

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Interaction of lipid accumulation product and family history of hypertension on hypertension risk: A cross-sectional study in the Southern Chinese population

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029253
Article Type:	Research
Date Submitted by the Author:	18-Jan-2019
Complete List of Authors:	Huang, junxuan; Guangzhou Medical University Bao, XinYu; Guangzhou Medical University Xie, yixian; Guangzhou Medical University Zhang, xiaoxia; Guangzhou Medical University Peng, xin; Guangzhou Medical University Liu, yan; Guangzhou Medical University Cheng, mengjiao; Guangzhou Medical University Ma, JinXiang; Guangzhou Medical University wang, peixi; General Practice Center, Nanhai Hospital, Southern Medical University
Keywords:	Hypertension < CARDIOLOGY, LAP, Family history, Interaction effect

	1		
-	•	•	

BMJ Open
1
Interaction of lipid accumulation product and family history of hypertension on
hypertension risk: A cross-sectional study in the Southern Chinese population
Jun-Xuan Huang ¹ , Xin-Yu Bao ¹ , Yi-Xian Xie ¹ , Xiao-Xia Zhang ¹ , Xin Peng ¹ , Yan
Liu ¹ , Meng-Jiao Cheng ¹ , Jin-Xiang Ma ¹ and Pei-Xi Wang ²
Institution address:
¹ Department of Preventive Medicine, School of Public Health, Guangzhou Medical
University, Guangzhou, 511436, China.
² General Practice Center, Nanhai Hospital, Southern Medical University, Foshan,
528244, China.
Email address:
circle_wong@yeah.net (JX.H.); 1027473041@qq.com (XY.B.);
yixian.xie@yahoo.com (YX.X.); zhangxiaoxia405@163.com (XX.Z.);
609167985@qq.com (X.P.); 1763136904@qq.com (Y.L.);
15700727758@163.com (MJ.C.); mjx777108@hotmail.com (JX.M.);
peixi001@163.com (PX.W.)
* Author to whom correspondence should be addressed; E-mail:
mjx777108@hotmail.com, peixi001@163.com

1 ABSTRACT

Objectives: This study aimed to investigate the applicability of lipid accumulation
product (LAP) in the Southern Chinese population and compare the predictive effects
of LAP and other obesity indicators on hypertension risk. Moreover, this study
investigated the interactive effects of LAP and family history of hypertension.

Methods: A total of 2079 community-dwelling adults in Southern China were enrolled in this cross-sectional study. The participants underwent the questionnaire survey, anthropometric tests, and laboratory examinations. The multivariate logistic regression model and receiver operating characteristic (ROC) curves were used to assess the association between hypertension risk and obesity indexes, including LAP, body mass index (BMI) and waist-hip ratio (WHR). The interaction effects were evaluated by relative excess risk of interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI).

Results: Higher LAP levels had relatively higher risk of hypertension (adjusted odds ratio [OR] = 3.19 per SD increase; 95% confidence interval [CI] = 1.90-5.35; P < 0.001). LAP (area under curve [AUC] = 0.721; 95% CI: 0.680–0.761) was a better indicator in indentifying hypertension risk than BMI (AUC = 0.698; 95% CI: 0.658-(0.737) and WHR (AUC = (0.684); 95% CI: (0.643-0.726) in females, but BMI performed better in males. A significant interaction between LAP and family history of hypertension was observed in males (RERI = 1.652, 95% CI: 0.267-3.037; AP = 0.516, 95% CI: 0.238–0.794; SI = 3.998, 95% CI: 0.897–17.820) but not in females.

Conclusions: LAP was significantly associated with the hypertension risk in the Southern Chinese population, and LAP performed better on hypertension risk than did BMI and WHR in the Southern China female population. The synergistic effect of LAP and family history of hypertension was demonstrated in males, but further studies are needed to investigate in females.

27 Keywords: Hypertension, LAP, Family history, Interaction effect

Strengths and limitations of this study

To the best of our knowledge, our study is the first to examine the validity of LAP, which was calculated using a modified formula, in the Southern China population. In addition, this study has some limitations. First, because this is a cross-sectional study, the results are not sufficient to indicate causality. Second, because of the small sample size in this study, further studies with a larger sample size are needed to investigate whether the modified LAP applies to all the residents dwelling in Southern China.

inter studies with a . if ide LAP applies to all the

INTRODUCTION

Hypertension, a significant risk factor of cardiovascular disease,¹ is one of the most
prevalent public health problems in the world, and it is the leading contributor to the
global burden of disease and mortality. Nowadays, one-third of adults are suffering
from hypertension in China, and the number of adults with hypertension in the world
is being predicted to increase by about 60% to a total of 1.56 billion in 2025.^{2, 3}

Accumulating evidence proves that obesity, especially visceral fat, and family history of hypertension could significantly contribute to hypertension.⁴⁻⁶ Numerous studies have demonstrated that positive family history is an important risk factor for hypertension.⁶⁻⁹ When it comes to obesity, the indexes that are most frequently used to assess obesity are body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR); however, these traditional obesity indexes can merely reflect the degrees of overweight and abdominal obesity but cannot distinguish between subcutaneous fat and visceral fat.¹⁰ Micromagnetic resonance imaging and microcomputed tomography, the gold standard measurement methods of visceral fat, are not only inconvenient but also expensive;¹¹ moreover, they are not suitable for large-scale epidemiological investigations. Therefore, it is necessary for us to identify a new obesity indicator that can distinguish visceral fat from subcutaneous fat conveniently and economically.

