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The spontaneous conversion of asparagine residues to aspartic
acid or iso-aspartic acid, via deamidation, is a major pathway of
protein degradation and is often seriously disruptive to biolog-
ical systems. Deamidation has been shown to negatively affect
both in vitro stability and in vivo biological function of diverse
classes of proteins. During protein therapeutics development,
deamidation liabilities that are overlooked necessitate expen-
sive and time-consuming remediation strategies, sometimes
leading to termination of the project. In this paper, we apply
machine learning to a large (n = 776) liquid chromatography-
tandemmass spectrometry (LC-MS/MS) dataset of monoclonal
antibody peptides to create computational models for the post-
translational modification asparagine deamidation, using the
random decision forest method. We show that our categorical
model predicts antibody deamidation with nearly 5% increased
accuracy and 0.2 MCC over the best currently available models.
Surprisingly, our model also paces or outperforms advanced
and conventional models on an independent non-antibody da-
taset. In addition to deamidation probability, we are able to
accurately predict deamidation rate (R2 = 0.963 and Q2 =
0.822), a capability with no peer in current models. This
method should enable significant improvement in protein
candidate selection, especially in biopharmaceutical develop-
ment, and can be applied with similar accuracy to enzymes,
monoclonal antibodies, next-generation formats, vaccine
component antigens, and gene therapy vectors such as adeno-
associated virus.
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INTRODUCTION
Therapeutic proteins are an important and growing class of drugs
that includes peptides, such as insulin; cytokines, like erythropoi-
etin; monoclonal antibodies (mAbs), which are among the most suc-
cessful cancer therapies; next-generation formats, such as antibody-
drug conjugates, bispecific antibodies, and fusion proteins; as well as
vaccine components and gene therapy vectors. While small mole-
cules comprise the largest class of new drug approvals, nearly 30%
of US Food and Drug Administration (FDA) approvals in 2018
were protein based, up from 26% in 2017. As of the writing of this
paper, half of new drugs approved by the FDA in 2019 represent
biologics.1
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Therapeutic proteins offer new mechanisms of action, higher target
specificity, lower toxicity, and longer-acting pharmacokinetics,
compared to small molecule drugs.2–4 However, the development of
therapeutic proteins poses additional challenges. Not only must the
drug be effective, but it must also be “developable,” a concept that
encompasses many characteristics including high yield and homoge-
neity from cell culture, high purity drug substance after purification
processing, low viscosity and high stability at the high concentrations
necessary for drug product, high stability at in vitro long-term storage
conditions and in vivo after administration, high target specificity,
and, for antibodies, unimpaired neonatal Fc receptor (FcRn) bind-
ing.2,5 Nearly all of the factors that make a protein drug developable
are derived from the amino acid sequence, including site-specific
post-translational modifications (PTMs).6

In particular, the spontaneous non-enzymatic conversion of aspar-
agine to aspartic acid or iso-aspartic acid via deamidation is a
major pathway of protein degradation and is often seriously
disruptive to biological systems.7–9 Deamidation has been shown
to negatively affect both in vitro stability and in vivo biological
function of diverse classes of proteins. Deamidation has been
reported as a critical quality attribute in many monoclonal anti-
bodies due to its impact on biological activity.10–13 In one human-
ized monoclonal immunoglobulin G1 (IgG1) antibody drug, an
asparagine in the heavy-chain complementarity determining re-
gion 2 (CDR2) loop was found to deamidate in vivo, which greatly
decreased the drug’s efficacy.14 In another case, heavy-chain CDR
deamidation resulted in an almost complete loss of potency and
binding activity of a therapeutic monoclonal antibody.15 In ad-
eno-associated virus, an emerging new vector for gene therapy,
extensive capsid deamidation has been observed that impacts
transduction and correlates to a loss of vector activity.16 Deamida-
tion of asparagine residues can also significantly affect immunoge-
nicity and efficacy of protein-based vaccines. Specifically, progress
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Figure 1. Asparagine Deamidation Reaction

(A and B) Spontaneous degradation of asparagine can

occur by (A) direct hydrolysis of the side chain to aspartic

acid or (B) via a succinimide intermediate, produced by

a nucleophilic attack of the side chain carbonyl by the

following (N+1) residue backbone nitrogen, producing

either iso-aspartic acid or aspartic acid. Residues are

rendered as sticks with Asn, Asp, and iso-Asp, and

succinimide carbons colored gray, green, and cyan,

respectively (O, red; N, blue).
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to develop next-generation anthrax vaccines has been halted by
vaccine instability resulting from asparagine deamidation in
anthrax protective antigen.17–21 Even in the nontherapeutic
enzyme glucoamylase, used commercially to produce sweeteners
and ethanol, asparagine deamidation causes a decrease in enzyme
activity and change in thermodynamic stability.22–24

Prediction of deamidation liability as early as possible in protein drug
development is important because many more candidate drugs are
proposed than can be tested. For example, typical antibody generation
results in hundreds of candidates, which far exceeds the capacity of a
drug development organization.2,25 Development of a therapeutic
protein is so costly in bothmoney and time that, after an initial assess-
ment for screening, only a single candidate is moved forward in most
cases.16,26,27 Sequence liabilities that are not dealt with as early as
possible necessitate more expensive and time-consuming remedia-
tion strategies later in development26 and could lead to termination
of the project.

