Supporting Information

Determining the Hierarchical Architecture of the Human Brain Using
Subject-Level Clustering of Functional Networks

Teddy J. Akikil'?, Chadi G. Abdallah!?*

1 Clinical Neurosciences Division—National Center for PTSD, United States Department of Veterans
Affairs, West Haven, CT 06516, USA
2 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA

1. A note on the z-score of the Rand coefficient

Comparing the similarity between partition solutions with a markedly different number
of communities poses a significant challenge in clustering analyses. It is expected that
as the consensus-derived partitions become more fine-grained (a large number of small
communities), the calculated similarity with the subject-level partitions will be higher,
simply as a function of the number and size of modules (i.e., even if there is no true change
in similarity). Calculating the z-scores of the Rand coefficient accounts for this bias, and
the resulting score can be interpreted as the similarity between two partitions, beyond what
can be explained by the number and size of partitions. Another advantage of using the
standardized variant of the Rand index is that while there are a number of indices that
can be used to measure partition similarity (e.g., normalized mutual information, Jaccard,
Minkowski, Adjusted Rand), it has been shown that their z-scores coincide 2.

However, to ensure the robustness of the conclusion that the subject-derived consensus
is more similar to the individual compared to the group-derived consensus, we repeated
the analysis with the normalized mutual information—another commonly used measure
of clustering similarity®. The analysis with the normalized mutual information yielded
the same conclusion as with the z-score of the Rand coefficient that we describe in the
main text: overall, compared to the group-derived consensus partitions, the subject-derived
consensus partitions had a higher mean similarity to the individuals’ partitioning (Fig. S1).
The mean effect size across all 65 levels that are in common was d = 0.1514 + 0.06807
SD (Fisher’s combined probability test, p < 10716). Individually, of the 65 levels, 56 were
statistically significant (two-tailed permutation tests; n = 1003; 107 < p < 0.05). All
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but one level had a higher mean similarity for the subject-derived consensus. The one
exception is the partitioning that yields 4 communities, where the group-derived consensus
had a non-statistically significant higher similarity (two-tailed permutation test; n = 1003;
p = 0.3062; d = 0.0461).
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Figure S1: Similarity plot showing the mean normalized mutual information (similarity) between the clus-
tering at the subject-level, and the partitioning in each hierarchical level (sorted by number of communities)
in the group-derived consensus partitioning (red) and the subject-derived consensus partitioning (blue).

2. A note on the relationship between functional homogeneity and subject
similarity

The primary data-driven metric that we used to select which partition solutions in
the hierarchical tree to focus on—quantified by the Rand coefficient—was based on the
premise that partitions that are highly expressed at the level of individual subjects were
particularly salient. As an additional metric that is independent, we also calculated a
measure of functional homogeneity derived from task fMRI contrasts (see Materials and
Methods in the main text).

Qualitatively, it was noteworthy that the extrema of the z-scores of the Rand coefficients
and of the homogeneity metric were often co-occurring (i.e., Fig. 1b and Fig. 5b in the
main text, and Fig. S4a). To quantify this agreement, we started by selecting partitions
solutions that were homogeneous above chance (one-sided o < 0.05, which translates into
z-score > 1.645). Next, to focus on the peaks, we removed the linear trend from the z-scores
of the Rand coefficients and the homogeneity vectors using the detrend.m function in
MATLAB (Fig. S2b). We found a positive correlation between the detrended homogeneity
and similarity scores (Fig. S2c; Combined data points: r = 0.6022, p = 2.4507 x 10~°,
n = 42; Subject-derived: r = 0.8381, p = 3.4676 x 10~%, n = 13; Group-derived: r = 0.8653,
p = 0.0012, n = 10; Subject-derived with MGTR: r = 0.3134, p = 0.1913, n = 19). The
convergence of the two independent metrics was reassuring, and supports that they may be
surrogates for partition quality.

