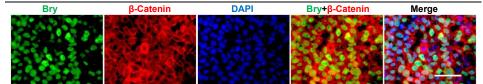

### Deciphering Role of Wnt Signalling in Cardiac Mesoderm and Cardiomyocyte Differentiation from Human iPSCs: Four-dimensional control of Wnt pathway for hiPSC-CMs differentiation

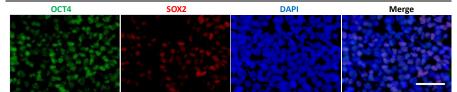

Meng Zhao<sup>1#</sup>, Yawen Tang<sup>1#</sup>, Yang Zhou<sup>1</sup>, Jianyi Zhang<sup>1\*</sup> <sup>1</sup>Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL35233, USA.

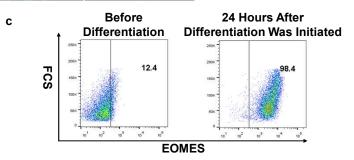
#These authors contributed equally: Meng Zhao, Yawen Tang.

Correspondence and requests for materials should be addressed to J.Z. (email: jayzhang@uab.edu)



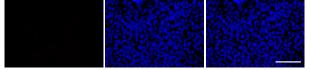

24 Hours After Differentiation Was Initiated





b

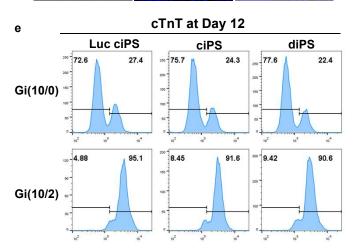
**Before Differentiation** 



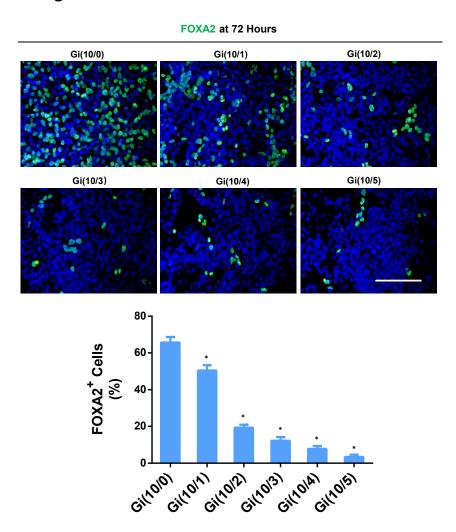

24 Hours After Differentiation Was Initiated





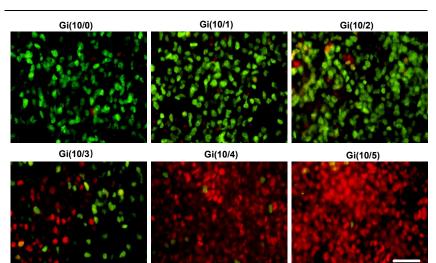

d 24 Hours After Differentiation Was Initiated

 MESP1
 DAPI
 Merg

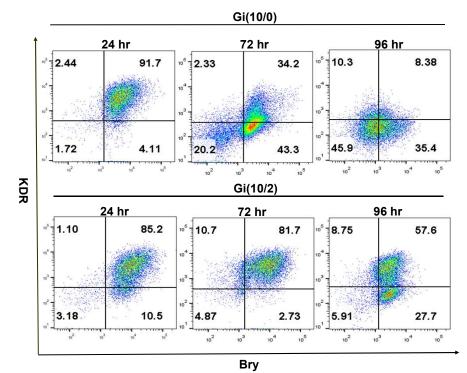