Computational tools already exist to facilitate drug candidate
screening by the identification of sequence liabilities.6,28–45 In the
case of asparagine deamidation,36,40–45 currently available tools suffer
from several limitations: they provide only a binary (yes, high risk to
deamidate; or no, low risk to deamidate) prediction,36,40,42,43 require
an experimental crystal structure,42–45 or are applicable only to anti-
body asparagines.36,40 All offer no36,40,42 or low accuracy41,43–45 pre-
dictions of deamidation rate. Oversimplified models tend to overesti-
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mate the number of deamidation sites greatly,
which leads to over-engineering and rejecting
good drug candidates too early in development.
On the other hand, these models may also over-
look asparagines for which deamidation is
rarely observed (such as NK or NW sites),
which can lead to costly and ineffective drug
development.

In this paper, we apply machine learning to a
large (n = 776) liquid chromatography-tandem
mass spectrometry (LC-MS/MS) dataset of
monoclonal antibody peptides to create accu-
rate random decision forest models for the
PTM asparagine deamidation.46 We show that
our categorical model predicts antibody deamidation likelihood
with nearly 5% increased accuracy and 0.2 MCC over the best
currently available models. Surprisingly, our model also paces or
outperforms advanced and conventional models on an independent
non-antibody dataset, including enzyme, antigen, and viral capsid
deamidation sites. In addition to deamidation probability, we are
able to accurately predict deamidation rate (R2 = 0.963 and Q2 =
0.822), a capability with no peer in current models. We provide evi-
dence that our method can be applied with equal accuracy to predict
the likelihood and rate of site-specific asparagine deamidation in any
protein of interest.

RESULTS AND DISCUSSION
Feature Selection

Spontaneous deamidation of asparagine to aspartic acid or iso-as-
partic acid proceeds by one of two reaction mechanisms (Figure 1).
At neutral to basic pH, the most common route is by a nucleophilic
attack of the asparagine side chain by the backbone nitrogen of the
following (N+1) residue, forming the cyclic succinimide intermediate.
Hydrolysis at one of two carbonyls of the succinimide intermediate
results in either aspartic acid or iso-aspartic acid. Below pH 5, direct
hydrolysis of the asparagine side chain amide to aspartic acid is the
dominant reaction.8,9

Both mechanisms have been shown to rely on both the primary
and three-dimensional (3D) structure, with the residue immedi-
ately following the asparagine residue (N+1) having the largest
cal Development Vol. 15 December 2019 265
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Table 1. Predictors for Asparagine Deamidation Machine Learning Model

Structural / Chemical Category Parameter

Primary sequence
pentapeptide deamidation half-life (pphl, days)

categorical N+1 residue

Backbone orientation

backbone dihedral Phi (4,�)

backbone dihedral Psi (J,�)

nucleophilic C-N attack distance (Å)

Side-chain orientation
side-chain dihedral chi1 (c1,

�)

side-chain torsion chi2 (c2,
�)

Solvent accessibility
percent solvent accessibility (PSA, %)

solvent accessible surface area (SASA, Å2)

Hydrogen bonding

hydrogen bonds to side chain (#)

Asn local secondary structure (Sheet)

Asn local secondary structure (Loop)

Machine-learning parameter
(for regression model only)

categorical model probability output (%)

12 total parameters were used to inform the categorical machine-learning model to pre-
dict deamidation likelihood, comprising 6 general categories. For the regression model
to prediction deamidation rate, the output of the categorical model was included as an
additional predictor.
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effect.8,9,47–51 The amino side residue preceding the asparagine
(N�1) was shown to have little to no effect on deamidation
rate.50,51 Steric hindrance, conformational space, and electrostatic
effects introduced by the N+1 residue may all affect the ability
of the side chain and/or backbone to align and form the cyclic
intermediate.9 As both reaction mechanisms require hydrolysis
to form the final aspartic acid or iso-aspartic acid product, avail-
ability of water molecules, or a proton donor, and solvent exposure
may directly influence the rate of deamidation.9 Finally, hydrogen
bonding to the side chain or backbone may stabilize asparagine
and prevent degradation to aspartic acid.

Taken together, these observations compiled from literature informed
12 total parameters for asparagine deamidation likelihood (Table 1),
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which our machine-learning models would use to predict deamida-
tion. The N+1 residue was taken into account as both a categorical
variable and as the experimental half-life of a synthetic pentapeptide
(pentapeptide half-life, pphl) containing the same N�1 and N+1
sequence, measured by Robinson et al.51 Half-lives were not reported
by Robinson et al. for pentapeptides with asparagine in the N+1 po-
sition, likely because it is difficult to distinguish between deamidation
in the N and N+1 position in this case. Thus, when N+1 = N, we used
an average pphl of 5.7 days.

The ability of the side chain and backbone to align to form the cy-
clic succinimide intermediate was taken into account by the back-
bone dihedral angles (phi and psi), asparagine side-chain dihedrals
(chi1 and chi2), and distance between the side chain carbonyl and
backbone nitrogen (nucleophilic attack distance).42 Solvent acces-
sibility was expressed as a percent of the total residue area (percent
solvent accessibility [PSA]), as well as area in Å2 (solvent accessible
surface area [SASA]). Hydrogen bonding to the asparagine side
chain was predicted if a potential donor-acceptor pair was found
within 3 Å and counted as the total number of predicted bonds
(up to 4). Hydrogen bonding to the backbone was accounted for
by secondary structure (either sheet or loop). We do not need a
third variable for helical secondary structure, because if the local
secondary structure is neither a sheet nor loop, an a helix can
be assumed.

