
S1 Appendix. Derivation of calibration function and analysis
of measurement uncertainties.

Calibration function

In this section, we motivate Eq. (3), which we used for the calibration of our detector.
We assume that the light intensity I at the LDR during a fluorescence measurement is a
sum of signal intensity Is and background intensity Ib:

I = Is + Ib (S1)

Ib corresponds to the intensity of the blank sample. With Eq. (1) this gives
Rb ∝ I−γb for the resistance of a blank sample and R ∝ (Is + Ib)

−γ
for the resistance of

a fluorescent sample. Then, the normalized resistance can be expressed as

R(c)

Rb
=

(
1 +

Is
Ib

)−γ

. (S2)

We assume that Is ∝ I0c and Ib ∝ I0, where I0 is the intensity of the excitation
LED. Therefore,

Is
Ib

= k · c, (S3)

where k is a constant that depends on the spectral properties of the LED, the filter
foils, the fluorophore, and the LDR. Importantly, k does not depend on I0, i.e. the
excitation light intensity. Inserting Eq. (S3) into Eq. (S2) relates R to c as

R(c)

Rb
= (1 + kc)

−γ
, (S4)

where k and γ are the previously stated calibration parameters. After calibration,
the inverse form of Eq. (S4) together with Eq. (2) is used to compute equivalent
fluorescein concentrations c from resistances R(ULDR)

c =

(
Rb

R(ULDR)

) 1
γ − 1

k
, (S5)

and resistance from measured voltages ULDR

R =
Rref
U0

ULDR
− 1

. (S6)
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Measurement uncertainties

The total measurement uncertainty δctotal of a concentration measurement is given by
the sum of the statistical and the systematic measurement uncertainty

δc = δcstat + δcsys , (S7)

which are computed and saved by the detector software. In the following, we
describe the derivation of expressions for δcstat and δcsys, which allows to make a
general statement on confident measurement range of our device.

Statistical measurement uncertainties

First, we consider statistical uncertainties, which arise from fluctuations in the voltage
measurements, probably caused by electromagnetic interference. The statistical
uncertainty δUstatLDR, computed as the standard error of the mean of several
measurements is propagated by

δcstat =

∣∣∣∣ ∂c∂R
∣∣∣∣ · δRstat = ∣∣∣∣ ∂c∂R

∣∣∣∣ ∣∣∣∣ ∂R

∂ULDR

∣∣∣∣ · δUstatLDR . (S8)

With Eq. (S5) and (S6) we get

∣∣∣∣ ∂c∂R
∣∣∣∣ = (

Rb
R

) 1
γ

· 1
γ
· 1
k
· 1
R

(S9)∣∣∣∣ ∂R

∂ULDR

∣∣∣∣ = Rref
U0

ULDR
− 1
·

U0

ULDR
U0

ULDR
− 1
· U0

ULDR
· 1

U0
, (S10)

which gives an expression for the relative statistical uncertainty of the resistance R

δRstat

R
=

U0

U0 − ULDR
· δU

stat
LDR

ULDR
(S11)

Then, the statistic uncertainty δcstat of the concentration is given by

δcstat =

(
Rb
R

) 1
γ 1

γ

1

k
· δR

stat

R
. (S12)

As δUstatLDR is computed as the standard error of the mean, the statistical uncertainty
can be reduced by repeating the voltage measurements many times. In our setting,
taking 50 voltage measurements per data point was sufficient to reduce the relative
statistical uncertainty δcstat

c to < 0.2% for all concentrations measured. As this is small
compared to the systematic uncertainty estimated in the following section, we will omit
δcstat in the following and identify δc with δcsys.

Systematic measurement uncertainties

To compute the relative systematic uncertainty δc
c as a function of the concentration c,

we consider the following uncertainties:

• δRb, which is the standard error of the mean of Rb.

