SUPPLEMENTARY INFORMATION

Porous graphene-like carbon from fast catalytic decomposition of biomass for energy storage applications

Aurora Gomez-Martin^{1,2,*}, Julian Martinez-Fernandez^{1,2}, Mirco Ruttert³, Martin Winter^{3,4}, Tobias Placke³, Joaquin Ramirez-Rico^{1,2,*}

¹ Dpto. Física de la Materia Condensada, Universidad de Sevilla, Avda. Reina Mercedes SN, 41012 Sevilla, Spain.

² Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Américo Vespucio 49, 41092 Sevilla, Spain.

³ University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Corrensstraße 46, 48149 Münster, Germany

⁴ Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany

^{*} Corresponding author. Email: agomez28@us.es, Tel: +34 9545 56423

^{*} Corresponding author. Email: jrr@us.es, Tel: +34 9545 50963

Figure S1. Representative TGA/DSC analysis of nickel nitrate hexahydrate powder. Weight change (left axis-solid line) and heat flow (right axis-dotted line) vs. temperature during heat treatment under a nitrogen flow rate of 100 ml·min⁻¹ (heating rate of 10 °C·min⁻¹). Different stages during thermal decomposition are highlighted by shaded grey areas. The thermal decomposition of nickel nitrate hexahydrate powder proceeds stepwise according to ¹: Water separation at 50 - 80 °C [Ni(NO₃)₂·6H₂O = Ni(NO₃)₂·4H₂O + 2H₂O; Ni(NO₃)₂·4H₂O = Ni(NO₃)₂·2H₂O + 2H₂O]; partial decomposition steps at \approx 150 - 250 °C [oxidation and partial condensation; Ni(NO₃)₂·2H₂O = Ni(NO₃)(OH)₂·H₂O + NO₂; Ni(NO₃)(OH)₂·H₂O = Ni(NO₃)(OH)_{1.5} O_{0.25}·H₂O + 0.25H₂O]; and final oxide decomposition at \approx 300 °C [Ni(NO₃)(OH)_{1.5}O_{0.25}·H₂O = 0.5Ni₂O₃ + HNO₃ + 1.25H₂O; 3Ni₂O₃ = 2Ni₃O₄ + 0.5O₂; Ni₃O₄ = 3NiO + 0.5O₂].

Figure S2. Representative SEM micrographs of: a) conventional non-treated MDF showing the compacted and pressed fibrous structure and b, c) MDF impregnated with an aqueous nickel nitrate solution before pyrolysis showing the debonding of cellulosic fibres but no change in fibre morphology.

Figure S3. FTIR spectra of nitrocellulose synthetized by esterification of hydroxyl groups with nitric acid and sulphuric acid (weight ratio 1:3) of natural cotton.

Figure S4. High-resolution TEM image and selected-area electron diffraction pattern (SAED) inset of a MDF sample impregnated with an aqueous nickel nitrate solution after pyrolysis up to 300 °C.

Figure S5. XPS spectra exhibiting characteristic peaks located at \approx 285, 400, 533 and 855 eV, corresponding to C 1s, N 1s, O 1s and Ni 2p contributions, respectively. a) General XPS spectra and b, c, d) Results of C 1s spectra fitting of MDF Ni H₂O 300 and 1000 °C compared to that of MDF Ni isop 1000 °C.

and other previously reported carbon materials in aqueous electrolytes.	
Table S1. Comparison of specific capacitances of biomass-derived carbon materials as electrode for supercapacitor applications from this w	ork