Recently, increasing attention has been directed towards lipid accumulation product (LAP). LAP, a new obesity index computed from WC and triglyceride (TG), has been shown to be a useful indicator of visceral fat,¹² as demonstrated by Kahn in 2005¹³. Some studies suggest that LAP can also be used to identify metabolic syndromes,¹⁴ type 2 diabetes mellitus,¹⁵ and stroke.¹⁶Additionally, several cross-sectional studies conducted in Japan,¹⁷ India,¹⁴ and Brazil indicate that LAP is significantly associated with cardiovascular disease and is a better indicator than BMI for identifying the cardiovascular risk.^{13, 18} A few national studies have investigated the association between LAP and hypertension in China, and all of them were conducted in northern China, including Bengbu,¹⁹ Beijing,²⁰ and Inner Mongolia.²¹ Owning to considerable

Page 5 of 29

BMJ Open

differences in climate, environment, and lifestyle between the south area and the north area of China, the prevalence of hypertension and the levels of LAP should be different. However, rare studies have compared LAP with other obesity indexes in the Southern Chinese population. In addition, almost all studies about LAP used the formula that was developed based on the third National Health and Nutrition Examination Survey in the US. Therefore, it is reasonable to suggest that the calculation formula of LAP needs to be modified in the Chinese population.

8 To the best of our knowledge, no studies have attempted to adjust the calculation 9 formula of LAP so that it can apply to the Southern Chinese population, and rare 10 studies have explored additive interactions between family history of hypertension 11 and LAP. Thus, the primary purpose of this study was to assess interactive effects 12 between adjusted LAP and family history of hypertension to predict the hypertension 13 risk in the Southern Chinese population.

14 METHODS

15 Study design and subjects

A cross-sectional survey based on community health was conducted in Southern China. Recruiting the enrollors took place in March 2017. The study samples were selected by a multistage and stratified random sampling method. A total of 3760 individuals were enrolled in this study; among them, 1681 participants who lacked complete data on demographic characteristics, anthropometric tests, or laboratory examinations were excluded. Finally, 2079 adults who had complete data were included in the analysis.

23 Patient and public involvement

24 Patients or public were not involved in this study.

Ethics statement

26 This study was approved by the Ethics Committee of Guangzhou Medical University.
27 Written informed consent was obtained from each study participant before
28 investigation.

General study questionnaire

An interview-based survey was performed using a questionnaire by trained staff. Socio-demographic data, family history of hypertension, cigarette smoking, and alcohol drinking were investigated. Smokers were defined as the participants smoking at least 1 cigarette/day for at least 6 months. Drinkers were defined as individuals consuming at least 30 ml alcohol/week for 1 year or more. Physical activities were divided into "seldom or never," "moderate," and "high." Participants with "seldom or never" were defined as those who performed activity less than 2 times per week. Participants with "moderate" were defined as those who exercised for more than 30 minutes each time, 3-5 times per week. Participants with "high" were defined as those who exercised for more than 30 minutes each time, more than 6 times per week. Marital status was classified as "currently not married" and "currently married"; "married" was regarded as "currently married," and "divorced/widowed/single" was regarded as "currently not married." Educational level was categorized as "elementary school or lower," "secondary school," and "senior high school or higher."

16 Anthropometric tests and laboratory examinations

The participants were required to take off their shoes and wear lightweight clothing for weight and height measurements. WC was measured at the level of 1 cm above the navel.²² Automatic sphygmomanometer (OMRON, hem-7125) was used to measure blood pressure (BP) of participants. BP measurement was conducted thrice in a quiet environment, and the participants rested at least one minute between each time of measurement. The mean of the three measurements was used in the analysis. Prehypertension was defined as systolic blood pressure (SBP) of 120-139 mmHg and/or diastolic blood pressure (DBP) of 80-89 mmHg, and hypertension was defined as SBP of \geq 140 mmHg, DBP of \geq 90 mmHg, and/or a reported medical history of anti-hypertensive medication.²² The BMI was calculated as weight in kilograms divided by the square of the height in meters. Overweight was defined as BMI of 24-27.9 kg/m², and obesity was defined as BMI of \geq 28 kg/m². The fasting blood samples were collected from the participants in the morning after an overnight fast and were

BMJ Open

used to assess fasting plasma glucose, total cholesterol, and TG levels.

According to Kahn's theory,¹³ LAP is calculated as [WC (cm) - The minimum of WC (male)] \times [TG (mmol/L)] for males and [WC (cm) - The minimum of WC $(female) \ge [TG (mmol/L)]$ for females, and the minimum waist size theoretically contains only the abdomen, muscle, viscera, and vertebral bone.¹³ Visceral fat can be estimated by the difference between the WC and the minimum waist size. In the present study, the WC of the studied population was skewed; therefore, the WC was log-transformed. The minimum WC was estimated by the mean WC minus two standard deviations after log-transformation in the local participants aged 18-24 vears.13, 20

