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SUPPLEMENTARY INFORMATION

Mathematical Structure

The following is an illustration of sub-matrix A∆G mapping experimental values ∆GExp,

following the notation introduced in the main text:

A∆G =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 . . . . . 0

0 . . . . . 0

0 0 0 0 1 0 0


(mExp,N)

Illustration of sub-matrix A∆∆G mapping pairwise differences ∆∆Gj,k = ∆Gj −∆Gk :
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A∆∆G =



1 −1 0 0 0 0 0

1 0 −1 0 0 0 0

0 . . . . . 0

0 . . . . . 0

0 0 0 0 0 1 −1


(mFEP ,N)

.

The matrix A defines the design topology of pairwise-based calculations.

Computer-Generated Designs

To generate a randomly selected design, mFEP unique pairs were randomly selected from

NC2 = N(N − 1)/2 total pairs to form matrix A. The rank of matrix A must be equal to

N −mexp in order to solve specific ∆̂G through equation eq (2).

Both D- and A-optimality use function of eq (3) to obtain the appropriate design that is

defined by the scaled moment matrix, M , expressed as

M =
I

Nσ2
=

(A
′
W−1A)−1

N

where I is the inverse of Information Matrix as referred in the main text. The Fedorov-

exchange algorithm finds that set of design points that minimizes the determinant of M−1

for D-optimality, and minimizes the trace of M−1 for A-optimality.

Simulation Study

In our simulation study, the matrix A represents a Topological Design. Each simulation,

from step 1 to 6 represents a new independent Experiment. Figure S1 exemplifies the

distinction between different designs and experiments. We believe that this is a better

approach to study the role of topological design in prediction accuracy because it separates

the variability from target and ligand selection, and, therefore, can be applied to a broader

range of pairwise-based calculations.
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Figure S1: Visualization of different designs and experiments. Each node represents a specific

ligand labeled by number. Dashed lines represent the presence of FEP calculated ∆∆GFEP

values between pairs of ligands.

Example of Simulation Based on One Specific Design

Here we show one example of a simulation based on the A-optimal design of 30 pairs and 20

ligands presented in Figure S2. For this example, one ligand has an experimentally known

∆GTrue value and is used as the reference ligand. A total of 30 pairs were selected based on

A-optimality. The ∆∆GFEP is simulated 5000 times with normally distributed errors using

function rnorm(mean = ∆∆GTrue, sd=RMSE∆∆GFEP ) in R, where RMSE∆∆GFEP is set

to 1.0 (kcal/mol). Figure S2 shows the distribution of the observed MSE of ∆∆GFEP vs.

∆∆GTrue, the observed MSE of the transformed ∆̂G estimates vs. ∆GTrue, as well as the

observed Spearman correlation ρ between the back transformed ∆̂G vs ∆GTrue.

For this design example, the MSE between ∆∆GFEP and ∆∆GTrue, as expected, is almost

normally distributed with median value at 1.0 kcal/mol and 95% quantiles of the MSE dis-

tribution at (0.56-1.54), consistent with the value used for simulation. The back transformed

∆̂G has median MSE of 0.80 kcal/mol and 95% quantiles of (0.28-3.39). The observed me-

dian Spearman’s correlation ρ between ∆̂G estimates and ∆GTrue is 0.79 with 95% quantiles

of (0.52-0.93). As described in methods section, each simulation represents a new and inde-

pendent experiment. Because the MSE of ∆∆GFEP vs ∆∆GTrue is an intrinsic variable

in simulation, it is solely dependent on the intrinsic accuracy of Free Energy Perturbation

calculation itself and independent of pair and reference ligand selection. However, the dis-

tribution of MSE∆̂G is a function of both the experimental design and intrinsic accuracy of

FEP calculations.
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Figure S2: Example simulation of an A-optimal design with 30 perturbation pairs of 20

ligands (1 reference and 19 unknown). Left, visualization of the A-optimal design. The ref-

erence ligand is colored green. Right, distribution of MSE∆∆GFEP , MSE∆̂G, and Spearman’s

correlation ρ between ∆̂G estimate and ∆GTrue.

Summary of Simulations with fixed ∆GTrue values

In order to represent the same ligand set scenario, the fixed ∆GTrue values were also studied

in simulation. In this case, ∆GTrues from the motivating example (Table 1) were used

with ligand 1 (∆GTrue = -8.09) as the reference in all the simulations. The corresponding

∆∆GFEP was generated the same way as described in the methods section.

It is clear that there is no difference in Mean Squared Error (MSE)-based metrics compared

to the values obtained from randomly generated, normally distributed ∆GTrue: both the av-

eraged and theoretically calculated ones. This indicates, again, that the input MSE∆∆GFEP

and the design are the major contributing factors to the MSEs. The Spearman correlation ρ

is overall better mostly because the ∆GTrue values from the motivating example has larger

scale (∆GTrue
Max −∆GTrue

Min = 5.89 kcal/mol) than the average scale of the randomly generated

∆GTrue values, which is around 3.79 based on 5000 fold sampling using function rnorm(n=20,

mean=0, sd=1.0). It is important to note that, although the correlation appears better in

this simulation, the accuracy of identifying the best ligand still remains in the same range,

or event worse across all the designs.