However, a comparison of the methods (e.g., subject-derived vs. subject-derived with
MGTR vs. group-derived) based on homogeneity was not conducted because the task



fMRI activation maps that we used in our calculations were from a group average, and so
statistical testing could not be adequately performed. However, even if the analysis was
repeated on all participants to enable statistical testing, the difference in z-scores that we
have observed with the task fMRI average map were small (Fig. S2a), and even if there is a
“statistically significant” difference in homogeneity between the groups, the magnitude of
the effect would not be meaningful on a practical level.
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Figure S2: Relationship between the similarity and task homogeneity metrics. (a) Average z-scored
homogeneity across consensus hierarchical levels. (b) Relationship between the detrended similarity and
task homogeneity metrics. (c¢) Scatterplot showing the relationship between the detrended similarity and
task homogeneity metrics with the best-fit line and 95% confidence band (data points from (b)). Values of
homogeneity with z-scores > 1.645 representing values that are significantly more homogeneous than the
null model at a one-sided o < 0.05 (dashed line in (a)) were included in (b) and (c).



3. A note on the regression of the mean grey-matter “global” time course
regression

Global signal regression (e.g., MGTR) has a long contentious history but it has been
shown to be one of the most effective preprocessing steps to reduce the effects of motion®°,
letting true patterns in the data emerge®”. Negative edges in particular are known to be
controversial®%?. While in the original analysis without MGTR we included the full range
of correlations (positive and negative), we had to exclude negative values after MGTR,
as not doing so resulted in aberrant results. For example, no separation between default
mode and visual communities—two very distinct and well-defined communities %!, despite
fine-graned fractionation of other communities (Fig. S3).

Figure S3: Example partition with MGTR without excluding negative edges. Not excluding negative edges

after MGTR leads to aberrant results. Notice how the large community in dark grey did not split into
distinct default mode and the visual communities, despite fine-grained splitting of other communities (other

colors).



4. Results from the group-derived consensus

The communities look broadly similar to the subject-derived consensus, with certain
exceptions. One difference is that there is no similarity peak before the level of 13 com-
munities (Fig. S4a). In fact, there is absence of a 6-community solution (the closest being
a 7-community solution with the additional module consisting of a subcommunity in the
somatomotor community).
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Figure S4: Group-derived consensus hierarchical partitioning. (a) Similarity between the consensus par-
titioning and the clustering at the subject-level (blue), and the average z-scored functional homogeneity
(purple; values of z > 1.645 represent values that are significantly more homogeneous than the null model at
a one-sided o < 0.05). There is local maximum corresponding to the level of 13 communities (dashed red
line). (b) Brain surface plots of the 13 communities.



5. Parcellation with an alternate functional atlas of the cerebral cortex

For the main analysis we used the multi-modal parcellation (MMP) because it is
thought to be the most neuroanatomically informed to date'?. However, since the parcels
were not solely based on function, it is possible that the nodes may be less “functionally
coherent” compared to a parcellation that is solely based on function!®14. To ensure that
the results of the 6-community partition in the main text were not an idiosyncratic result
of the parcellation atlas, we repeated the analysis using a recently developed functional
parcellation of the cortex'®. Under this scheme, the cortex is divided into 400 regions of
interest.

Using the same methodology, we obtained a subject-derived consensus (Fig. Sba).
Similar to the results of the MMP parcellation reported in the main text, the z-score of
the Rand coefficient showed a local maximum the level of 6 communities (Fig. S5b). At
this level, the two parcellation atlases appear show a similar mesoscale organization (Fig.
S5¢). Certain dissimilarities are also notable. For example, certain regions with the primary
and early visual cortex were not assigned to the visual community, possibly suggesting an
integrative function'®. In contrast, in the MMP atlas, this region was parcellated differently
(as it incorporated anatomical information as well), making the average time course from
that parcel more coupled to neighboring visual areas. Although there are methods to
quantify the agreement between different atlases'®, such a comparison is not within the
scope of this current article, but should be pursued in the future.
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Figure S5: Subject-derived consensus hierarchical partitioning with the Schaefer parcellation atlas. (a) Co-
classification matrix summarizing the results of the subject-level clustering, sorted by community affiliation.
The dendrogram represents the hierarchical organization of the nested communities. The length of the arms
of the dendrogram are proportional to the average value of the local null model. The background colors
represent the candidate division (see below). (b) Similarity plot showing the mean similarity between the
partitioning in each hierarchical level in the dendrogram and the clustering at the subject-level quantified
by the z-score of the Rand coefficient. The local maximum in similarity corresponds to the partitioning of
the cortex into 6 communities (dashed red line). (c) Brain surface plots of the 6 communities corresponding

to the local maximum. 7
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