11 Statistical analyses

According to the hypertension status, the enrollees were divided into three groups (normotension, prehypertension, and hypertension). The frequency (%) was used to describe sex, marital status, education level, physical activity, BMI, smoker, and drinker. Mean \pm standard deviation (SDs) was used to describe the WHR, fasting plasma glucose, total cholesterol, TG, SBP, DBP, and LAP. LAP was divided into four groups by the quartiles, i.e., Q1, Q2, Q3, and Q4. The differences of quantitative data across different hypertension statuses were analyzed by the Kruskal-Wallis H test because the data had skewed distribution. Categorical variables were analyzed by the Chi-squared test. The multivariate logistic regression model was used to analyze the relationship between LAP and risk factors of hypertension and prehypertension. The receiver operating characteristics (ROC) curves were applied to identify the superior obesity index and the best cut-off value of LAP to predict the hypertension risk. Moreover, the interaction effects between LAP and family history of hypertension were assessed by some relevant indicators, including the relative excess risk of interaction (RERI = $OR_{11} - OR_{10} - OR_{01} + 1$), the attributable proportion due to interaction (AP = $[OR_{11} - OR_{10} - OR_{01} + 1]/OR_{11}$), and the synergy index (SI = $[OR_{11} - OR_{11} - OR_{11}]/OR_{11}$) /[OR₀₁ - 1] + [OR₁₀ - 1]). If the interaction effect was not observed, the confidence interval of RERI and AP contained 0 and the confidence interval of S included 1.²³

The above indicators were calculated using an Excel table designed by Andersson et
al..²³ All reported *P*-values were two-tailed, and a *P*-value of < 0.05 was considered
significant. Statistical analyses were performed using SPSS version 19.0 (SPSS Inc.,
Chicago, IL, USA).

RESULTS

6 LAP

According to Kahn's theory,¹³ LAP was calculated as (WC - 60.6) × (TG [mmol/L])
in males and (WC - 54.1) × (TG [mmol/L]) in females based on the actual data
obtained from the Southern Chinese population (Table 1).²⁰

10 Basic characteristics of the study participants

A total of 2079 adults with an average age of 41.06 years were enrolled in the present study, including 1002 males (48.29%) and 1077 females (51.80%). The overall prevalence rates of normotension, prehypertension, and hypertension were 40.02%, 37.95%, and 22.03%, respectively. Male participants had a high prevalence of prehypertension and hypertension than female participants (P < 0.001). Statistically significant differences in age (P < 0.001), marital status (P < 0.001), education level (P < 0.001), smoker (P < 0.001), drinker (P < 0.001), and family history of hypertension (P = 0.005) were observed between normotension, prehypertension, and hypertension groups. However, no significant differences were observed in physical activity (P = 0.611) among the three groups. Anthropometric measurements found significant differences in BMI (P < 0.001), WHR (P < 0.001), LAP (P < 0.001), fasting plasma glucose (P < 0.001), total cholesterol (P < 0.001), SBP (P < 0.001), and DBP (P < 0.001) between the groups (Table 2).

24 LAP and the risk factors of hypertension

In order to investigate the relationship between LAP and blood pressure, LAP was divided into four groups by quartile (Table 3). A significant association was observed between LAP and blood pressure. SBP (P < 0.001) and DBP (P < 0.001) were relatively elevated in participants with higher LAP levels.

Page 9 of 29

BMJ Open

Multinomial logistic regression analysis was conducted to evaluate the association between LAP quartiles and hypertension status (Table 4). Participants with the fourth quartile of LAP were more likely to develop prehypertension (crude OR = 6.23, 95%CI: 4.54-8.54) and hypertension (crude OR = 21.22, 95% CI: 14.02-32.09) than those with the first quartile. Moreover, after adjusting for age, sex, marital status, educational level, physical activity, smoker, drinker, BMI, and WHR, the risks of prehypertension (adjusted OR: 2.34, 95% CI: 1.58-3.48) and hypertension (adjusted OR: 3.52; 95% CI: 2.11–5.88) significantly increased in participants with the fourth quartile compared with those with the first quartile. After controlling for age, sex, marital status, educational level, physical activity, smoker, drinker, BMI, WHR, fasting plasma glucose, and family history of hypertension, increased risks of prehypertension (adjusted OR: 2.25, 95% CI: 1.51-3.35) and hypertension (adjusted OR: 3.19, 95%CI: 1.90-5.35) were observed in participants with the fourth LAP quartile compared with those with the first one.

The results of ROC curves analysis in males and females are shown in Figs. 1 and 2 and Table. 5. LAP (AUC = 0.721; 95% CI: 0.680-0.761) was a better indicator to discriminate between different types of hypertension than BMI (AUC = 0.698; 95% CI: 0.658-0.737) or WHR (AUC = 0.684; 95% CI: 0.643-0.726) in females; however, BMI (AUC = 0.707, 95% CI: 0.672-0.742) performed better than WHR (AUC = 0.688; 95% CI: 0.650–0.725) and LAP (AUC = 0.677; 95% CI: 0.640–0.713) in males. The best cut-off values to predict hypertension were 63.892 in males and 30.860 in females.

23 Interaction effects between LAP and family history of hypertension

The interaction effects between LAP and family history of hypertension are presented in Table 6. Significant interaction effects between LAP and family history of hypertension were observed in males. The results of RERI (1.652; 95% CI: 0.267– 3.037) and AP (0.516; 95% CI: 0.238–0.794) indicated a significant interaction effect of family history of hypertension and LAP on hypertension, but the result of SI (3.998; 95% CI: 0.897–17.820) did not. **BMJ** Open

However, no significant interaction effects were found between LAP and family
 history of hypertension in females, as indicated by all the three indicators. RERI was

- 0.673 (95% CI: -2.566–1.220); AP was -0.328 (95% CI: -1.451–0.795); and SI was 0.610 (95% CI: 0.125–2.979).

