
Supplementary Material

1 Implementation details of the comparison methods

L1LOG and L1SVM were implemented with the python package ’Liblinear’[1]. The cost param-
eters C of L1LOG and L1SVM were searched using cross validation and set to 50 for L1LOG,
10 for L1SVM. As many side effect labels were imbalanced, the class weights were set as the
reciprocal of the number of positive or negative samples in each class. PCR was implemented
with scikit-learn, after applying PCA to the concatenated feature matrix, the first 400 principal
components(determined by cross-validation) were used as the input of logicist regression. For
SCCA, 80 canonical components were kept, the penalty parameter ’penaltyx ’ and ’penaltyy ’ were
set to 0.3(all parameters were determined by cross-validation). For kernel regression, gaussian
radical basis function(RBF) was applied to each feature profile. The same weight was used
for each feature kernel in kernel integration. The parameter alpha of KernelRidge function in
scikit-learn was learned and set to 1.

2 Analysis of multi-LRSL algorithm

2.1 Algorithm complexity

Here we analyse the algorithm complexity of multi-LRSL. Suppose the number of training drugs
is n, the dimension of the p-th feature profile is dp, the number of side effects is l. The complexity
for Laplacian matrix Lp construction is O(n2dp). In each iteration, the optimization of F has
the complexity of O(n3 + nldp), the complexity for learning R is about O(l2dp). For training
data used in this study, dp and l are much larger than n, the complexity for learning Gp is about
O(ld2p). As a result, the most complex part in each iteration is about O(l2dp + ld2p).

2.2 Parameter Sensitivity analysis

There are several parameters in multi-LRSL. The parameter k is empirically set to 0.01n for the
knn graph of drugs and 0.01l for the knn graph of side effect labels. γ is empirically set to 2
as the previous work[2, 4, 3]. The rest parameter µ, λ, α, β are learned using grid search and
cross-validation on the training data. As show in Figure S10, the sample-AUC score is sensitive
to the values of µ and β, but doesn’t change too much as the values of λ and α vary. It is
observed that the performance of the model is decreased as the parameter β becomes larger than
0.1. Because larger β means less features are selected, it is suggested that there is a trade-off
between the number of selected features and the prediction performance. Finally, the values of
µ, λ, α and β are set to 0.1, 1, 1 and 0.01 respectively.
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Figure S1: Distribution of drug-side effect associations. The left panel shows the number of
drugs related to each side effect, and the right panel is the histogram of the frequency of side
effects associated with different numbers of drugs.
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Figure S2: The average similarity of drugs with common side effects is larger than the average
similarity of the same number of randomly selected drugs without common side effects. The four
panels correspond to the violin plots of the drug similarities measured by four different feature
types. All comparisons are statistically significant(rank sum test, p-value<0.001)
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Figure S3: Drugs with stronger side effect similarity are also more similar in different feature
profiles. All comparisons are statistically significant(rank sum test, p-value<0.001). The dashed
lines denote the positions of quartiles.
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Figure S4: The correlations of side effect labels positively correlate with all types of feature
similarities. The orange lines represent the ordinary least squares models, while the red lines are
the local polynomial regressions of the points.
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Figure S5: Visualizing the feature coefficient matrices of different algorithms. The horizontal
axes indicate different drug features, the vertical axes indicate different side effect labels. The
orange vertical lines separate the matrices into the blocks of different drug feature profiles.(From
left to right in each panel: chemical substructure, target domain, target gene ontology, gene
expression)
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Figure S6: Feature coefficient correlations get bigger as the drug feature correlations increase in
the same feature profile. The absolute values of the pearson correlation coefficients are calculated
by using the relationships between features and drugs, then the values are divided into ten equal-
width bins. For feature pairs in each bin, the box plots show the distribution of the absolute
values of the correlations between the feature coefficients.
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Figure S7: Feature coefficient correlations get bigger as the drug feature correlations increase
between different features profiles. The absolute values of the pearson correlation coefficients are
calculated by using the relationships between features and drugs, then the values are divided into
ten equal-width bins. For feature pairs in each bin, the box plots show the distribution of the
absolute values of the correlations between the coefficients of features from two different feature
profiles.
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Figure S8: The affinity matrix of side effect labels is similar with the affinity matrices calculated
from different feature coefficients.
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Figure S9: Stability of feature selection using random drug subsets. The drugs were randomly
divided to ten subsets, at each time, one subset was excluded and the left drugs were taken as
the training set to calculate the coefficients of features. The averages and standard deviations
of feature coefficients are shown as line charts with error bars, the inserted plots show the 100
biggest coefficients.
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Figure S10: Effect of model parameters on the performance of multi-LRSL in side effect perdition
task.
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