Because the predictive tool we developed is most valuable during early
development or candidate selection of a deamidation-liable protein,
when little to no experimental data is available, we relied only on
the primary sequence of the proteins to train our models. Two of
the deamidation predictors we chose (N+1 residue and pphl) could
be gleaned from the primary sequence directly. For the 9 parameters
that could not, the structure of each protein was generated by homol-
ogy modeling and predictors were extracted from the predicted 3D
structure. To predict deamidate rate, we used the same 12 predictors
for the regression model, with an additional parameter for the output
of the first classification model, representing the predicted likelihood
of deamidation.
Figure 2. Categorical and Regression Models

Predictor Ranking

(A) Importance of each parameter in the categorical

model for predicting deamidation probability was

measured by the mean decrease in out-of-bag accuracy

when that parameter was excluded from the model. (B)

Importance of each parameter in the regression model for

predicting deamidation half-life was measured by the

mean increase in the out-of-bag percent mean squared

error (MSE) when that parameter was excluded from the

model.
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Table 2. ConfusionMatrix for PredictionsMade by the Categorical Machine

Learning Model for Predicting Deamidation Liability on the Training

Dataset

Prediction /

Positive NegativeExperiment Y

Positive 137 0

Negative 0 639

Figure 3. Regression Machine Learning Model for Predicting Deamidation

Rate

(A) Predicted half-life (t1/2, weeks) was plotted versus the experimental measured

t1/2 for the training dataset. Individual asparagines are plotted as black circles for

and the solid black line indicates where predicted t1/2 = experimental t1/2. Our

regression model predicted the training set with R2 = 0.963. (B) Predicted half-life

(t1/2, weeks) by our regression model (blue circles), the Robinson et al. model (green

squares), and the Lorenzo et al. model (orange triangles) were plotted versus

experimentally measured t1/2 (weeks) for the validation set. The solid black line in-

dicates where predicted t1/2 = experimental t1/2. While our regression model pre-

dicted the independent validation set with Q2 = 0.822, both the predictions by

Robinson et al. and Lorenzo et al. resulted in Q2 < 0.
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Training and Validation Dataset Construction

It is expected that at least 80% of the effort involved in training a ma-
chine-learning model is dedicated to data processing and cleaning.52

Machine learning requires a large amount of data with a high degree
of standardization. Thus, we performed a large side-by-side forced
degradation study for 34 in-house IgG molecules, comprising a total
of 608 asparagine sites that include 304 unique sites. We accelerated
deamidation by incubating each molecule at 40�C and pH 8.0 for up
to 4 weeks and measured the deamidation abundance at 0-, 2-, and
4-week time points for each site by LC-MS/MS tryptic peptide map-
ping. The deamidation half-life (t1/2) of each asparagine was calcu-
lated by least-squares fit of the data to an exponential decay function
(Figure S1).

This experimental t1/2. was used to train the regressionmodel for half-
life prediction. For training a classification machine-learning model
to predict the probability of observing deamidation, we set the
threshold at 1.0% deamidation per month or t1/2 z276 weeks. For
example, if we observed only a 0.9% increase in deamidation after
4 weeks under stress conditions, we would train the classification
model that this site did not deamidate (class “no”). If we measured
a 1.1% increase in deamidation after 4 weeks at stress conditions
for an asparagine site, this site was reported as class “yes,” or
deamidated.

Each asparagine located in the variable region of the antibodies in our
forced degradation study was included in the training set. Because our
Table 3. Statistics for Predictions Made by the Categorical Machine

Learning Model for Predicting Deamidation Liability on the Training

Dataset

Statistic Categorical Model

Accuracy 100.0%

MCC 1.000

Precision 100.0%

Recall 100.0%

Specificity 0.0%

Negative predictive value 0.0%

Miss rate 0.0%

Fallout 0.0%

False discovery rate 100.0%

False omission rate 100.0%

Molecular The
training set included six antibody heavy-chain formats53–56 and two
light-chain formats (Figure S2), we also included one copy of each
unique constant region asparagine in the training data.

Initial models trained on our in-house dataset made accurate pre-
dictions overall (data not shown). However, they performed rela-
tively poorly on asparagines located in IgG complementarity deter-
mining regions (CDRs)—probably because, out of the 304 unique
asparagines in our initial dataset, only 25 unique CDR asparagines
were found to deamidate. To give our models more examples of
CDR deamidation to learn from, we expanded the training dataset
to include 33 additional clinical-stage IgG1s (and 39 additional
CDR deamidation sites) with deamidation data published by Lu
et al.57 (Table S3). The stress condition used by Lu et al.57 (40�C
and pH 8.5) was similar to our own, and their data was incorporated
into the training sets for both our categorical and regression models.
Only the final models that including training data from Lu et al. are
evaluated here.