5 Discussion

With the rapid development of the economy, elevated blood pressure has become a common and serious public health issue.²⁴ The prevalence of prehypertension and hypertension has significantly increased.²⁵ Elevated blood pressure is caused by diverse factors, among which obesity is closely related to hypertension.²⁶ Nowadays, the prevalence of obesity has increased by 13% in urban areas and by 85% in rural areas in China,¹⁶ and more attention should thus be paid to this issue. An increase in body weight is typically followed by enhanced blood pressure.¹² Extensive studies have found that obesity, especially visceral adipose tissue, could strongly increase the blood pressure.26

The mechanisms underlying the interaction between obesity and hypertension are complicated. The mechanisms of obesity-induced hypertension include sodium retention, insulin resistance, activation of renin-angiotensin-aldosterone, altered vascular function, and secretion of relevant adipokines.²⁷ In addition, the mechanisms of blood pressure increase can be activated by visceral fat.²⁸

Substantial evidences proved that the harm of the fat accumulation was greater than the total amount of fat.^{29, 30}However, traditional obesity indexes, such as BMI, WC, and WHR, have some limitations when distinguishing between subcutaneous fat and visceral fat. Therefore, a new obesity index that can distinguish visceral fat easily and effectively is urgently needed. After Kahn first demonstrated that LAP performs better than BMI for recognizing the cardiovascular risk, domestic and foreign scholars have paid increasing attention to LAP. LAP, a combination of WC and TG, is an accessible and inexpensive way to assess visceral fat.13 It is a well-known fact that TG can reflect the degree of visceral fat accumulation and WC is strongly associated with

Page 11 of 29

BMJ Open

hypertension.¹² Notably, hypertriglyceridemic waist (HTGW) is also calculated based
on the combination of TG and WC. However, LAP, a continuous indicator, is superior
to reflect visceral fat than HTGW,³¹ a dichotomous indicator.¹⁹ Therefore, LAP was
used as a visceral obesity indicator in this study.

LAP based on hypothesis of minimum waist circumference includes the rachis, abdominal viscera and muscle.13 Therefore, the differences between the actual WC and the minimum WC can represent abdominal adipose tissue.13 Notably, LAP in almost all studies is calculated by data obtained based on the third National Health and Nutrition Examination Survey in the United States.¹³ Because of differences in race, dietary habits, or lifestyle, individuals from different countries should have different visceral adipose tissues. It has been demonstrated that there are considerable differences in visceral adipose tissues between Chinese individuals and Europeans or Americans.³² Therefore, LAP was calculated in our study using a modified formula so that it could apply to the individuals dwelling in Southern China.

As expected, a significant association was found between LAP and hypertension in this present study. Our findings are consistent with those in studies by Zhong et al,¹⁶ Song et al,³⁰ and Shen et al,²⁰ all of which have demonstrated that LAP is an effective and reliable diagnostic indicator of hypertension. Participants with significantly higher LAP had higher risks of prehypertension and hypertension than those with lower LAP. Multinomial logistic regression analysis revealed that after adjusting for other factors, the risks of prehypertension and hypertension in the group with the highest LAP level were 2.25 and 3.19 times higher, respectively, than those in the group with the lowest LAP.

In the present study, we also found that LAP was a better indicator than BMI and WHR for identifying the risk of hypertension in females, but BMI was slightly superior to LAP in males. Because women are more likely to accumulate adipose tissue around the hips and thighs, we can easily understand why LAP is superior to BMI in identifying the risk of hypertension in females.³³ Similar results have been obtained in the study by Wang et al..³⁴ However, Gao et alfound that the performance

of LAP was superior to that of BMI in male Mongolians;²¹ the findings may be due to the apparently lower prevalence of high TG in female Mongolians than in male Mongolians (P < 0.05), and the facts might disturb the association between LAP and hypertension in female Mongolians.

In general, LAP, which applied to the Southern Chinese population, was a better indicator for predicting the hypertension risk in this study. In addition, large studies have demonstrated that family history of hypertension is a critical risk factor for hypertension, and individuals with family history of hypertension are 2-4 times more likely to develop hypertension than those without the family history of hypertension.³⁵ The interaction analysis in this study indicates the synergistic effect of LAP and family history on the hypertension risk in males, but not in females. In fact, cardiovascular events occur at a lower rate in females than in males.³⁶ In our study, the feminine participants who suffered both LAP and family history of hypertension were rarely observed and the prevalence rates of hypertension at a lower rate in females than in males.³⁶ Fewer positive observers in female might be due to sampling error, but might disturb the interaction effect between LAP and family history of hypertension on the hypertension risk in females. Visceral obesity and family history of hypertension may result in increased blood pressure through some unknown mechanisms. The synergistic effect between family history of hypertension and LAP on the hypertension risk was demonstrated in our study as well as in other studies.^{19, 34} However, further studies are needed to investigate the interaction effect between LAP and family history of hypertension on the hypertension risk.

To date, LAP is an inexpensive screening tool to identify visceral adipose tissue, and the method has high reproducibility. LAP, which was proposed by Kahn, was developed for the Western population. Thus this study explored the validity of LAP, which was calculated based on the Southern China population. The findings suggest LAP might perform better in predicting the hypertension risk than BMI and WHR in Southern Chinese females.

