Supplementary Information for

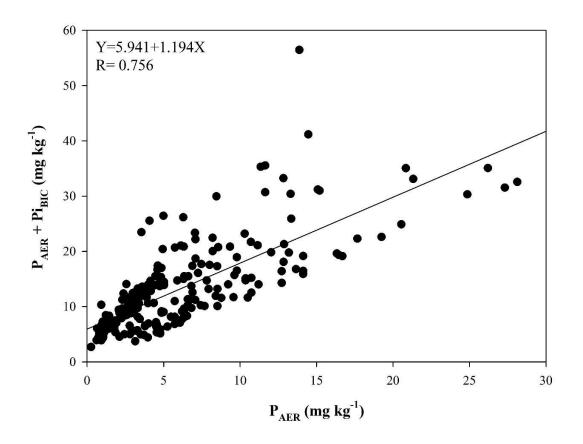
Improving Phosphorus Sustainability of Sugarcane Production in Brazil

Amin Soltangheisi^{*,a}, Paul J. A. Withers^b, Paulo Sergio Pavinato^c, Mauricio Cherubin^c, Raffaella Rossetto^d, Janaina Braga Do Carmo^e, Gustavo Casoni da Rocha^f, Luiz Antonio Martinelli^a

Author Affiliations:

^aDepartamento de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo (USP), Av. Centenário, 303 - São Dimas, CEP 13416-000, Piracicaba, SP, Brazil

^bLancaster Environment Centre, Lancaster University, Lancaster, UK


^cDepartamento de Ciência do Solo, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo – ESALQ/USP, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba-SP, Brazil

^dCenter-South Regional Pole, Paulista Agency for Agribusiness Technology (APTA), Rod. SP 127 km 30, 13400-970 Piracicaba, SP, Brazil

^eDepartment of Environmental Sciences, Federal University of São Carlos (UFSCar), Rod. João Leme dos Santos Km 110, 18052-780 Sorocaba, SP, Brazil

^fFaculdade de Ciências Agronômicas, Universidade Estadual Paulista (Unesp), Av. Universitária, nº 3780, CEP 18610-034, Altos do Paraíso, Botucatu, SP, Brazil

*To whom correspondence should be addressed: soltangheisi@usp.br

Supplementary Figure 1. Relationship between inorganic labile P ($P_{AER} + Pi_{BIC}$) and resin P (P_{AER}) in 8 different Brazilian sugarcane fields investigated in this study.

Phosphate Sources			Advantages	Disadvantages		
Primary sources						
	Water soluble	MAP, DAP, SSP, TSP	 High initial agronomic efficiency High amount of water soluble P₂O₅ 	ExpensiveMore susceptible to loss via erosion		
	Less soluble	Rock phosphate	Less expensiveLow P loss via leaching and erosion	 Releases P slowly suitable for areas with medium to high soil P levels Low agronomic efficiency in short term No water soluble P₂O₅ 		
		Thermophosphate	 Contains magnesium, micronutrients and silicon Low P loss via leaching and erosion Low P fixation by Fe and Al (hydr)oxides due to the presence of silicon 	• Expensive		
	Biofertilizers		 Reduce P rates by 25-30% Replacing expensive sources of P with rock phosphate 	• Difficulties associated with isolation and multiplication of pure strains of PSBs		
Secondary sources						
	Filter cake		 Reduce the need for mineral fertilizers Contains 1.2-1.8% of P Contains 70% humidity which guarantees the sprouting of cane planted in winter 	It is free but the transport cost from the mill to the field is expensiveSlow release P as it is mainly organic		
	Vinasse		 Reduce the need for mineral fertilizers Provide water retention Increase organic matter and soil microflora 	 It is free but the transport cost from the mill to the field is expensive Slow release P as it is organic Contains very high amounts of potassium Risk of salinization in rates higher than 400 m³ ha⁻¹ Causes delay of the maturation process in high quantities Contamination of ground water via leaching 		
	Straw		 Reduce the need for mineral fertilizers Reduces erosion Improve soil carbon content Provide water retention 			

Supplementary Table 1.	Advantages and di	isadvantages of different	sources of phosphorus	s applied in Brazilian s	sugarcane fields
------------------------	-------------------	---------------------------	-----------------------	--------------------------	------------------

	Brotas [†]	Sorocaba [†]	Agudos [‡]	Ipaussu§	Macatuba [‡]	Manduri [†]	Valparaiso§	Jatai [§]
PAER	1.2	1.1	4.0	3.8	7.3	5.6	10.1	4.5
Pibic	5.6	6.0	7.6	9.4	8.6	11.1	9.7	21.4
Poblic	47.6	56.5	16.0	23.8	16.3	28.5	38.9	9.4
Pi _{HID-0.1}	23.1	22.9	21.0	83.4	18.5	32.1	28.1	62.3
Po _{HID-0.1}	45.7	109.2	45.5	42.7	94.1	183.0	89.1	72.6
P _{HC1}	1.3	0.8	32.5	14.8	11.5	2.6	14.2	4.5
Pi _{HID-0.5}	6.9	9.2	22.0	128.0	34.2	15.0	11.2	74.4
Po _{HID-0.5}	46.4	47.0	26.5	33.2	65.5	82.5	79.4	73.2
Presidual	77.0	418.0	76.9	667.2	274.5	1127.0	202.7	328.8
Ptotal	255.0	671.0	252.0	1006.5	530.5	1487.0	489.5	650.9

Supplementary Table 2. Soil phosphorus fractions in the sites investigated in this study

[†]unpublished data obtained by A. Soltangheisi

[‡]data from Soltangheisi et al. (2019)

[§]data from Cherubin et al. (2016)

 P_{AER} : P extracted with anion exchange resin; Pi_{BIC} and Po_{BIC} : inorganic and organic P extracted with 0.5 mol L⁻¹ NaHCO₃; $Pi_{HID-0.1}$ and $Po_{HID-0.1}$: inorganic and organic P extracted with 0.1 mol L⁻¹ NaOH; P_{HCI} : phosphorus extracted with 1.0 mol L⁻¹ HCl; $Pi_{HID-0.5}$ and $Po_{HID-0.5}$: inorganic and organic P extracted with 0.5 mol L⁻¹ NaOH; $P_{residual}$: phosphorus extracted with concentrated $H_2SO_4+30\%$ H_2O_2 and saturated magnesium chloride. Sequential fractionation in all sites was performed by a methodology proposed by Hedley, Stewart, & Chauhan (1982) and modified by Condron, Goh, & Newman (1985).

Supplementary References

- Cherubin, M. R., Franco, A. L., Cerri, C. E., Karlen, D. L., Pavinato, P. S., Rodrigues, M., ... Cerri, C. C. (2016). Phosphorus pools responses to land-use change for sugarcane expansion in weathered Brazilian soils. *Geoderma*, 265, 27-38.
- Condron, L. M., Goh, K. M., & Newman, R.H. (1985). Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by ³¹P nuclear magnetic resonance analysis. *European Journal of Soil Science*, **36(2)**, 199–207.
- Hedley, M. J., Stewart, J. W. B., & Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. *Soil Science Society of America Journal*, 46(5), 970-976.
- Soltangheisi, A., Santos, V. R., Franco, H. C. J., Kolln, O., Vitti, A. C., Santos Dias, ... Pavinato, P. S. (2019). Phosphate sources and filter cake amendment affecting sugarcane yield and soil phosphorus fractions. *Revista Brasileira de Ciência do Solo.* **43:e0180227**.