To validate ourmodels, we constructed an independent validation da-
taset with data from 12 additional in-house IgG molecules that were
rapy: Methods & Clinical Development Vol. 15 December 2019 267
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Table 6. Confusion Matrix for Predictions Made by our Categorical Model

on the Non-mAb Independent Validation Subset

Prediction /

Positive NegativeExperiment Y

Positive 6 1

Negative 4 69

Table 4. ConfusionMatrix for PredictionsMade by the Categorical Machine

Learning Model for Predicting Deamidation Liability on the Independent

Validation Dataset

Prediction /

Positive NegativeExperiment Y

Positive 17 9

Negative 4 165
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not contained in the training dataset, stressed at identical conditions
to the training set molecules. The observed deamidation frequency in
the validation set was consistent with that of the training set (Fig-
ure S3). Predictors and LC-MS/MS data for these molecules were
added to an independent validation set. This independent validation
dataset was supplemented with non-antibody data from both the vali-
dation set published by Jia et al.,42 containing Aspergillus awamori
glucoamylase,22–24 anthrax antigen,17–19,21 and human angionenin
RNase,45 and recent capsid viral protein 3 (VP3) deamidation data
published by Giles et al.16 from adeno-associated virus 8 (AAV8),
an emerging vector for gene therapy (Table S3).
Machine-Learning Models for Predicting Deamidation

Likelihood and Rate

Both the classification model and regression model were random forest
models built in RStudio using the randomForest46 and caret58 libraries.
The number of trees and number of parameters tried at each split were
optimized by hand to minimize the out-of-bag error estimate. Because
the output of the classificationmodel is a probability that an asparagine
belongs to class “yes,” or will deamidate, the probability threshold at
which we interpret the prediction as “yes” or “no” was also optimized
after model building to maximize the accuracy.
Table 5. Statistics for Predictions Made by the Categorical Machine

Learning Model for Predicting Deamidation Liability on the Independent

Validation Set

Statistic Categorical Model

Accuracy 93.3%

MCC 0.691

Precision 81.0%

Recall 65.4%

Specificity 97.6%

Negative predictive value 94.8%

Miss rate 34.6%

Fallout 19.0%

False discovery rate 2.4%

False omission rate 5.2%

Notably, on the independent validation set containing non-antibody proteins our model
was able to achieve 93.3% accuracy and a Matthews correlation coefficient (MCC) of
0.691.
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Statistics for the fit to the training set were calculated for both the clas-
sification and regression models. Notably, the classification model was
able to achieve 100% accuracy on the training set, using 12 parameters
to determine whether each of 776 asparagines would deamidate with
no mistakes made. The regression model was able to predict t1/2 for
the 137 deamidated asparagines, 88 of which are unique, in the training
set with an R2 of 0.963. The regression model used the same 12 predic-
tors as the classification model, as well as the prediction output from
the classification model, for a total of 13 parameters (Table 1).

The top two predictors of deamidation liability, measured by the mean
decrease in out-of-bag accuracy when that parameter is excluded from
the categorical model, were the N+1 categorical variable and the pphl
(Figure 2A). This is consistent with the literature and it is well accepted
that the N+1 residue has the greatest effect on the deamidation liability
of all studied parameters.8,9,47–51 Even a conventional one-parameter
method using only the N+1 residue is competitive with advanced tech-
niques (Tables 11 and 16). The next three most important parameters
were related to the backbone alignment (psi and phi dihedral angles
and nucleophilic attack distance), followed by solvent accessibility
(SASA and PSA), side-chain alignment (chi1 and chi2 dihedral angles),
and hydrogen bonding (side-chain hydrogen bonds and secondary
structure). Similarly, Jia et al.42 found that tracking hydrogen bonding,
secondary structure in particular, did not improve their asparagine dea-
midation prediction.

To predict t1/2, the side-chain orientation was among the most impor-
tant variables, measured by the increase in the percentage of mean
squared error when that parameter is excluded from the regression
model (chi2 and chi1 were 1st and 5th most important, respectively).
Chi2 is the closest angle to the carbonyl involved in succinimide forma-
tion and Jia et al.42 also observed that chi2 was more important than
chi1 in their model.42 Similar to the categorical model, the N+1 variable
was among the best predictors, followed by the backbone dihedral angle
phi (Figure 2B). Interestingly, pphl, the second-most important predic-
tor for the categorical model, was only the 9th most important predictor
Table 7. Confusion Matrix for Predictions Made by the Conventional

NG/NN/NS Model on the Non-mAb Independent Validation Subset

Prediction /

Positive NegativeExperiment Y

Positive 7 0

Negative 9 64
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Table 10. Confusion Matrix for Predictions Made by the Jia et al. Model on

the Non-mAb Independent Validation Subset

Prediction /

Positive NegativeExperiment Y

Positive 5 2

Negative 2 71

Table 11. Statistical Comparison of Predictions Made by Our Categorical

Model and Other Models on the Independent Non-mAb Validation Subset

Statistic
Categorical
Model NG/NN/NS

Lorenzo
et al.41

Robinson
et al.43 Jia et al.42

Accuracy 93.8% 88.8% 93.8% 77.5% 95.0%

MCC 0.686 0.619 0.686 0.459 0.687

Precision 60.0% 43.8% 60.0% 28.0% 71.4%

Recall 85.7% 100.0% 85.7% 100.0% 71.4%

Specificity 94.5% 87.7% 94.5% 75.3% 97.3%

Negative predictive
98.6% 100.0% 98.6% 100.0% 97.3%

Table 8. Confusion Matrix for Predictions Made by the Lorenzo et al. Model

on the Non-mAb Independent Validation Subset

Prediction /

Positive NegativeExperiment Y

Positive 6 1

Negative 4 69
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for the regression model. It is possible that deamidation rate is strongly
influenced by structural effects absent from the Robinson et al.47 pen-
tapeptides. Indeed, we have observed in both our training and valida-
tion sets that t1/2 defies the hierarchy set forth by pphl. As in the cate-
gorical model, parameters that captured hydrogen bonding to the side
chain and secondary structure were the least useful in predicting dea-
midation rate.