29 This study has some limitations. First, because this is a cross-sectional study, the

Page 13 of 29

BMJ Open

present results are not sufficient to indicate causality. Second, because of the small
sample size in this study, further studies with a larger sample size are needed to
investigate whether the modified LAP applies to all the residents dwelling in Southern
China.

5 CONCLUSION

In conclusion, LAP can be used to distinguish visceral fat from subcutaneous fat in the Southern Chinese population. LAP was significantly associated with the hypertension risk, and higher LAP levels had relatively higher blood pressure. LAP performed better in predicting hypertension than did BMI and WHR in the Southern China female population. The synergistic effect of LAP and family history of hypertension was demonstrated in males, and further studies are needed to investigate the interactive effects between LAP and family history of hypertension in females.

13 Acknowledgements

We gratefully acknowledge Dr. Pei-Xi Wang, Dr. Jin-Xiang Ma, Xin-Yu Bao,
Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and Meng-Jiao Cheng for their
excellent work in study coordination, data collection, and management.

17 Contributors

Jun-Xuan Huang, Pei-Xi Wang and Jin-Xiang Ma conceived and designed the study.
Jun-Xuan Huang, Xin-Yu Bao, Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and
Meng-Jiao Cheng contributed to collection of the data, analyzed the data and
interpretation of the results. Jun-Xuan Huang wrote the draft manuscript. Jin-Xiang
Ma, Pei-Xi Wang and Jun-Xuan Huang finalized the manuscript. All of the authors
approved the final version submitted for publication.

24 Funding

This study was supported by Talent Introduction Fund of Guangzhou MedicalUniversity (2009).

BMJ Open

1	Competing interests
2	The authors declared that they had no conflict of interest.
3	Ethics statement
4	This study was approved by the Ethics Committee of Guangzhou Medical University.
5	Written informed consent was obtained from each study participant before
6	investigation.
7	Data sharing statement
8	Our data might not be shared directly, because data belongs to all the team members
9	and informed consent should be attained from team members.
10	References
11	1. Bundy JD, He J. Hypertension and Related Cardiovascular Disease Burden in
12	China. Ann Glob Health 2018;82(2):227-233. doi:10.1016/j.aogh.2016.02.002
13	2. Beaney T, Schutte AE, Tomaszewski M, et al. May Measurement Month 2017: an
14	analysis of blood pressure screening results worldwide. The Lancet Global
15	Health 2018;6(7):e736-e743. doi:10.1016/S2214-109X(18)30259-6
16	3. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension:
17	analysis of worldwide data. <i>TheLancet</i> 2005;365(9455):217-223.
18	doi:10.1016/S0140-6736(05)17741-1
19	4. Macia E, Gueye L, Duboz P. Hypertension and Obesity in Dakar, Senegal. Plos
20	One 2016;11(9):e0161544. doi:10.1371/journal.pone.0161544
21	5. Tang L, Zhang F, Tong N. The association of visceral adipose tissue and
22	subcutaneous adipose tissue with metabolic risk factors in a large population of
23	Chinese adults. Clin Endocrinol 2016;85(1):46-53. doi:10.1111/cen.13013
24	6. Wandeler G, Paccaud F, Vollenweider P, et al. Strength of Family History in
25	Predicting Levels of Blood Pressure, Plasma Glucose and Cholesterol. Public

BMJ Open

1	Health Genom 2010;13(3):143-154. doi:10.1159/000233228
2	7. Liu M, He Y, Jiang B, et al. Association Between Family History and
3	Hypertension Among Chinese Elderly. Medicine 2015;94(48):e2226.
4	doi:10.1097/MD.00000000002226
5	8. Al-Safi SA, Aboul-Enein FH, Aboul-Enein BH, et al. Influence of family history
6	and lifestyle on blood pressure and heart rate in young adults in Jordan. Public
7	Health 2006;120(11):1027-1032. doi:10.1016/j.puhe.2006.06.009
8	9. Alhawari HH, Al-Shelleh S, Alhawari HH, et al. Blood Pressure and Its
9	Association with Gender, Body Mass Index, Smoking, and Family History
10	among University Students. Int J Hypertens 2018;2018:1-5.
11	doi:10.1155/2018/4186496
12	10. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional
13	differences. Obes Rev 2010;11(1):11-18. doi:10.1111/j.1467-789X.2009.00623.x
14	11. Chen W, Wilson JL, Khaksari M, et al. Abdominal fat analyzed by DEXA scan
15	reflects visceral body fat and improves the phenotype description and the
16	assessment of metabolic risk in mice. Am J Physiol-Endoc M
17	2012;303(5):E635-E643. doi:10.1152/ajpendo.00078.2012
18	12. Nurdiantami Y, Watanabe K, Tanaka E, et al. Association of general and central
19	obesity with hypertension. <i>Clin Nutr</i> 2018;37(4):1259-1263.
20	doi:10.1016/j.clnu.2017.05.012
21	13. Kahn HS. The "lipid accumulation product" performs better than the body mass
22	index for recognizing cardiovascular risk: a population-based comparison. Bmc
23	Cardiovasc Disor 2005;5(1):26-26. doi:10.1186/1471-2261-5-26
24	14. Ray L, Ravichandran K, Nanda SK. Comparison of Lipid Accumulation Product
25	Index with Body Mass Index and Waist Circumference as a Predictor of
26	Metabolic Syndrome in Indian Population. Metab Syndr Relat D

