.99	RhtD1	14	20.4	0.35	0.06
SPS	Field	2B	5.47	S2B_600741549	108	20.4	0.24	0.05
SPS	Field	4B	4.31	S4B_34025485	54	20.4	0.21	0.05
SPS	GH	2D	25.12	PpdD1	60	17.7	1.07	0.09
SPS	GH	4D	10.6	RhtD1	12	17.7	-0.77	0.09
SPS	GH	2B	9.08	S2B_642534505	110	17.7	0.65	0.09
SPS	GH	5A	5.27	S5A_698528417	269	17.7	-0.48	0.09
SPS	GH	5B	5.1	S5B_517797845	85	17.7	-0.66	0.13
K Width (mm)	Field	4D	35.13	RhtD1	12	2.98	-0.09	0.01

K Width (mm)	Field	6A	5.75	S6A_115348315	69	2.98	0.04	0.01
K Width (mm)	Field	5A	5.56	S5A_73816555	58	2.98	0.03	0.01
K Width (mm)	Field	3D	4.98	S3D_496955493	229	2.98	0.03	0.01
K Width (mm)	Field	7A	4.43	S7A_71631668	81	2.98	0.03	0.01
K Length (mm)	Field	3D	13.58	S3D_298356803	206	6.28	0.1	0.01
K Length (mm)	Field	5A	9.48	Awns	269	6.28	0.08	0.01
K Length (mm)	Field	1D	7.7	S1D_253081308	82	6.28	-0.08	0.01
K Length (mm)	Field	3B	5.67	S3B_576228566	104	6.28	-0.06	0.01
K Length (mm)	Field	6B	5.01	S6B_687553875	95	6.28	0.05	0.01
K Length (mm)	Field	1B	4.72	S1B_639043667	40	6.28	0.05	0.01
K Area (mm²)	Field	4D	20.41	RhtD1	14	13.97	-0.55	0.05
K Area (mm²)	Field	3D	8.73	S3D_298356803	205	13.97	0.33	0.05

K Area (mm²)	Field	5A	6.08	S5A_73816555	58	13.97	0.28	0.05
K Area (mm²)	Field	6A	5.34	S6A_115348315	68	13.97	0.27	0.05

Table S7. Geographic distribution of *B1* haplotypes. Number of lines having observed haplotypes in spring and winter wheat

2 germplasm based on geographic region of origin for accessions. For each haplotype, left column represents number of awnless lines

3	(A-) and the	right column	the number	of accessions	having awns	(A+).
---	--------------	--------------	------------	---------------	-------------	-------

Region	Growth habit	Hap1		Hap2		Hap3		Hap4		Hap5		Нарб		Hap7		Hap8		Total
		A-	A+	A-	A+	A-	A+	A-	A+	A-	A+	A-	A+	A-	A+	A-	A+	- I otal
North America	Spring	5	47	-	-	-	-	-	-	-	-	-	7	-	-	35	-	94
	Winter	-	15	-	-	-	-	-	-	-	-	-	1	-	-	11	-	27
Central America	Spring	1	61	-	1	-	2	-	-	-	-	-	-	1	-	20	-	86
South America	Spring	3	191	-	4	-	4	-	1	-	-	-	-	1	-	58	1	263
	Winter	-	5	-	-	-	1	-	-	-	-	-	-	-	-	29	-	35
Western	Spring	5	81	-	1	-	2	-	1	-	1	-	3	3	-	119	-	216
Europe	Winter	-	3	-	-	-	1	-	-	-	-	-	4	-	-	107	-	115
Eastern	Spring	2	46	-	-	-	3	-	3	-	-	-	10	1	-	48	-	113
Europe	Winter	-	42	-	-	-	-	-	-	-	-	-	31	-	-	72	2	147
South Asia	Spring	39	58	2	2	-	3	-	-	-	-	-	-	-	-	12	-	116
East Asia	Spring	2	43	-	-	-	2	-	1	-	-	-	-	-	-	13	-	61
East Asia	Winter	-	15	-	-	-	-	-	-	-	-	-	-	-	-	4	-	19
Control Asia	Spring	15	193	-	2	-	13	-	-	-	9	-	1	1	-	70	-	304
Central Asia	Winter	1	45	-	-	-	8	-	-	-	-	-	5	-	-	28	1	88
Cononaca	Spring	4	52	-	-	-	1	-	-	-	2	-	-	-	-	20	-	79
Caucuses	Winter	1	11	-	-	-	-	-	-	-	-	-	-	-	-	4	-	16
Middle East	Spring	6	156	-	3	-	2	-	-	-	-	-	-	1	-	38	4	210
	Winter	-	-	-	-	-	-	-	-	-	-	-	1	-	-	1	-	2
North Africa	Spring	5	104	-	1	-	1	-	-	-	-	-	2	-	-	30	10	153
Sub-Saharan Africa	Spring	8	149	1	3	-	1	-	1	-	-	-	-	1	-	79	-	243
	Winter	-	1	-	-	-	-	-	-	-	-	-	-	-	-	1	-	2
Oceania	Spring	-	6	-	-	-	-	-	-	-	-	-	-	2	-	38	-	46
	Winter	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	-	4
Total		97	1324	3	17	-	44	-	7	-	12	-	65	11	-	841	18	2439

2 **References**

- Li G, Yu M, Fang T, Cao S, Carver, BF, Yan L. 2013. Vernalization requirement duration in winter wheat is controlled by *TaVRN-A1* at the protein level. *The Plant Journal* **76**: 742-753
- 5 Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, Van Ex F, Pasha A Khadikar V 2019. The transprintional landscape of polyplaid wheat. Science 261: p. cosr6020
- 6 **A, Khedikar Y. 2018.** The transcriptional landscape of polyploid wheat. *Science* **361**: p.eaar6089.
- Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. 2007. An "electronic fluorescent pictograph" browser
 for exploring and analyzing large-scale biological data sets. *PloS ONE* 2: e718.

9