To test whether the models were capable of accurately predicting dea-
midation likelihood and rate, both classification and regression
models were applied to the validation set comprised of 12 unseen an-
tibodies held from the training set and 4 non-mAb proteins (Tables 2,
3, 4, and 5; Figure 3). Surprisingly, the categorical model performed
with high accuracy for both mAb and non-mAb proteins, predicting
the validation set with more than 93% accuracy and a Matthews cor-
relation coefficient (MCC) of 0.691 even though it had never seen a
non-mAb deamidation site before (Table 5). Because deamidation
data for the non-mAbs came from literature and were either not
quantitative or not collected under the same conditions as our in-
house data, we did not validate the regression model on these mole-
cules. On the validation set molecules with in-house LC-MS/MS data,
the regression model was successful, predicting t1/2 with Q2 = 0.822
(Figure 3B).

Out of the 195 total asparagines in our validation set, the categor-
ical model made 13 mistakes. It tended toward the conservative
side, underpredicting deamidation in 9 cases and only overpre-
dicting 4 asparagines that were not experimentally observed to
deamidate. Interestingly, 5 of the 9 underpredicted sites (almost
40% of our total error) came from one molecule: the AAV8 capsid
protein VP3.16 Further, the 5 sites that our model mispredicted
were significantly less deamidated than the other 5 deamidation
sites observed in VP3, all of which our model correctly predicted
(Tables 17 and 20). It was shown by Giles et al.16 that the 5 low
abundance deamidation sites did not respond significantly to in-
cubation at 70�C or pH 10 or changes to the purification process.
Table 9. Confusion Matrix for Predictions Made by the Robinson et al.

Model on the Non-mAb Independent Validation Subset

Prediction /

Positive NegativeExperiment Y

Positive 7 0

Negative 18 55

Molecular The
Thus, it is possible that deamidation would remain unchanged in
our milder forced degradation conditions (40�C and pH 8), and
we should instead consider these sites as non-liable. Nevertheless,
our model outperformed both conventional (Table 18) and
advanced (Table 19) predictions of deamidation for AAV8 capsid
protein VP3 asparagines.

Taken together, the high accuracy at which our models were able to
predict deamidation in the diverse proteins in our validation set indi-
cates that these models may be generally applied to predict deamida-
tion in any protein of interest.

Comparison with Advanced and Conventional Models

To evaluate the relative performance of our models, we have applied
to our validation set as many currently available predictions of deami-
dation from the literature as possible. These advanced tools include
another machine learning model by Jia et al.,42 a tree-based approach
by Yan et al.,40 and empirical calculations by Robinson et al.43 and
Lorenzo et al.41. In addition, we compared all of these approaches
to a conventional one-parameter method based on the primary
sequence alone. For the conventional method (named NG/NN/NS
here), if an asparagine is followed by glycine, asparagine, or serine
(N+1 = G, N, or S), then it is considered as liable to deamidate. All
deamidation sites in our validation set were NG, NN, or NS motifs,
value

Miss rate 14.3% 0.0% 14.3% 0.0% 28.6%

Fallout 40.0% 56.3% 40.0% 72.0% 28.6%

False discovery
rate

5.5% 12.3% 5.5% 24.7% 2.7%

False omission
rate

1.4% 0.0% 1.4% 0.0% 2.7%

Statistics were calculated for predictions made by all models on the non-mAb validation
subset, which was nearly identical to the validation set used by Jia et al.42

rapy: Methods & Clinical Development Vol. 15 December 2019 269
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Table 14. Confusion Matrix for Predictions Made by the Yan et al. Model on

the mAb-Only Independent Validation Set

Prediction /

Positive NegativeExperiment Y

Positive 5 4

Negative 7 52

Table 12. Confusion Matrix for Predictions Made by Our Categorical Model

on the mAb-Only Independent Validation Set

Prediction /

Positive NegativeExperiment Y

Positive 6 3

Negative 0 59
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so the data was particularly amenable to and not biased against this
conventional method. Statistical comparison of the conventional
model and our categorical model are shown in Table S1. Conversely,
our training set contained many non-NG, -NN, and -NS sites (Fig-
ure S3) and was poorly predicted by the conventional method (Table
S2).

Because the methods by Robinson et al.43 and Jia et al.42 require crys-
tal structures, these models could be applied to only a subset of our
validation set, which is nearly identical to the validation set used by
Jia et al. for their method and comprised of only non-mAbs.42 We
have removed N395 of A. awamori glucoamylase (PDB: 3GLY)
from this validation subset as Chen et al.22 showed that this
asparagine is N-glycosylated. Of note, all sites with N+1 = N and
N+1 = Q are also missing from the non-mAb validation subset and
the model by Jia et al.42 does not provide predictions for them. Finally,
two deamidation sites in anthrax protective antigen (N466 and N537)
were corrected to match the observations of Verma et al.19 The indi-
vidual confusion matrices are shown in Tables 6, 7, 8, 9, and 10, and a
statistical comparison of our method performance on this validation
subset to the conventional method and those of Lorenzo et al.,41 Rob-
inson et al.,43 and Jia et al.42 is shown in Table 11. Jia et al.42 had the
highest accuracy on this non-mAb validation set, with one less
mistake than our model or that of Lorenzo et al.41 However, their
model also performed last in several categories. Our model and that
of Lorenzo et al.41 had the second-best overall accuracy of 93.8%,
were not the worst performers in any category, and had nearly iden-
tical MCC to that of the Jia et al.42 model (Table 11).

