Table S1. Growth of lipid metabolism mutants on plates with the indicated carbon sources.

Genotype ¹	Aerobic ²				Anaerobic + 25 mM nitrate ³			
	Glu	C18:1	C10	C8	Glu	C18:1	C10	C8
Wild Type Wild Type (pRB-273c)	1 4	2	<u> </u> 5	-	3	6	8	10
Δ fadR 6	1	2	4	6	3	6	8	10
∆fadL fadL::kan	1	-	-	-	3	-	-	-
∆fadL (pRB3-fadL) fadL::kan (pRB3-fadL)	1	1-2	-	-	3	6	8	10
∆fadD fadD::kan	1	-	-	-	3	-	-	-
∆fadD (pRB3-fadD) fadD::kan (pRB3-fadD)	1	2	-	-	3	6	8	10
ydiD::kan	1	2	-	-	3	6	8	10
∆fadD; ydiD::kan	1	-	-	-	3	-	-	-
∆yafH yafH::kan	1	-	-	-	3	6	8	10
ydiO::cm	1	2	-	-	3	-	-	-
∆yafH; ydiO::cm	1	-	-	-	3	-	-	-
∆fadBA fadBA::kan	1	3-4 ⁷	-	-	3	6	8	10
yfcYX::kan	1	2	-	-	3	14	-	-
∆fadBA; yfcYX::kan	1	-	-	-	3	-	-	-
∆aceA aceA::kan	1	-	-	-	3	-	-	-
ΔaceA (pRB3-aceA) aceA::kan (pRB3-aceA)	1	2	-	-	3	6	8	10
∆aceB aceB::cm	1	-	-	-	3	-	-	-
∆aceB (pRB3-aceB) aceB::cm (pRB3-aceB)	1	2	-	_	3	6	8	10

¹ Strains with lesions in the same gene had identical phenotypes and are therefore recorded in the same row.

 $^{^2}$ Bacteria were grown on M9 minimal plates containing the indicated carbon sources solubilized using 1% igepal CA-630; other supplements are listed in the methods. No growth was observed on plates lacking a carbon source. Import mutant strains are black (canonical) or orange (secondary); β -oxidation mutants are blue (canonical) or red (secondary); glyoxylate shunt mutants are green.

³ Nitrate was added as an alternative electron acceptor; no anaerobic growth was observed on plates lacking nitrate.

⁴ Growth is recorded as the day on which colonies were discernible by eye; data are from two independent biological replicates.

⁵ No colonies were discernible for up to two weeks.

⁶ fadR encodes a transcriptional repressor of canonical lipid metabolism genes that prevents aerobic growth on medium-chain fatty acids in the absence of long-chain acyl-CoA molecules.

⁷ Strains lacking *fadBA* grow on oleate due to compensation by *yfcYX*.