BMJ Open

1	2018;16(5):240-245. doi:10.1089/met.2017.0119
2	15. Lee JW, Lim NK, Park HY. The product of fasting plasma glucose and
3	triglycerides improves risk prediction of type 2 diabetes in middle-aged
4	Koreans. Bmc Endocr Disord 2018;18(1):33. doi:10.1186/s12902-018-0259-x
5	16. Zhong C, Xia W, Zhong X, et al. Lipid Accumulation Product and Hypertension
6	Related to Stroke: a 9.2-Year Prospective Study Among Mongolians in China. J
7	Atheroscler Thromb 2016;23(7):830-838. doi:10.5551/jat.33514
8	17. Wakabayashi I. Associations of Blood Lipid-Related Indices with Blood Pressure
9	and Pulse Pressure in Middle-Aged Men. Metab Syndr Relat D
10	2015;13(1):22-28. doi:10.1089/met.2014.0093
11	18. de Oliveira CC, Roriz AKC, Ramos LB, et al. Indicators of Adiposity Predictors
12	of Metabolic Syndrome in the Elderly. Ann Nutr Metab 2017;70(1):9-15.
13	doi:10.1159/000455333
14	19. Song J, Chen X, Zhao Y, et al. Risk factors for prehypertension and their
15	interactive effect: a cross- sectional survey in China. Bmc Cardiovasc Disor
16	2018;18(1). doi:10.1186/s12872-018-0917-y
17	20. Shen YY, Chen JC, Li G, et al. Relationship of lipid accumulation product with
18	hypertension and diabetes among Beijing residents study. Zhonghua yu fang yi
19	xue za zhi [Chinese journal of preventive medicine] 2017;51(5):415.
20	21. Gao X, Wang G, Wang A, et al. Comparison of lipid accumulation product with
21	body mass index as an indicator of hypertension risk among Mongolians in
22	China. <i>Obes Res Clin Pract</i> 2013;7(4):e308-e314.
23	doi:10.1016/j.orcp.2012.02.002
24	22. Zhang M, Batu B, Tong W, et al. Prehypertension and Cardiovascular Risk Factor
25	Clustering Among Mongolian Population in Rural and Animal Husbandry Area,
26	Inner Mongolia, China. Circ J 2009;73(8):1437-1441.

1	doi:10.1253/circj.CJ-09-0101
2	23. Andersson T, Alfredsson L, Källberg H, et al. Calculating measures of biological
3	interaction. <i>Eur J Epidemiol</i> 2005;20(7):575-579.
4	doi:10.1007/s10654-005-7835-x
5	24. Lackland DT, Beilin LJ, Campbell NRC, et al. Global Implications of Blood
6	Pressure Thresholds and Targets. Hypertension 2018;71(6):985-987.
7	doi:10.1161/HYPERTENSIONAHA.118.11280
8	25. Wang Z, Zeng X, Chen Z, et al. Association of visceral and total body fat with
9	hypertension and prehypertension in a middle-aged Chinese population. J
10	Hypertens 2015;33(8):1555-62. doi:10.1097/HJH.00000000000000000
11	26. Stabouli S, Papakatsika S, Kotsis V. The role of obesity, salt and exercise on
12	blood pressure in children and adolescents. Expert Rev Cardiovasc Ther
13	2011;9(6):753-61. doi:10.1586/erc.11.63
14	27. Kotchen TA. Obesity-Related Hypertension: Epidemiology, Pathophysiology, and
15	Clinical Management. Am J Hypertens 2010;23(11):1170-1178.
16	doi:10.1038/ajh.2010.172
17	28. Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of
18	gluco- and mineralocorticoid hormones in the setting of cardiometabolic
19	alterations: Adipose tissue and adrenal hormones. Ann Ny Acad Sci
20	2012;1264(1):87-102. doi:10.1111/j.1749-6632.2012.06597.x
21	29. Li Y, Bujo H, Takahashi K, et al. Visceral fat: higher responsiveness of fat mass
22	and gene expression to calorie restriction than subcutaneous fat. Exp Biol Med
23	(Maywood) 2003;228(10):1118-23.
24	30. Song J, Zhao Y, Nie S, et al. The effect of lipid accumulation product and its
25	interaction with other factors on hypertension risk in Chinese Han population: A
26	cross-sectional study. <i>Plos One</i> 2018;13(6):e0198105.

1	
2	
3	
3 4	
5 6 7 8 9 10	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
12 13 14 15 16 17	
17	
18	
19	
20	
20 21 22 23	
22	
23	
24	
24 25	
25	
25 26 27	
27	
28	
29	
30	
31	
32	
33	
33	
34	
35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
<u> </u>	

23

24

25

60

1

2

3

4

doi:10.1371/journal.pone.0198105

- 31. Janghorbani M, Aminorroaya A, Amini M. Comparison of Different Obesity Indices for Predicting Incident Hypertension. *High Blood Pressure & Cardiovascular Prevention* 2017;24(2):157-166. doi:10.1007/s40292-017-0186-3
- 32. Nazare J, Smith JD, Borel A, et al. Ethnic influences on the relations between 5 abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic 6 7 risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. The 8 American Journal of Clinical Nutrition 2012;96(4):714-726. 9 10 doi:10.3945/ajcn.112.035758

