**Supplementary Information** 

Requirement for p62 acetylation in the aggregation of ubiquitylated proteins under nutrient stress

You et al.

### **Supplementary Figures**



### **Supplementary Figure 1**

MS/MS spectra of tryptic peptides (inset) of purified recombinant p62 protein after in vitro acetylation (**a**) or Flag-p62 immunoprecipitated from TSA-treated Flag-p62-HEK293T cells (**b**) showing a mass shift of 42.01 Da at the lysine residues.



Supplementary Figure 2 p62 acetylation and cell starvation do not cause the ubiquitylation of p62.

(**a**,**b**) p62-KO HEK293 cells transiently expressing Flag-tagged WT p62 or each of the indicated p62 mutants were lysed with urea buffer. Then the Flag-p62 proteins were immunoprecipitated with anti-Flag and the precipitates were analyzed using anti-Ub. Source data are provided as a Source Data file.



Supplementary Figure 3 Acetylation at K420 and K435 disrupts UBA dimerization.

(a) <sup>1</sup>H-<sup>15</sup>N correlation spectra of each of the indicated p62-UBA proteins. Amino acid residues

used to fit the  $K_D$  value are denoted. d: dimer; m: monomer. (b) The trajectories for each UBA subunit from the MD simulations for WT, K420 acetylated, K435 acetylated and K420/K435 acetylated p62-UBA dimers. The fluctuations in C $\alpha$  RMSD are plotted over a time window of 400 ns. Source data are provided as a Source Data file.



#### Supplementary Figure 4 K435 acetylation directly enhances the p62-ubiquitin binding.

(a) <sup>1</sup>H-<sup>15</sup>N correlation spectra of p62-UBA in the presence of increasing concentrations of ubiquitin. Amino acid residues used to fit the dissociation constant are marked. (b) Changes of chemical shift values over ubiquitin concentrations for the binding-perturbed residues were globally fitted to a standard 1:1 binding equation. The chemical shift differences are expressed as  $[0.5 \times (\Delta \delta H^2 + 0.2 \times \Delta \delta N^2)]^{0.5}$ , in which  $\Delta \delta H$  and  $\Delta \delta N$  are the chemical shift perturbations (CSP) in ppm unit in the proton and nitrogen dimensions, respectively. Note that the ubiquitin binding equilibrium is affected by the amount of available p62-UBA monomer. Source data are provided as a Source Data file.



Supplementary Figure 5 Acetylation enhances p62 body formation.

FRAP analysis of mCherry-p62-2KQ clusters. A representative time-course is shown. The experiments were performed 10 min after mixing mCherry-p62-2KQ (5  $\mu$ M) and 8×ubiquitin (1.5  $\mu$ M) at RT. Scale bar, 2  $\mu$ m.