4



Figure S3: Example of A-optimal designs with different number of ligands, references and

pairs. Each solid line represents an available FEP calculation ∆∆GFEP value between the

connecting ligands. Green nodes represent the reference ligands with known experimental

values ∆GExp
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Pairs Design MSE∆̂G
a MSE∆∆̂G

b MSEAll
∆∆̂G

c Median ρ d Accuracye

Random* 4.00 0.95 3.80 0.81 (0.68-0.89) 27.0%

20 D-optimal 3.83 0.95 3.50 0.82 (0.69-0.91) 28.3%

A-optimal 1.42 0.95 1.83 0.88 (0.82-0.92) 30.8%

Random* 1.66 0.63 1.33 0.91 (0.85-0.95) 33.0%

30 D-optimal 1.36 0.63 0.91 0.93 (0.89-0.96) 36.2%

A-optimal 1.08 0.63 1.10 0.92 (0.88-0.95) 37.1%

Random* 0.98 0.38 0.54 0.95 (0.93-0.97) 42.6%

50 D-optimal 0.92 0.38 0.44 0.96 (0.94-0.98) 45.8%

A-optimal 0.79 0.38 0.50 0.96 (0.94-0.97) 43.7%

* The averages across 5,000 different randomly selected designs.

a MSE∆̂G was theoretically derived from equation (3) for D- and A-optimal design.

b MSE∆∆̂G was theoretically derived from equation (3) for D- and A-optimal design for the

corresponding FEP pairs.

c MSEAll
∆∆̂G

was theoretically derived from equation (3) for D- and A-optimal of all NC2 = 190

pairs.

d Spearman ρ was calculated between ∆GTrue and estimated ∆̂G value of 20 ligands. 15%

- 85% quantiles are in parenthesis.

e Probability of correctly identifying the best ligand.

Table S1: Analytically derived and simulated metrics for different designs with fixed ∆GTrue

from the motivating example in introduction section. The simulated ∆∆GFEP values were

generated in R using function rnorm(mean = ∆∆GTrue, sd = sqrt(MSE∆∆GFEP )), where

N = 20 ligands and MSE∆∆GFEP = 1.0 kcal/mol.

Comparison of Mean Squared Error (MSE)

In Figure S4, we compared the mean squared error (MSE) of the FEP calculated ∆∆GFEP

values (orange boxplots) with the MSE of the pairwise differences of ∆̂G estimates, also
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referred to as ˆ∆∆Gs, (blue boxplots) that had corresponding ∆∆GFEP values. Note that

the MSEs for each of these quantities may also be computed analytically. We have included

the analytical estimates on the plot with a yellow triangle. The boxplots corresponding to

the simulation study give both confirmation of the theoretical MSE results and an idea of

the uncertainty present in the MSE statistics for a data set with 20 ligands and variability

similar to the simulation parameters. Observe that the back-transformed ˆ∆∆G estimates

are uniformly more accurate than the original, FEP calculated ∆∆GFEP values, as one

would expect when incorporating additional information into the estimates. Also note that

there does not appear to be any difference in average MSE of ˆ∆∆G with respect to the

design. This will change when we consider the set of all possible ˆ∆∆G estimates rather than

only pairwise differences that have corresponding FEP calculated ∆∆GFEP values, as we

will discuss in the next figure S5. Lastly, as expected, when more pairs are included in the

model, the back transformed estimates become more precise (theoretical MSEs of 0.95 with

20 pairs, 0.63 with 30 pairs, and 0.38 with 50 pairs).

In Figure S5, we compared MSEs of the set of all possible pairwise differences of ∆̂G estimates

(∆∆̂Gi,j = ∆̂Gi − ˆ∆Gj) across the different designs. Note that one cannot estimate all

possible pairs using only ∆∆GFEP values without back transforming to ∆̂G estimates. At

least one reference ligand is needed for back transformation. Observe that the D-optimal

design performs quite poorly, using this metric, when only 20 pairs are included (theoretical

MSE of 3.50 vs 1.83 for the A- and D-optimal designs). The D-optimal design starts to

perform better as the number of pairs increase, however, eventually out performing the A-

optimal design. Additionally, as one would expect with this criteria, the D-optimal design

performs best for all 3 design sizes. Alternatively, the randomly generated designs perform

the worst across all 3 design sizes, indicating the benefits of choosing a design according to

an optimality criterion.