72 Hours After Differentiation Was Initiated

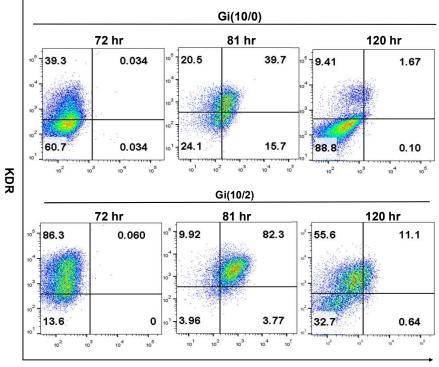
| MESP1                    | DAPI            | Merg               |  |
|--------------------------|-----------------|--------------------|--|
|                          | SISTER PROPERTY |                    |  |
| 방송 지지 않는 것이 같이 같이 같이 없다. |                 |                    |  |
|                          |                 |                    |  |
|                          | ALLES AND LE    | <b>这些新生产的在14</b> 0 |  |
|                          | Hand Start Star | Hadred States 21   |  |



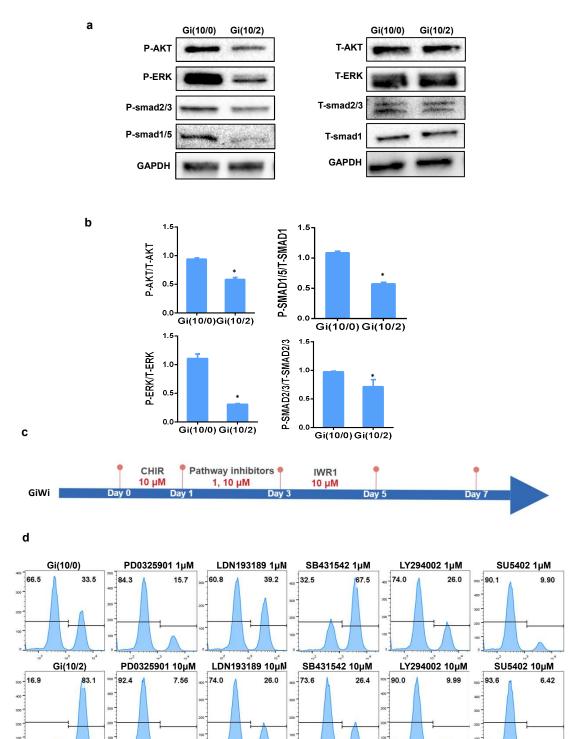

а

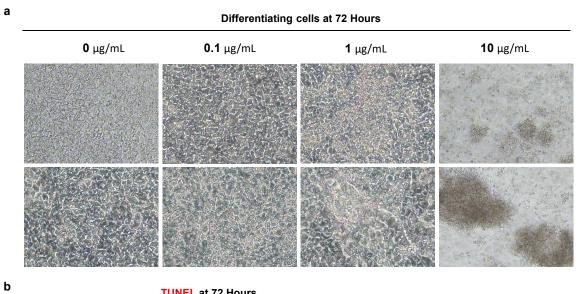



b

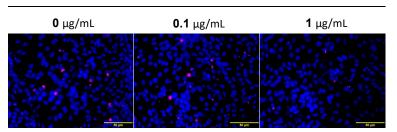

CDX2 and EOMES at 72 hours

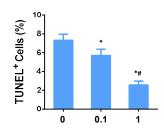


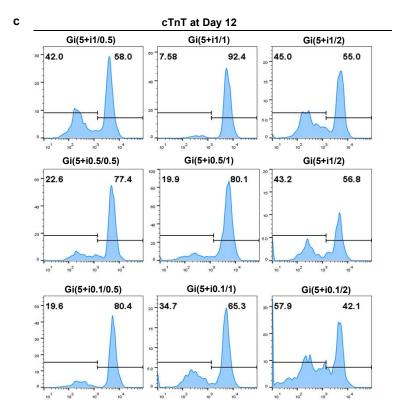

а




b





PDGFR-α






TUNEL at 72 Hours







#### SUPPLEMENTAL FIGURE LEGENDS

# Supplemental Figure 1. The conventional GiWi protocol fails to sufficiently promote mesendodermal/mesodermal specification in