The tree-based model proposed by Yan et al.40 is only applicable to
IgG mAbs. Thus, in order to compare our methods, we created
another subset of our validation set including only IgG mAbs. On
this mAb-only independent validation subset, predictions made by
our model (Table 12) were compared against those made by the
models of Yan et al.40 (Table 13), Lorenzo et al.41 (Table 14), and
the conventional one-parameter NG/NN/NS model (Table 15).
Again, our categorical model was not the worst performer in any sta-
Table 13. Confusion Matrix for Predictions Made by the Conventional NG/

NN/NS Model on the mAb-Only Independent Validation Set

Prediction /

Positive NegativeExperiment Y

Positive 9 0

Negative 9 50
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tistic and had the best MCC (0.796) and accuracy (95.6%) at predict-
ing the mAb-only dataset (Table 16).

Unfortunately, we were not able to make a significant comparison to
the tree-based method proposed by Sydow et al.36 Their method is
restricted to only the CDR of antibodies.

As of the writing of this paper, we were only able to find two
methods in the literature for the prediction of deamidation half-
life: by Robinson et al.43 and Lorenzo et al.41 Deamidation
half-life is both temperature and pH dependent and each model is
specific to one condition. Specifically, the Robinson et al.43 model
predicts t1/2 for proteins at 37�C and pH 7.4 and Lorenzo et al.41

at slightly basic pH and up to 40�C. In our experience, these condi-
tions are similar enough to our own (40�C and pH 8.0) to make a
direct comparison.

Out of the 26 unique deamidation sites in our validation set, only 7
had available t1/2 measurements, all of which were calculated from
LC-MS/MS data collected in-house. Thus, we applied each model
to these 7 sites for comparison of predictive accuracy. Both the Rob-
inson et al.43 and Lorenzo et al.41 models predicted values of t1/2 that
disagreed enough with the experimental values to produce a Q2 < 0.
Our model achieved a Q2 of 0.822 (Figure 3B). Both the Robinson
et al.43 and Lorenzo et al.41 methods rely heavily on the pphl as
the basis for their half-life prediction, while our model ranked
pphl as one of the least useful parameters for prediction t1/2 (Fig-
ure 2B), which might help to explain the discrepancy in results.
While the Lorenzo et al. model tended to underpredict deamidation
rate in this independent validation set, both the Lorenzo et al. and
NG/NN/NS models overpredicted the number of liable sites in the
AAV8 capsid protein VP3 (Tables 17, 18, 19, 20).

Conclusions

We have constructed both a categorical model for predicting whether
or not an asparagine is liable for deamidation, and a regression model
for determining the rate at which a predicted site deamidates. Both
Table 15. ConfusionMatrix for PredictionsMade by the Lorenzo et al.Model

on the mAb-Only Independent Validation Set

Prediction /

Positive NegativeExperiment Y

Positive 6 3

Negative 3 56
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Table 18. Confusion Matrix for Predictions Made by the Conventional NG/

NN/NS Model on the AAV8 Capsid Protein VP3

Prediction /

Positive NegativeExperiment Y

Positive 9 1

Negative 8 29

Table 16. Statistical Comparison of Predictions Made by Our Categorical

Model and Other Models on the Independent mAb-Only Validation Subset

Statistic
Categorical
Model NG/NN/NS

Yan
et al.40

Lorenzo
et al.41

Accuracy 95.6% 86.8% 83.8% 91.2%

MCC 0.796 0.651 0.388 0.616

Precision 100.0% 50.0% 41.7% 66.7%

Recall 66.7% 100.0% 55.6% 66.7%

Specificity 100.0% 84.7% 88.1% 94.9%

Negative predictive value 95.2% 100.0% 92.9% 94.9%

Miss rate 33.3% 0.0% 44.4% 33.3%

Fallout 0.0% 50.0% 58.3% 33.3%

False discovery rate 0.0% 15.3% 11.9% 5.1%

False omission rate 4.8% 0.0% 7.1% 5.1%
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outperform or pace currently available models based on predictions
made on independent validation sets.

Although bothmodels were trained on onlymAb deamidation data, we
found that they applied with similar accuracy to non-mAbmolecules in
our validation set, including enzyme, antigen, and viral capsid
deamidation sites. In contrast to other methods, ours do not require
crystallographic 3D coordinates and are not protein class specific.
Rather, the structural information used by our models to predict dea-
midation is drawn from homologymodels. Thus, they are applicable to
any protein for which a similar protein’s structure is available in the
PDB.