In Figure S6 and S7, we computed the MSEs and Rank Correlation distribution of the

back-transformed ∆̂G estimates themselves, rather than their pairwise differences. The A-

optimality criterion was designed to perform best under this metric, which it does under all

3 design sizes we considered. Additionally, as we saw in the previous graphic, the D-optimal
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Figure S4: Mean squared error of ∆∆G estimates. The orange boxplots represent simulated

MSE estimates for FEP derived ∆∆GFEP estimates while the blue boxplots represent the

simulated MSE estimates for the pairwise differences of ∆̂G estimates with corresponding

FEP values. The theoretical MSEs are indicated by yellow triangles.
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Figure S5: Mean squared error of ∆∆G estimates for all possible pairs. The blue boxplots

represent the simulated MSE estimates for all possible pairwise differences of ∆̂G estimates.

The theoretical MSEs are indicated by yellow triangles.
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Figure S6: Mean squared error of back transformed ∆G estimates. The blue boxplots repre-

sent the simulated MSE estimates for the back transformed ∆G estimates. The theoretical

MSEs are indicated by yellow triangles.

design performs quite poorly here, and is the worst of the 3 designs selected via an optimal-

ity criterion across all 3 design sizes, only out-performing the randomly generated designs.

Again, this discrepancy was largest when only 20 pairs were included in the design, indicat-

ing that structuring your pairs in a ring is an extremely poor choice. Lastly, the deficiencies

of the randomly selected design once again emphasize the improvements in accuracy that

may be achieved by constructing the study designs intelligently.
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Figure S7: Distribution of Spearman’s Rank Correlation for each design. The center points

represent the mean values while the distribution represents all values generated across the

5,000 simulations.
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Optimal Designs with Structure-Similarity Based Weighting

The AtomPair fingerprint based tanimoto score is calculated for all the pairs among 16 CDK2

ligands. The weighing factor is the normalized tanimoto score defined as:

wi,j = TanimotoScore2
i,j/(Max(TanimotoScore2

i,j)−Min(TanimotoScore2
i,j))

The normalization is to further differentiate the highly similar ligands characterized by the

fingerprint. Another example of weighted optimal design without scaling the similarity

scores is demonstrated here as well. Figure S8 shows the examples of weighted A- and D-

optimal designs using ECFP 21,2 fingerprint Tanimoto score as the weighting factor. It is

clear that, compared to unweighted optimal or the literature design, the similarity-weighted

design includes more pairs with high structural similarity. Ligand CAT-4o, was selected as

reference since, according to literature design, that specific ligand is critical in connecting

two sub perturbation graphs.

The relative design efficiency of different optimal designs is listed in Table S2. It is worth-

while noting that, for this example, the relative efficiency for the weighted designs is slightly

higher than the corresponding unweighted. This is because the weighted designs are biased

toward the pairs with higher structural similarity, which are believed to have smaller er-

rors. Therefore, the weighted optimality criteria is better than the unweighted ones, e.g.

det(I−1
weighted) ≤ det(I−1

unweighted).

Free Energy Perturbation Calculation

CDK2 protein and ligand structures are from reference 3.3 Amber18 GPU-TI code4 was

used to conduct the alchemical free energy calculations. Similar to previously reported

protocol,5 dual-topology was used to generate TI topology. A softcore potential was applied

to appearing and disappearing atoms in the two end states. Gaff6 version 2 in Amber18

was used as small molecule force filed with Amber FF14SB7 as protein force field. For TI

simulation, the systems were solvated in a water box with buffer width of 10 Å for both

complex and solvent simulations. The systems were minimized and equilibrated using the
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Figure S8: Example designs of the BACE ligand set from reference3. One ligand (CAT-4o)

is selected as reference and colored in red for illustration purpose. Each edge is colored with

fingerprint Tanimoto score of the connecting pair. All the designs have the same reference

ligand and the same number of pairs. Specific reference and pairs are listed in the SI table.
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A-Optimal Weighted A-Optimal D-Optimal Weighted D-optimal

1.57 1.73 1.18 1.31

a relative efficiency of the optimal design is calculated as the ratio of the corre-

sponding criteria of literature design to its A-Optimality or D-Optimality criteria:

tr(I−1
literature)/tr(I

−1
A−optimal) and det(I−1

literature)/det(I
−1
D−optimal).

Table S2: Relative efficiency of optimal designs compared to literature design of BACE

compounds.3

default setting: the whole system with the solute molecules was restrained to their initial

positions and was first minimized using steepest descent method and then simulated at 298

K using an NVT ensemble with the restraint retained for 20 ps. After that the system was

simulated at room temperature using the NPT ensemble without any restraint for 100 ps

followed by the production simulation for 2 ns for both complex and solvent systems. A total

number of 10 stages and 22 λ windows for each stage were used to achieve good convergence

for this CDK2 system. The total production simulation time is 2 ns for both the complex

and the solvent simulations. Only data in the last 1ns production NPT run was used in the

analysis. We used alchemlyb8 to analyze the result.
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