anti-p-Ser anti-p-Tyr anti-Flag anti-GFP



Supplementary Figure 6 Uncropped blots/gels



Supplementary Figure 7 Uncropped blots/gels



Supplementary Figure 8 Uncropped blots/gels



Supplementary Figure 9 Uncropped blots/gels



Supplementary Figure 10 Uncropped blots/gels



Supplementary Figure 11 Uncropped blots/gels

### Supplementary Figure 2a



Supplementary Figure 2b



# Supplementary Figure 12 Uncropped blots/gels

# **Supplementary Tables**

# Supplementary Table 1 List of primers used in this study.

| Primers                   | Sequences (5'-3')                |
|---------------------------|----------------------------------|
| Flag/GST-p62-F-EcoRI      | CCGGAATTCATGGCGTCGTTCACGGTG      |
| Flag/GST-p62-R-XhoI       | CCGCTCGAGTCACAATGGTGGAGGGTGC     |
| mCherry-p62-F-XhoI        | CCGCTCGAGCTATGGCGTCGTTCACGGTG    |
| mCherry-p62-R-EcoRI       | CCGGAATTCTCACAATGGTGGAGGGTGC     |
| GST-mCherry-p62-F-EcoRI   | CGGGAATTCATGGTGAGCAAGGGCGAGGAG   |
| GST-mCherry-p62-R-NotI    | AAGGAAAAAAGCGGCCGCTCTCACAATGGTGG |
| GST-8×ubiquitin-F-BamHI   | CGCGGATCCATGCAGATCTTCGTG         |
| GST-8×ubiquitin-R-NotI    | AAGGAAAAAAGCGGCCGCTTACCCACCTCT   |
| 6×His-ubiquitin-F-EcoRI   | CCGGAATTCATGCAGATCTTCGTG         |
| 6×His-ubiquitin-R-XhoI    | CCGCTCGAGTTACCCACCTCTGAG         |
| p62-∆1-85-F               | GCTATGTCCTATGTGAAAG              |
| p62-∆1-85-R               | GAATTCCTTGTCATCGTCATC            |
| р62-∆86-121-F             | GTGCACCCCAATGTGATCTG             |
| p62-∆86-121-R             | CATTGTCAGCTCCTCATCAC             |
| p62-∆122-168-F            | TTTCCCAACCCCTTTG                 |
| p62-∆122-168-R            | CATGTTTCGGGGTGCC                 |
| p62-∆169-253-F            | GAGGTTGACATTGATGTGG              |
| p62-∆169-253-R            | GATGAGCTTGCTGTGTTC               |
| p62-∆254-310-F            | GAGCAAATGAAAAAGATAG              |
| p62-∆254-310-R            | AATGCCTAGAGGGCTGAG               |
| p62-∆311-384-F            | GCCCTATACCCACATCTC               |
| p62-∆311-384-R            | TGTCAGAGACTGAGCAGG               |
| p62-∆385-440-F            | TGACTCGAGGGCCGCATAGA             |
| p62-∆385-440-R            | AGCTTCCTTCAGCCCTGTG              |
| p62-254-310-XhoI-F        | CCGCTCGAGCTGAGGTTGACATT          |
| p62-254-310-EcoRI-R       | CCGGAATTCTCATGTCAGAGACTG         |
| p62-311-384-XhoI-F        | CCGCTCGAGCTGAGCAAATGAAAAAG       |
| p62-211-384-EcoRI-R       | CCGGAATTCTCAAGCTTCCTTCAG         |
| 6×His/GST-p62-UBA-F-EcoRI | CCGGAATTCCTCCCGCCAGAG            |
| 6×His/GST-p62-UBA-R-XhoI  | CCGCTCGAGTCACAACGGCGG            |

| p62-K420R-F           | CTACAGACCAGGAATTACGAC             |
|-----------------------|-----------------------------------|
| p62-K420R-R           | GTCGTAATTCCTGGTCTGTAG             |
| p62-K420Q-F           | CTACAGACCCAGAATTACGAC             |
| p62-K420Q-R           | GTCGTAATTCTGGGTCTGTAG             |
| p62-K435R-F           | CAGTATTCGAGGCACCCTCCA             |
| p62-K435R-R           | TGGAGGGTGCCTCGAATACTG             |
| p62-K435Q-F           | CAGTATTCGCAGCACCCTCCA             |
| p62-K435Q-R           | TGGAGGGTGCTGCGAATACTG             |
| p62-D69A-F            | CACTACCGCGCAGAGGATGGG             |
| p62-D69A-R            | CCCATCCTCTGCGCGGTAGTG             |
| p62-K7A-F             | TTCACGGTGGCGGCCTATCTT             |
| p62-K7A-F             | AAGATAGGCCGCCACCGTGAA             |
| рЕР- <i>р62</i> -КО-F | ACCGTGAATTTCCTGAAGAACGT           |
| pEP- <i>p62</i> -KO-R | AACACGTTCTTCAGGAAATTCAC           |
| HDAC6-H216A-F         | ATTAGGCCTCCTGGACATGCAGCCCAGCACAGT |
| HDAC6-H216A-R         | ACTGTGCTGGGCTGCATGTCCAGGAGGCCTAAT |
| HDAC6-H611A-F         | CAGGACACGCAGCAGAGCAGGAT           |
| HDAC6-H611A-R         | ATCCTGCTCTGCTGCGTGTCCTG           |
| TIP60-Q377/G380E-F    | CTCCCTACGAACGCCGGGAATACCGGAAG     |
| TIP60-Q377/G380E-R    | CTTCCGGTATTCCCGGCGTTCGTAGGGAG     |
| p62-mLIR-F            | AGACGATGACGCAACACATGCATCTTCAAAAG  |
| p62-mLIR-R            | CTTTTGAAGATGCATGTGTTGCGTCATCGTCT  |