It is our hope that with more data and increasingly accurate and inter-
pretable models, a fundamental understanding of protein degrada-
tion, including deamidation, will be attained, leading tomore and bet-
ter protein-based therapies.
MATERIALS AND METHODS
3D Model Building and Parameter Extraction

For AstraZeneca in-house molecules, full-length homology models
were built using Schrödinger BioLuminate.59 Briefly, the most similar
crystal structure from the PDB, by sequence, was first identified by
basic local alignment search tool (BLAST).60 This structure and an
in-house constant region template were used as scaffolds for the
full-length structure. The Protein Preparation Wizard tool was used
to add hydrogens, assign bond orders, remove solvent molecules,
Table 17. Confusion Matrix for Predictions Made by our Categorical Model

on the AAV8 Capsid Protein VP3

Prediction /

Positive NegativeExperiment Y

Positive 5 5

Negative 0 37

Molecular The
optimize H-bond assignments, and perform restrained energy mini-
mization. Molecules from the study by Lu et al.57 were modeled simi-
larly; however, only the Fv structure was generated. Predictors of
asparagine deamidation were extracted from the 3D homology
models within Schrödinger via python script.
Generation of Deamidated IgGs

For IgG deamidation data generated in-house, samples at 10 mg/mL
in 50 mM Tris pH 8.0 were incubated at 40�C for 2-week and 4-week
time points. Reactants were stored at �80�C prior to analysis by
LC-MS/MS.
LC-MS/MS Tryptic Peptide Mapping

20 mL samples at 5 mg/mL were denatured by adding 200 mL of 8 M
guanidine, 130 mM Tris, 1 mM EDTA, pH 7.6 denaturing buffer.
The samples were then reduced by the addition of 2 mL of 500 mM
dithiothreitol. After incubation at 37�C for 30 min, samples were
alkylated by the addition of 5 mL of 500 mM iodoacetamide and incu-
bated at ambient temperature for 30min in the dark. The reduced and
alkylated samples were buffer exchanged into a solution containing
2 M urea and 100 mM Tris at pH 8.0 using an Amicon spin filter
(EMD Millipore, Billerica, MA, USA; molecular weight cut-off of
10 kDa); 5 mg of trypsin was then added to the spin filter and incu-
bated at 37�C for 4 h. The digested samples were collected from the
spin filters, and the digestion was quenched with trifluoroacetic acid.

Peptides produced by enzymatic digestion were eluted on an Acquity
Ultra Performance liquid chromatography system (Waters, Milford,
MA, USA) equipped with an ethylene bridged hybrid C18 reversed-
phase column (1.7 mm, 2.1 mm, 150 mm) using a gradient of
0%–60% acetonitrile at a flow rate of 0.2 mL/min (total elution time
of 76 min). Peptides separated on the column were identified by a
UVdetector and analyzed using anOrbitrapVelos Promass spectrom-
eter (Thermo Fisher Scientific). Peak identification was based on both
the exact monoisotopic mass and the tandem mass spectrum of the
Table 19. ConfusionMatrix for PredictionsMade by the Lorenzo et al.Model

on the AAV8 Capsid Protein VP3

Prediction /

Positive NegativeExperiment Y

Positive 9 1

Negative 9 28
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Table 20. Comparison of Predictions Made by our Categorical Model and

the NG/NN/NS Model on Selected Residues of the AAV8 Capsid Protein

Residue N+1
Avg % Deamidation
Giles et al.16

Categorical
Model NG/NN/NS

Lorenzo
et al.41

N254 N 9% no yes yes

N255 H ND no no yes

N263 G 99% yes yes yes

N304 N ND no yes yes

N305 N 8% no yes yes

N337 N ND No yes yes

N384 N ND no yes yes

N385 G 88% yes yes yes

N410 N 3% no yes yes

N459 T 7% no no no

N498 N ND no yes yes

N499 N 17% yes yes yes

N500 S ND no yes yes

N514 G 84% yes yes yes

N517 S 4% no yes yes

N540 G 79% yes yes yes

N599 S ND no yes yes

N611 R ND no no no

N670 S ND no yes yes

N693 S ND no yes yes

Individual residue level predictions are shown for each model on a subset of residues
from the AAV8 protein. The 5 mispredicted sites by our model were significantly less
deamidated than the other 5 deamidation sites observed in the AAV8 capsid, measured
by Giles et al.16

Molecular Therapy: Methods & Clinical Development
target ion. Deamidation quantitation was based on peak areas from the
extracted ion chromatography of corresponding ions.

In most cases in our collected deamidation data for the training and
validation sets, sequencing information by MS/MS could distinguish
between deamidation on neighboring asparagines in the same tryptic
peptide. However, for two NN sites in the validation set, MS/MS data
could not distinguish between the N and N+1 residues. Thus, in these
cases, the t1/2 was a combined measurement for both sites in the pep-
tide. Half-life predictions made by the regression model for these two
sites were also combined prior to analysis.
Random Forest Machine Learning Model Construction

Both the classification model and regression model were random
forest models built in RStudio using the randomForest46 and caret58

libraries. The number of trees and number of parameters tried at each
split were optimized by manually tuned to minimize the out-of-bag
error estimate.

For the classification model, 500 trees were generated with 3 variables
tried at each split, producing an out-of-bag error estimate of 4.25% on
272 Molecular Therapy: Methods & Clinical Development Vol. 15 Decem
the training set. The probability threshold at which we interpret the
prediction as “yes” or “no” was also optimized to 53% after model
building. Confusion matrices and variable importance plots were
generated using caret and random Forest libraries, respectively.

The regression model was trained only on the subset of training data
containing deamidation sites quantified by LC-MS/MS, including our
in-house data and that of Lu et al.57 In this case, 500 trees were gener-
ated with 4 variables tried at each split. The out-of-bag predictions ex-
plained 63.5% of the variance of the training set. R2 and Q2 were
calculated and variable importance plots were generated using caret
and randomForest libraries, respectively.
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Supplemental Figure 1. Calculation of site-specific asparagine 

deamidation half-life from from LC-MS/MS deamidation 

abundance. (a) Deamidation abundance for each asparagine in our 

training set molecules were measured by LC-MS/MS as the sum of 

aspartic acid and iso-aspartic acid products after 0, 2, and 4 week 

timepoints at stress conditions (blue dots).  (b) The deamidation half-

life of each site was calculated by a least squares fit to the abundance 

of non-deamidated asparagines versus time in weeks (blue dotted 

line).  The half-life (t1/2) is the time in weeks for deamidation to reach 

50% (in this case 11.5 weeks, indicated by grey lines).  