differentiating hiPSCs. hiPSCs that had been reprogrammed from cardiac fibroblasts (hciPSCs) were differentiated in 10  $\mu$ M CHIR. (a-b) The expression of (a) the mesendodermal marker Bry and the Wnt-signaling molecule  $\beta$ -catenin and (b) the pluripotency genes OCT4 and SOX2 was evaluated via immunofluorescence before differentiation was initiated and 24 hours afterward; nuclei were counter-stained with DAPI (bars=50  $\mu$ m). (c) Expression of the mesendodermal marker EOMES was evaluated via flow cytometry before differentiation was initiated and 24 hours afterward. (d) Expression of the mesodermal marker MESP1 was evaluated via flow cytometry 24 and 72 hours after differentiation was initiated; nuclei were counter-stained with DAPI (bars=100  $\mu$ m). (e) Twelve days after differentiation was initiated, expression of the CM marker cTnT was evaluated in different iPS cell lines, i.e. ciPS, diPS and luc iPS using Gi(10/0) or Gi(10/2) via flow cytometry.

# Supplemental Figure 2. The optimized Gi(I/M)Wi protocol limits endodermal and presomitic/paraxial mesodermal commitment in

differentiating hiPSCs. (a) Expression of the definitive endoderm marker FOXA2 was evaluated in cells from the Gi(10/0), Gi(10/1), Gi(10/2), Gi(10/3), Gi(10/4), and Gi(10/5) groups via immunofluorescence at Hour 72 of differentiation (bar=100  $\mu$ m); then, the proportion of cells that expressed FOXA2 was calculated and presented as a percentage of the total number of cells (n=3). \*P<0.05 vs. Gi(10/0). 27 randomly selected fields (3 fields per well) from each group were evaluated. (b) Expression of the presomitic mesoderm marker CDX2 and EOMES was evaluated via immunofluorescence in all six treatment groups at Hour 72 of differentiation (bar=50  $\mu$ m).

Supplemental Figure 3. The optimized Gi(I/M)Wi protocol increases mesendodermal/mesodermal commitment before IWR treatment, and cardiac specification afterward, in differentiating hiPSCs. The expression of (a) the mesodermal marker KDR and Bry and (b) KDR and the cardiac mesoderm marker PDGFR $\alpha$  was evaluated via flow cytometry in Gi(10/0) and Gi(10/2) cells at the indicated time points after differentiation was initiated.

Supplemental Figure 4. Wnt signaling is the predominant regulator of cardiac mesoderm specification in differentiating hiPSCs. (a-b) Protein levels of phosphorylated and total AKT (P-AKT and T-AKT), phosphorylated and total ERK (P-ERK and T-ERK), phosphorylated and total smad2/3 (P-smad2/3 and T-smad2/3), and phosphorylated and total smad1 (P-smad1 and

T-smad1) were (a) evaluated via Western blot in Gi(10/0) and Gi(10/2) cells 72 hours after differentiation was initiated and (b) presented as the ratio of phosphorylated to total protein (n=3 different batches of differentiated cells). \*P<0.05 vs. Gi(10/0). The blots were collected from different gels without cropping. Different blots were separated by white space. (c) hiPSCs were differentiated via the GiWi protocol, and 1 or 10 µM concentrations of inhibitors of the PI3K/AKT (LY294002), FGF/ERK (SU5402 and PD0325901), BMP4 (LDN193189), or Smad2/3 (SB431542) pathways were added to the medium from the end of the CHIR treatment phase until the beginning of the IWR1 treatment phase. (d) Twelve days after differentiation was initiated, cTnT expression was evaluated via flow cytometry in Gi(10/0) cells and in cells treated with each of the inhibitors. (e) Twelve days after differentiation was initiated, expression of the CM marker cTnT was evaluated in luciferase positive cardiac fibroblast derived iPSC clone1 (luc ciPS), wildtype cardiac fibroblast derived iPSC clone 5 (ciPS), and dermal fibroblast derived iPSC (dips) from Gi(10/0) and Gi(10/2) treatment groups via flow cytometry