• δλ and δk, which are the asymptotic standard errors obtained from fitting λ and k
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• δULDR and δU0, which correspond to a 1 digit accuracy of measuring ULDR and
U0 with the microcontroller

The uncertainties δγ, δk and δRb are generally dependent on each other as they
where obtained from the same fit. We therefore compute the total uncertainty δc, in
accordance to [1][p.79], by absolute addition of the individual uncertainties:

δc =

∣∣∣∣ ∂c∂γ
∣∣∣∣ · δγ+ ∣∣∣∣ ∂c∂Rb

∣∣∣∣ · δRb+ ∣∣∣∣ ∂c∂R ∂R

∂ULDR

∣∣∣∣ · δULDR+

∣∣∣∣ ∂c∂R ∂R

∂U0

∣∣∣∣ · δU0 +

∣∣∣∣ ∂c∂k ·
∣∣∣∣ δk (S13)

Computation of the absolute values of the partial derivatives from Eq. (S5) and (S6)
gives

∣∣∣∣ ∂c∂γ
∣∣∣∣ = (

Rb
R

) 1
γ

· ln
(
Rb
R

) 1
γ

· 1
γ
· 1
k

(S14)∣∣∣∣ ∂c∂Rb
∣∣∣∣ = (

Rb
R

) 1
γ

· 1
γ
· 1
k
· 1

Rb
(S15)∣∣∣∣ ∂c∂R

∣∣∣∣ = (
Rb
R

) 1
γ

· 1
γ
· 1
k
· 1
R

(S16)∣∣∣∣ ∂R

∂ULDR

∣∣∣∣ = Rref
U0

ULDR
− 1
·

U0

ULDR
U0

ULDR
− 1
· U0

ULDR
· 1

U0
(S17)

∣∣∣∣ ∂R∂U0

∣∣∣∣ = Rref
U0

ULDR
− 1
·

U0

ULDR
U0

ULDR
− 1
· 1

U0
(S18)

∣∣∣∣ ∂c∂k
∣∣∣∣ =

(
Rb
R

) 1
γ − 1

k
· 1
k
, (S19)

where we assume R < Rb to account for the absolute values.
We identify two reoccurring expressions in the partial derivatives, which can be

rewritten in terms of the concentration c by using rearranged forms of Eq. (S5) and (S6):

(
Rb
R

) 1
γ

= 1 + kc (S20)

U0

ULDR
= 1 +

Rref
R

(S21)

With this the partial derivatives can be expressed as
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∣∣∣∣ ∂c∂γ
∣∣∣∣ = (1 + kc) · ln (1 + kc) · 1

γ
· 1
k

(S22)∣∣∣∣ ∂c∂Rb
∣∣∣∣ = (1 + kc) · 1

γ
· 1
k
· 1

Rb
(S23)∣∣∣∣ ∂c∂R

∣∣∣∣ = (1 + kc) · 1
γ
· 1
k
· 1
R

(S24)∣∣∣∣ ∂R

∂ULDR

∣∣∣∣ = R · (R+Rref )
2

RrefR
· 1

U0
(S25)∣∣∣∣ ∂R∂U0

∣∣∣∣ = R · R+Rref
Rref

· 1

U0
(S26)∣∣∣∣ ∂c∂k

∣∣∣∣ = c · 1
k
, (S27)

which inserted in Eq. (S13) gives

δc =

(
1 + kc

k

)(
ln (1 + kc)

δγ

γ
+

1

γ

δRb
Rb

+
1

γ

(
R

Rref
+ 1

)(
2 +

Rref
R

)
1

U0

)
+ c

δk

k
.

(S28)
Inserting Eq. (S6) for R and dividing by c gives the final equation for the relative

systematic uncertainty:

δc

c
=

(
1

kc
+ 1

)(
ln (1 + kc)

δγ

γ
+

1

γ

δRb
Rb

+
1

γ

(
Rb
Rref

(1 + kc)
−γ

+ 1

)(
2 +

Rref
Rb

(1 + kc)
γ

)
1

U0

)
+
δk

k
.

(S29)

For determination of the confident measuring range we require δc
c < 0.15 for the

relative systematic uncertainty. We obtained [9 nM : 1730 nM] for the confident
measurement range by numerical root finding.
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