Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201901862

Droplets as Carriers for Flexible Electronic Devices

Mingxing Zhou, Ziyue Wu, Yicong Zhao, Qing Yang, Wei Ling, Ya Li, Hang Xu, Cheng Wang, and Xian Huang*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

Droplets as carriers for flexible electronic devices

Mingxing Zhou, Ziyue Wu, Yicong Zhao, Qing Yang, Wei Lin, Ya Li, Hang Xu, Cheng Wang, Xian Huang*

Figure S1. A diagram of the conceptual flexible device.

Figure S2. Thickness of a flexible electronics device.

Figure S3. A fabrication process of the flexible device for active droplets.

Figure S4. An atomic force microscopic image of nanostructures on the superydrophobic surface.

Figure S5. A schematic of the driving circuit for the electromagnetic platform.

Figure S6. Advancing contact angles of four droplets with varied volumes during a motion process from one electromagnet to the neighboring electromagnet.

Figure S7. Demonstration of droplet motion. A droplet moves through a narrow horizontal channel and performs reversible shape change.

Figure S8. An experimental setup to monitor changes in humidity and temperature.