Supplemental Figure 5. The concentration of insulin treatment affects the cell viability during differentiation. (a) Representative bright-field images of differentiating cells with different concentration of insulin treatments 72 hours after differentiation initiation (bar=20  $\mu$ m). (b) Cells treated with different insulin concentrations were TUNEL-stained, and nuclei were counterstained with DAPI (bar=50  $\mu$ m); the number of TUNEL<sup>+</sup> cells were determined and expressed as a percentage of the total number of cells (n=3 different batches of differentiated cells). 27 randomly selected fields (3 fields per well) from each group were evaluated. \*P<0.05 vs 0  $\mu$ g/mL, #P<0.05 vs 0.1  $\mu$ g/mL. (c) cTnT expression at day 12 was evaluated in cells from 9 different Gi(I+/M)Wi treatment groups via flow cytometry. Initiation concentration for all groups is 5  $\mu$ M. The insulin treatments are tested at 1 $\mu$ g/mL, 0.5 $\mu$ g/mL and 1  $\mu$ g/mL with maintenance CHIR concentration at 0.5  $\mu$ M, 1  $\mu$ M and 2  $\mu$ M.

*Video S1.* Cardiomyocytes differentiated with either no maintenance CHIR treatment (Gi(10/0)).

*Video* **S2.** Cardiomyocytes differentiated with low concentration CHIR maintenance (Gi(10/2)).

Video S3. Cardiomyocytes differentiated with insulin.

Video S4. Cardiomyocytes differentiated without insulin.

*Video S5.* Cardiomyocytes differentiated in suspended culture shot with 10x magnification.

*Video S6.* Cardiomyocytes differentiated in suspended culture shot with 40x magnification.

#### SUPPLEMENTAL TABLES

## Supplemental Table 1. Antibodies.

| Antibody                              | Source         | Identifier |
|---------------------------------------|----------------|------------|
| Mouse Monoclonal α-Actinin            | Sigma          | A7811      |
| Mouse Monoclonal Human cTnT           | R&D Systems    | MAB1874    |
| Mouse Monoclonal Cardiac Troponin T   | Thermo Fisher  | RD2196076  |
| Mouse Monoclonal CDX2                 | Abcam          | ab86949    |
| Mouse Monoclonal Phospho-Erk1/2       | Cell signaling | 9106S      |
| Mouse monoclonal Anti-human Nucleolin | Abcam          | ab198580   |
| Mouse Monoclonal MYH6                 | R&D Systems    | MAB8979    |
| Mouse monoclonal EOMES                | R&D Systems    | IC6166A    |
| Rabbit Monoclonal Phospho-Smad1/5     | Cell signaling | 9516S      |
| Rabbit Polyclonal Smad1               | Cell signaling | 6944T      |
| Rabbit polyclonal N-cadherin          | Abcam          | ab18203    |
| Rabbit polyclonal Connexin 43         | Abcam          | ab11370    |
| Rabbit polyclonal SOX2                | Abcam          | ab97959    |
| Rabbit monoclonal OCT4                | Abcam          | ab209035   |
| Rabbit monoclonal cyclin D1           | Abcam          | ab134175   |
| Rabbit polyclonal MYL2                | Proteintech    | 10906-1-AP |
| Rabbit polyclonal Akt                 | Cell signaling | 9272S      |
| Rabbit Monoclonal Phospho-Akt         | Cell signaling | 4060S      |
| Rabbit Monoclonal Erk1/2              | Cell signaling | 4695S      |