Supplementary Table 2 List of shRNAs used in this study.

| shRNAs               | Sequences (5'-3')                                                     |
|----------------------|-----------------------------------------------------------------------|
| shNC-F               | GATCCGAAGGGATGGCAGAGAGAGCTTCAAGAGAGCTTCTCTGCCA<br>TCCCTTCTTTTTG       |
| shNC-R               | AATTCAAAAAAGAAGGGATGGCAGAGAAGCTCTCTTGAAGCTTCT<br>CTGCCATCCCTTCG       |
| sh <i>p300-</i> F    | GATCCGCCCGGTGAACTCTCCTATAATTTCAAGAGAATTATAGGAG<br>AGTTCACCGGGCTTTTTTG |
| sh <i>p300-</i> R    | AATTCAAAAAAGCCCGGTGAACTCTCCTATAATTCTCTTGAAATTA<br>TAGGAGAGTTCACCGGGCG |
| sh <i>PCAF-</i> F    | GATCCGCAGATACCAAACAAGTTTATTTCAAGAGAATAAACTTGTT<br>TGGTATCTGCTTTTTTG   |
| sh <i>PCAF-</i> R    | AATTCAAAAAAGCAGATACCAAACAAGTTTATTCTCTTGAAATAA<br>ACTTGTTTGGTATCTGCG   |
| sh <i>GCN5-</i> F    | GATCCGCTGAACTTTGTGCAGTACAATTCAAGAGATTGTACTGCAC<br>AAAGTTCAGCTTTTTTG   |
| sh <i>GCN5</i> -R    | AATTCAAAAAAGCTGAACTTTGTGCAGTACAATCTCTTGAATTGTA<br>CTGCACAAAGTTCAGCG   |
| sh <i>TIP60</i> -1-F | GATCCGTCGAATTGTTTGGGCACTGATTTCAAGAGAATCAGTGCC<br>CAAACAATTCGACTTTTTTG |
| sh <i>TIP60</i> -1-R | AATTCAAAAAAGTCGAATTGTTTGGGCACTGATTCTCTTGAAATCA<br>GTGCCCAAACAATTCGACG |
| sh <i>TIP60</i> -2-F | GATCCGCCTCAATCTCATCAACTACTATTCAAGAGATAGTAGTTGA<br>TGAGATTGAGGCTTTTTTG |
| sh <i>TIP60</i> -2-R | AATTCAAAAAAGCCTCAATCTCATCAACTACTATCTCTTGAATAGT<br>AGTTGATGAGATTGAGGCG |
| sh <i>TIP60</i> -3-F | GATCCGCCTCCTATCCTATCGAAGCTATTCAAGAGATAGCTTCGATA<br>GGATAGGAGGCTTTTTTG |
| sh <i>TIP60</i> -3-R | AATTCAAAAAAGCCTCCTATCCTATCGAAGCTATCTCTTGAATAGC<br>TTCGATAGGATAG       |
| sh <i>HDAC6-</i> F   | GATCCGCTGCAAGGGATGGATCTGAACTTCAAGAGAGTTCAGATC<br>CATCCCTTGCAGCTTTTTTG |
| sh <i>HDAC6</i> -R   | AATTCAAAAAAGCTGCAAGGGATGGATCTGAACTCTCTTGAAGTT<br>CAGATCCATCCCTTGCAGCG |