IgG1 WT IgG1 TM IgG4 WT IgG4 P non IgGIgG1 WT IgG1 TM IgG1 YTE IgG1 MAIA IgG4 WT IgG4 P

Training set Validation set

Kappa LambdaKappa Lambda

a.

c.

b.

d.

Supplemental Figure 2. Training and validation data set distribution.  

Distribution of IgG formats and non-IgG formats in (a) the training set 

and (b) the validation set.  There are a total of 64 IgG1s, with 6 unique 

heavy chain formats, and 3 IgG4s, with 2 unique heavy chain formats, 

in the training set.  The validation set contains 10 IgG1s and 2 IgG4s, 

with 2 unique heavy chain formats each, and 4 non-mAb proteins.  

Among IgGs, the light chain constant region format distribution is 

shown for (c) the training set and (d) the validation set.



Training set

Validation set

a.

b.

Supplemental Figure 3. Distribution of deamidation frequency in 

training and validation sets. The number of asparagines is plotted 

versus the N+1 residue for (a) the training data set and (b) the 

independent validation set.  In each case, the number of non-

deamidated asparagines observed is colored maroon and the number 

of deamidated sites is colored cyan.  For the training set, the fraction of 

deamidated sites where N+1 = G, N, or S, was 80%, 48%, and 24%, 

respectively; whereas in the validation set, we observed 76%, 40%, and 

20%, respectively.  



Statistic
Categorical 

model
NG/NN/NS

Accuracy 92.8% 86.2%
MCC 0.671 0.625

Precision 77.3% 49.0%
Recall 65.4% 96.2%

Specificity 97.0% 84.6%
Negative Predictive Value 94.8% 99.3%

Miss Rate 34.6% 3.8%
Fallout 22.7% 51.0%

False Discovery Rate 3.0% 15.4%
False Omission Rate 5.2% 0.7%

Prediction →
Experiment ↓

Positive Negative

Positive 17 9

Negative 5 164

a. b. Prediction →
Experiment ↓

Positive Negative

Positive 25 1

Negative 26 143

c.

Supplemental Table 1. Comparison of predictions made by the 

categorical model and the simple (NG/NN/NS) model on the 

independent validation set. (a) Confusion matrix for our categorical 

model; (b) confusion matrix for the NG/NN/NS model; and (c) statistics 

calculated for both the categorical and NG/NN/NS models.



Statistic
Categorical 

model
NG/NN/NS

Accuracy 100.0% 43.4%
MCC 1.000 0.672

Precision 100.0% 81.2%
Recall 100.0% 92.0%

Specificity 0.0% 32.8%
Negative Predictive Value 0.0% 56.6%

Miss Rate 0.0% 18.8%
Fallout 0.0% 8.0%

False Discovery Rate 100.0% 78.7%
False Omission Rate 100.0% 41.4%

Prediction →
Experiment ↓

Positive Negative

Positive 137 0

Negative 0 639

a. b. Prediction →
Experiment ↓

Positive Negative

Positive 92 45

Negative 120 519

c.

Supplemental Table 2. Comparison of predictions made by the 

categorical model and the conventional (NG/NN/NS) model on the 

training set. (a) Confusion matrix for our categorical model; (b) 

confusion matrix for the NG/NN/NS model; and (c) statistics calculated 

for both the categorical and NG/NN/NS models.



Supplemental Table 3. Data sources and description. Number of 
total, deamidated, and unique asparagines for (a) complete training 
data set, (b) complete validation data set, (c) non-mAb validation data 
subset, (d) mAb-only validation data subset.  Non-unique asparagines
in the training set mAbs have a nearly identical site on the opposite 
heavy or light chain, as the full IgG homology model was generate for 
in-house molecules.  Our regression model was trained and validated 
only on the deamidated data within each set.

Training set
mAbs non-mAbs

In-house Lu et al. Jia et al. Giles et al.

All asparagines;  
Deamidated / Total

98 / 608 39 / 168 0/0 0/0

Unique asparagines; 
Deamidated / Total

49 / 304 39 / 168 0/0 0/0

a.

Validation set
mAbs non-mAbs

In-house Lu et al. Jia et al. Giles et al.

All asparagines;  
Deamidated / Total

9 / 68 0 / 0 7 / 80 10 / 47

Unique asparagines; 
Deamidated / Total

9 / 68 0 / 0 7 / 80 10 / 47

b.

Non-mAb validation 
subset

mAbs non-mAbs

In-house Lu et al. Jia et al. Giles et al.

All asparagines;  
Deamidated / Total

0 / 0 0 / 0 7 / 80 0 / 0

Unique asparagines; 
Deamidated / Total

0 / 0 0 / 0 7 / 80 0 / 0

c.

mAb-only validation 
subset

mAbs non-mAbs

In-house Lu et al. Jia et al. Giles et al.

All asparagines;  
Deamidated / Total

9 / 68 0 / 0 0 / 0 0 / 0

Unique asparagines; 
Deamidated / Total

9 / 68 0 / 0 0 / 0 0 / 0

d.
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