| Rabbit Monoclonal MYH7                | R&D Systems   | MAB90961    |
|---------------------------------------|---------------|-------------|
| Rabbit polyclonal CDK4                | Santa Cruz    | sc-260      |
| Rabbit polyclonal Ki67                | EMD Millipore | Ab9260      |
| Rabbit polyclonal phosphor-Histone H3 | EMD Millipore | 06-570      |
| Rabbit Monoclonal Phospho-Smad2/3     | R&D Systems   | MAB8935     |
| Rabbit polyclonal Eomes               | Abcam         | ab23345     |
| Rabbit polyclonal β-catenin           | Abcam         | ab6302      |
| Rabbit polyclonal Mesp1               | Abcam         | ab129387    |
| Goat SOX17 NL637-Conjugated           | R&D Systems   | Cat# SC022  |
| Goat polyclonal HAND1                 | R&D Systems   | AF3168      |
| Goat polyclonal Brachyury             | R&D Systems   | IC2085A     |
| Goat polyclonal Brachyury             | R&D Systems   | AF2085      |
| Goat polyclonal Smad2/3               | R&D Systems   | AF3797      |
| Rat monoclonal VEGF R2/KDR/Flk-1      | R&D Systems   | FAB4432P    |
| Fitc-donkey anti-mouse                | jacksonimmuno | 715-095-150 |
| Cy3-donkey anti-rabbit                | jacksonimmuno | 711-165-152 |
| cy5-donkey anti-mouse                 | jacksonimmuno | 715-175-150 |

# Supplemental Table 2. Reagents, animals and software

| Name                                                        | Source | Identifier |
|-------------------------------------------------------------|--------|------------|
| Chemicals, Peptides, and Recombinant Proteins               |        |            |
| Fetal bovine serum (FBS)     Atlanta Biologicals     S11150 |        | S11150     |

| Y-27632                            | Stemcell          | 72304        |
|------------------------------------|-------------------|--------------|
| Dnase                              | Fisher scientific | PR-M6101     |
| Donkey Serum                       | Sigma             | D9663        |
| Dimethyl sulfoxide (DMSO)          | Sigma             | D2438        |
| TRIzol reagent                     | Fisher scientific | 15596018     |
| CHIR99021                          | Stemcell          | 72052        |
| IWR1                               | Stemcell          | 72562        |
| Protein Extraction Reagent         | Fisher scientific | PI78501      |
| Protease and Phosphatase Inhibitor | Fisher scientific | PI78442      |
| insulin                            | Sigma             | 91077C       |
| SYBR Green                         | Fisher scientific | 4385617      |
| B27 supplement                     | Fisher scientific | 17-504-044   |
| B27 supplement minus insulin       | Fisher scientific | A1895601     |
| LDN193189                          | Stemcell          | 1435934-00-1 |
| LY294002                           | Millipore         | 154447-36-6  |
| PD0325901                          | Stemcell          | 391210-10-9  |
| SU5402                             | Stemcell          | 215543-92-3  |
| Bovine serum albumin               | Sigma             | A3803        |
| Aceton                             | Fisher scientific | S25904       |
| Critical Commercial Assays         |                   |              |
| Reverse Transcription Kit          | Fisher scientific | 4304134      |
| In Situ Cell death detection Kit   | Sigma             | 12156792910  |

| Experimental Models: Cell Lines        |             |                            |  |
|----------------------------------------|-------------|----------------------------|--|
| Human cardiac fibroblast-derived iPS   | This paper  | N/A                        |  |
| Human dermal fibroblast-derived iPS    | This paper  | N/A                        |  |
| Experimental Models: Organisms/Strains |             |                            |  |
| NOD/SCID Mice                          | Jackson Lab | 001303                     |  |
| Software and Algorithms                |             |                            |  |
| FlowJo                                 | Flowjo, LLC | N/A                        |  |
| Graphpad Prism v.6.01                  | Graphpad    | N/A                        |  |
| Image J                                | NIH         | https://imagej.nih.gov/ij/ |  |