33. MA B. Sex Differences in Body Composition. *Adv Exp Med Biol* 2017;1043:9-27. doi:10.1007/978-3-319-70178-3_2

- 34. Wang H, Chen Y, Sun G, et al. Validity of cardiometabolic index, lipid
 accumulation product, and body adiposity index in predicting the risk of
 hypertension in Chinese population.*Postgraduate Medicine*2018;130(3):325-333. doi:10.1080/00325481.2018.1444901
- 35. TOZAWA M, OSHIRO S, ISEKI C, et al. Family History of Hypertension and
 Blood Pressure in a Screened Cohort. *Hypertens Res* 2001;24(2):93-98.
 doi:10.1291/hypres.24.93

36. Doumas M, Papademetriou V, Faselis C, et al. Gender Differences in Hypertension: Myths and Reality. *Curr Hypertens Rep* 2013;15(4):321-330. doi:10.1007/s11906-013-0359-y

	19
1	
2	
3	
4	The titles and legends of figure
5	Title
6	Fig.1 The ROC curve of different obesity indexes in predicting hypertension in males.
7	legend
8	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio.
9	
10	Title
11	Fig.2 The ROC curve of different obesity indexes in predicting hypertension in
12	females.
13	legend
14	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio.
15	
16	
17	
18	
19	
20	
21	
22	

	Sex	Log-transformed wais	t (cm) Theoret	tically minimum v	vaist (cm)	
	Male	4.328 ± 0.112	60.6			
	Female	4.255 ± 0.134	54.1			
2						
3 Tab	ole 2 Basic chara	acteristics of the particip	ants			
Variables		Normotension	Prehypertension	Hypertension	χ^2 / Z	<i>P</i> -value
		(N = 832)	(N = 789)	(N = 458)		
Sex (%)		6			135.625	< 0.001
Male		32.57	58.68	58.52		
Female		67.43	41.32	41.48		
Age (years)		36.42 ± 10.59	41.38 ± 12.71	48.93 ± 12.75	267.206	< 0.001
Marital status (<mark>0</mark> %)				21.287	< 0.001
Currently no	t married	23.20	18.76	12.66		
Currently ma	arried	76.80	81.24	87.34		
Education level	l (%)				101.355	< 0.001
Elementary s	school and lower	r 15.87	21.55	36.46		
Secondary so	chool	36.30	38.53	39.96		
Senior high s	school and highe	er 47.83	39.92	23.58		
Physical activit	y (%)				2.688	0.611
Seldom or ne	ever	35.70	34.22	31.22		
Moderate		17.43	18.25	18.78		
High		46.87	47.53	50.00		

Table 1 The theoretically minimum waist size in the Southern Chinese population

Page	21	of 29
ruge	~ '	0127

Page 2	1 of 29		BMJ Open			
1 2					21	
3 4 5	Smoker (%)				50.346	< 0.001
6 7	Non-smoker	82.25	71.61	67.90		
8 9 10	Smoker	16.18	26.87	28.61		
11 12	Former smoker	0.97	1.52	3.49		
13 14 15	Drinker (%)				30.865	< 0.001
16 17	Non-drinker	84.11	76.34	72.53		
18 19 20	Drinker	14.91	22.39	24.62		
21 22	Former drinker	0.98	1.27	2.85		
23 24 25	BMI				255.012	< 0.001
26 27	< 18.5	13.70	5.20	2.18		
28 29 30	18.5–23.9	68.51	54.88	41.70		
31 32	24–27.9	14.30	31.69	37.55		
33 34 35	≥ 28	3.49	8.24	18.56		
36 37	WHR				248.475	< 0.001
38 39 40	Fasting plasma glucose (mmol/L)	4.69 ± 0.82	4.98 ± 1.33	5.31 ± 1.86	90.399	< 0.001
41 42	Total cholesterol (mmol/L)	4.70 ± 0.96	4.98 ± 1.07	5.26 ± 1.15	88.325	< 0.001
43 44 45	Triglyceride (mmol/L)	1.26 ± 0.83	1.77 ± 1.77	2.15 ± 2.25	178.995	< 0.001
46 47	Systolic blood pressure (mmHg)	107.97 ± 7.80	125.45 ± 6.65	144.78 ± 18.55	1533.137	< 0.001
48 49 50	Diastolic blood pressure (mmHg)	69.49 ± 6.40	79.59 ± 5.99	91.49 ± 11.33	1206.505	< 0.001
51 52	Family history of hypertension (%)				18.391	0.005
53 54 55	Only father	11.42	11.03	11.14		
56 57	Only mother	12.02	15.08	17.25		
58 59 60	Both parents	5.41	4.82	8.95		
		1 1	jopen.bmj.com/site/a	,		