Biomass source	$S_{BET}(m^2 \cdot g^{-1})$	Activation agent	Measurements conditions	Specific capacitance (F·g ⁻¹)	Rate capability, capacitance retention	Cycling stability, capacitance retention
Medium			Set-up: symmetric two-electrode			
density	333	Ni(NO ₃) ₂	Electrolyte: 6 M KOH	\approx 72 F·g ⁻¹ at 20 mA·g ⁻¹	${\approx}75$ % at 100 ${\bf A}{\cdot}{\bf g}^{\text{-1}}$	≈96 % (10 000 cycles)
fiberboard			Electrode mass: 5 mg	(GCD experiment)		
[This work]			Voltage range: 0 – 1 V			
Coconut leaves ²	493	CO ₂	Set-up: symmetric two-electrode		\approx 84 % at 5 A·g ⁻¹	≈74 % (10 000 cycles)
			Electrolyte: 6 M KOH	${\approx}133~F{\cdot}g^{\text{-1}}$ at 200 mA ${\cdot}g^{\text{-1}}$		
			Electrode mass:	(GCD experiment)		
			Voltage range: 0 – 1 V			
	256	HCl + freeze drying	Set-up: symmetric two-electrode		≈47 % at 50 $\mathbf{A} \cdot \mathbf{g}^{-1}$	
Chitin			Electrolyte: 6 M KOH	≈124 F·g ⁻¹ at 25 mA·g ⁻¹ (GCD experiment)		
nanofibers ³	230		Electrode mass: 0.61 mg			
			Voltage range: 0 – 1 V			
	326	K₄[Fe(CN)6]	Set-up: three-electrode	≈96 F·g ⁻¹ at 1 A·g ⁻¹ (GCD experiment)	≈70.5 % at 20 A \cdot g $^{-1}$	
			Electrolyte: 6 M KOH			
Cornstalks ⁴			Electrode mass: 5 mg			
			Potential range: -1.1-0.1 V (vs.			
			Hg/Hg ₂ Cl ₂)			
Crab shells ⁵	269	FeCl ₃	Set-up: symmetric two-electrode	≈128.6 F·g ⁻¹ at 1 A·g ⁻¹ (GCD experiment)	≈70 % at 10 $\mathbf{A} \cdot \mathbf{g}^{-1}$	
			Electrolyte: 6 M KOH			
			Electrode mass: 2-3 mg			
			Voltage range: $0 - 1$ V			

Biomass	$S_{\text{DET}}(\mathbf{m}^2, \mathbf{g}^{-1})$	Activation agant	Massuraments conditions	Specific capacitance	Rate capability,	Cycling stability,
source	Activation agent	Measurements conditions	(F · g ⁻¹)	capacitance retention	capacitance retention	
			Set-up: symmetric two-electrode			
Glucose ⁶	992	KOH + Fe(NO ₃) ₃ ·9H ₂ O	Electrolyte: 6 M KOH	$\approx \! 207 \ F \! \cdot \! g^{1}$ at $1 \ A \! \cdot \! g^{1}$	${\approx}78\%$ at 50 ${\rm A}{\cdot}{\rm g}^{{\text{-1}}}$	≈83.7% (5000 cycles)
			Electrode mass: 1-2 mg	(GCD experiment)		
			Voltage range: 0 – 1 V			
			Set-up: symmetric two-electrode			
Rotten	960	КОН	Electrolyte: 6 M KOH	$\approx \!\! 192 \; F \!\cdot\! g^{1}$ at 1 $A \!\cdot\! g^{1}$	\approx 53 % at 100 A·g ⁻¹	
potatoes 7			Electrode mass: 2 mg	(GCD experiment)		
			Voltage: 0 – 0.8 V			
		Ball milling +	Set-up: three-electrode			
Sheet	539	KOH + freeze drying	Electrolyte: 6 M KOH	$\approx 206 \text{ F} \cdot \text{g}^{-1}$ at 1 A $\cdot \text{g}^{-1}$	≈ 39 % at 20 A·g ⁻¹	
cellulose ⁸			Electrode mass: 2 mg	(GCD experiment)		
			Potential: -1.0 – 0 V (vs.Hg/HgO)			
	580	КОН	Set-up: symmetric two-electrode		≈57 % at 20 $A \cdot g^{-1}$	
Sovheans ⁹			Electrolyte: 6 M KOH	$\approx 100 \text{ F} \cdot \text{g}^{-1}$ at 50 mA $\cdot \text{g}^{-1}$		
Soybeans			Electrode mass: 3 mg	(GCD experiment)		
			Voltage: 0 – 1 V			
		Hydrothermal +	Set-up: symmetric two-electrode			
Sucrose ¹⁰	691	Ni(CH ₃ CO ₂) ₂ ·4H ₂ O	Electrolyte: 6 M KOH	\approx 248 F·g ⁻¹ at 50 mA·g ⁻¹	${\approx}85~\%$ at 5 ${\bf A}{\cdot}{\bf g}^{{\text -}1}$	≈94 % (5000 cycles)
			Electrode mass:	(GCD experiment)		
			Voltage: 0 – 1 V			
			Set-up: symmetric two-electrode			
Sunflower	(10)	КОН	Electrolyte: 30 wt. % KOH	$\approx 213 \text{ F} \cdot \text{g}^{-1}$ at 25 mA $\cdot \text{g}^{-1}$	$\approx 35\%$ at 10 $\Delta \cdot \sigma^{-1}$	
seed shell 11	619		Electrode mass: 20 mg	(GCD experiment)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			Voltage: 0 – 1 V			