## Supplemental Table 3. Primers

| Primer   | Application | Sequence                              |
|----------|-------------|---------------------------------------|
| Bry-FW   | qRT-PCR     | 5'-TGCTTCCCTGAGACCCAGTT-3'            |
| Bry-RV   | qRT-PCR     | 5'-GATCACTTCTTTCCTTTGCATCAAG-3'       |
| KDR-FW   | qRT-PCR     | 5'-CCCCAGAAATAAAATGGTATAAAAATG-<br>3' |
| KDR-RV   | qRT-PCR     | 5'-TTTCACTCACTTCCATAATCGTCA-3'        |
| ISL1-FW  | qRT-PCR     | 5'-AGATTATATCAGGTTGTACGGGATCA-3'      |
| ISL1-RV  | qRT-PCR     | 5'-ACACAGCGGAAACACTCGAT-3'            |
| MESP1-FW | qRT-PCR     | 5'-GAAGTGGTTCCTTGGCAGAC-3'            |
| MESP1-RV | qRT-PCR     | 5'-TCCTGCTTGCCTCAAAGTGT-3'            |

|           |         | 1                              |
|-----------|---------|--------------------------------|
| NKX2.5-FW | qRT-PCR | 5'-CAAGTGTGCGTCTGCCTTT-3'      |
| NKX2.5-RV | qRT-PCR | 5'-CAGCTCTTTCTTTCGGCTCTA-3'    |
| PAX1-FW   | qRT-PCR | 5'-TCGCTATGGAGCAGACGTATG-3'    |
| PAX1-RV   | qRT-PCR | 5'-GCTGCCGACTGATGTCACA-3'      |
| SOX17-FW  | qRT-PCR | 5'-AGATGCTGGGCAAGTCGT-3'       |
| SOX17-RV  | qRT-PCR | 5'-GCTTCAGCCGCTTCACC-3'        |
| SOX2-FW   | qRT-PCR | 5'-TGGACAGTTACGCGCACAT-3'      |
| SOX2-RV   | qRT-PCR | 5'-CGAGTAGGACATGCTGTAGGT-3'    |
| TCF15-FW  | qRT-PCR | 5'-GCACCTTCTGCCTCAGCAACCAGC-3' |
| TCF15-RV  | qRT-PCR | 5'-GGTCCCCCGGTCCCTACACAA-3'    |
| CDX1-FW   | qRT-PCR | 5'-GGTGGCAGCGGTAAGACTC-3'      |
| CDX1-RV   | qRT-PCR | 5'-TGTAACGGCTGTAATGAAACTCC-3'  |
| CDX2-FW   | qRT-PCR | 5'-GGAACCTGTGCGAGTGGAT-3'      |
| CDX2-RV   | qRT-PCR | 5'-TCGATATTTGTCTTTCGTCCTG-3'   |
| EOMES-FW  | qRT-PCR | 5'-CACATTGTAGTGGGCAGTGG-3'     |
| EOMES-RV  | qRT-PCR | 5'-CGCCACCAAACTGAGATGAT-3'     |
| FOXA2-FW  | qRT-PCR | 5'-ATTGCTGGTCGTTTGTTGTG-3'     |
| FOXA2-RV  | qRT-PCR | 5'-CCTCGGGCTCTGCATAGTAG-3'     |
| HAND1-FW  | qRT-PCR | 5'-GTGAGAGCAAGCGGAAAAG-3'      |
| HAND1-RV  | qRT-PCR | 5'-GTGCGTCCTTTAATCCTCTTC-3'    |
| GATA4-FW  | qRT-PCR | 5'-TGCCGTTCATCTTGTGGTAG-3'     |
| GATA4-RV  | qRT-PCR | 5'-CCGACACCCCAATCTCG-3'        |

| OCT4-FW | qRT-PCR | 5'-CAGTGCCCGAAACCCACAC-3'  |
|---------|---------|----------------------------|
| OCT4-RV | qRT-PCR | 5'-GGAGACCCAGCAGCCTCAAA-3' |