Figure S6. Cycling performance of a commercial SMG A4 graphite and MDF Ni H₂O 1000 °C at specific current of $372 \text{ mA} \cdot \text{g}^{-1}$ for 200 cycles after the rate performance experiments.

Figure S7. Representative constant-current potential profile (at a specific current of $37.2 \text{ mA} \cdot \text{g}^{-1}$) for the 1st charge/discharge cycle. Red area shows the irreversible capacity between the first cycle charge/discharge capacities.

References:

1. Brockner, W.; Ehrhardt, C.; Gjikaj, M., Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O. *Thermochimica Acta* **2007**, *456* (1), 64-68.

2. Sulaiman, K. S.; Mat, A.; Arof, A. K., Activated carbon from coconut leaves for electrical double-layer capacitor. *Ionics* **2016**, *22* (6), 911-918.

3. Niu, Q.; Zhao, S.; Gao, K.; Wang, L., Natural nanofibers stacked porous nitrogen-doped carbon nanosheets with promising capacitive performance. *Cellulose* **2019**, *26* (9), 5395-5407.

4. Wang, L.; Mu, G.; Tian, C.; Sun, L.; Zhou, W.; Yu, P.; Yin, J.; Fu, H., Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors. *ChemSusChem* **2013**, *6* (5), 880-889.

5. Shi, W.; Chang, B.; Yin, H.; Zhang, S.; Yang, B.; Dong, X., Crab shell-derived honeycomblike graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors. *Sustainable Energy & Fuels* **2019**, *3* (5), 1201-1214.

6. Qin, J.; Zhu, S.; Feng, C.; Zhao, N.; Shi, C.; Liu, E.-Z.; He, F.; Ma, L.; Li, J.; He, C., In-situ space-confined catalysis for fabricating 3D mesoporous graphene and their capacitive properties. *Applied Surface Science* **2018**, *433*, 568-574.

7. Chen, X.; Wu, K.; Gao, B.; Xiao, Q.; Kong, J.; Xiong, Q.; Peng, X.; Zhang, X.; Fu, J., Three-Dimensional Activated Carbon Recycled from Rotten Potatoes for High-performance Supercapacitors. *Waste and Biomass Valorization* **2016**, *7* (3), 551-557.

8. Mo, R.-J.; Zhao, Y.; Zhao, M.-M.; Wu, M.; Wang, C.; Li, J.-P.; Kuga, S.; Huang, Y., Graphene-like porous carbon from sheet cellulose as electrodes for supercapacitors. *Chemical Engineering Journal* **2018**, *346*, 104-112.

9. Long, C.; Jiang, L.; Wu, X.; Jiang, Y.; Yang, D.; Wang, C.; Wei, T.; Fan, Z., Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. *Carbon* **2015**, *93*, 412-420.

10. Liu, T.; Liu, E.; Ding, R.; Luo, Z.; Hu, T.; Li, Z., Preparation and supercapacitive performance of clew-like porous nanocarbons derived from sucrose by catalytic graphitization. *Electrochimica Acta* **2015**, *173*, 50-58.

11. Li, X.; Xing, W.; Zhuo, S.; Zhou, J.; Li, F.; Qiao, S.-Z.; Lu, G.-Q., Preparation of capacitor's electrode from sunflower seed shell. *Bioresource Technology* **2011**, *102* (2), 1118-1123.