BMJ Open

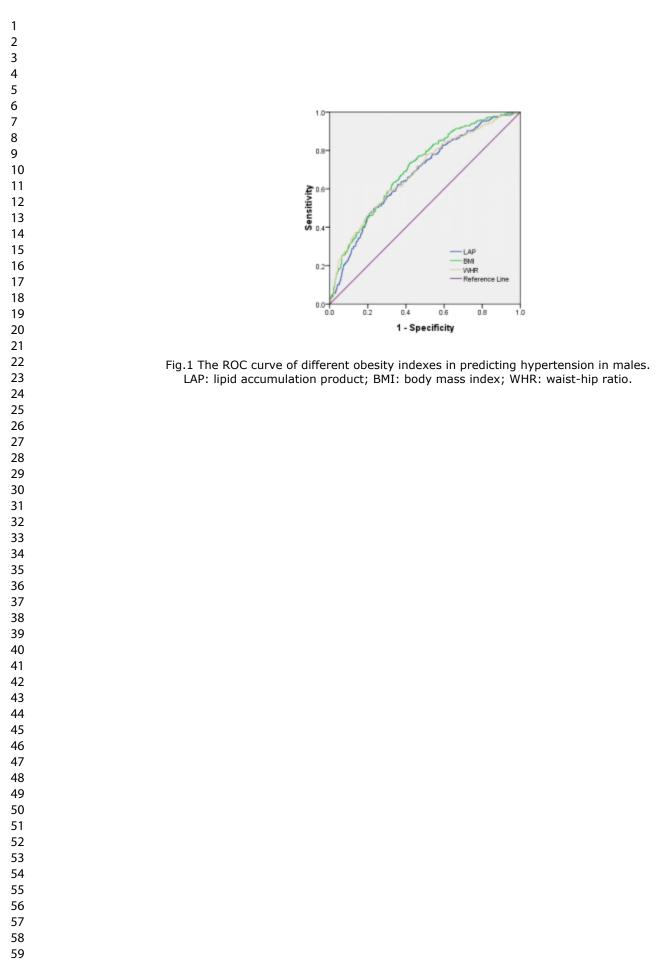
					:	22
Neither		71.15	69.07	62.66		
LAP		29.14 ± 27.00	52.15 ± 63.50	75.87 ± 99.	81 355.133	< 0.001
1	BMI: body mass i	ndex; WHR: waist-hip	p rate; LAP: lipid ac	cumulation produ	ct.	
2						
3	Table 3 Comparis	son of blood pressure a	among four quartiles	s of LAP		
	LA	Р				
Variables	Q1	Q2	Q3	Q4	Z	<i>P</i> -value
	(< 1	7.36) (17.36-	-31.31) (31.31-	57.46) (> 57.4	46)	
Systolic bloo (mmHg)	od pressure 112.	.47 ± 13.63 119.74	± 15.12 125.85	± 15.96 132.71	± 19.09 405.62	5 < 0.001
Diastolic bloc (mmHg)	od pressure 71.9	93 ± 9.31 76.66 ±	= 10.50 79.68 ±	10.04 84.37	± 11.59 354.672	2 < 0.001
4						
5	Table 4 Multinom	nial logistic regression	analysis of LAP as	sociated with hype	ertension status	
5	Table 4 Multinom ORª(95% CI)	nial logistic regression	a analysis of LAP as OR ^b (95% CI)	sociated with hype	ertension status OR ^c (95% CI)	
	OR ^a (95% CI)			2		hypertensio
Quartiles of LAP	OR ^a (95% CI)		OR ^b (95% CI)	hypertension	OR°(95% CI)	hypertensio
Quartiles of LAP	OR ^a (95% CI) prehypertensio	n hypertension	OR ^b (95% CI) prehypertension	hypertension	OR ^c (95% CI) prehypertension	
Quartiles of LAP 01 (< 17.36)	OR ^a (95% CI) prehypertensio	n hypertension	OR ^b (95% CI) prehypertension	hypertension	OR ^c (95% CI) prehypertension	
Quartiles of LAP 21 (< 17.36)	OR ^a (95% CI) prehypertension 1 (reference)	n hypertension 1 (reference)	OR ^b (95% CI) prehypertension 1 (reference)	hypertension 1 (reference)	OR ^c (95% CI) prehypertension 1 (reference)	1 (reference
Quartiles of LAP 2	OR ^a (95% CI) prehypertension 1 (reference) 2.83***	n hypertension 1 (reference) 3.10***	OR ^b (95% CI) prehypertension 1 (reference) 1.64**	hypertension 1 (reference) 1.51	OR ^c (95% CI) prehypertension 1 (reference) 1.61**	1 (reference 1.53
Quartiles of LAP 01 Q1 (<17.36)	OR ^a (95% CI) prehypertension 1 (reference) 2.83*** (1.73, 3.01)	n hypertension 1 (reference) 3.10*** (2.04, 4.72)	OR ^b (95% CI) prehypertension 1 (reference) 1.64** (1.19, 2.17)	hypertension 1 (reference) 1.51 (0.95, 2.40)	OR ^c (95% CI) prehypertension 1 (reference) 1.61** (1.19, 2.18)	1 (reference 1.53 (0.96, 2.43)
Quartiles of LAP (<17.36)	OR ^a (95% CI) prehypertension 1 (reference) 2.83*** (1.73, 3.01) 4.41***	n hypertension 1 (reference) 3.10*** (2.04, 4.72) 7.85***	OR ^b (95% CI) prehypertension 1 (reference) 1.64** (1.19, 2.17) 2.20***	hypertension 1 (reference) 1.51 (0.95, 2.40) 2.00**	OR ^c (95% CI) prehypertension 1 (reference) 1.61 ^{**} (1.19, 2.18) 2.18 ^{***}	1 (reference 1.53 (0.96, 2.43) 1.89**

1 OR=Odds ratio; CI=confidence interval; ***,
$$P < 0.001$$
; **, $P < 0.01$; *, $P < 0.05$.

2 ^a, unadjusted.

^b, adjusted for age, sex, marital status, educational level, physical activity, smoker, drinker, BMI,
and WHR.

^c, adjusted for fasting plasma glucose, family history of hypertension, and all the factors in b.


7 Table 5 Predicting hypertension by different obesity indexes

	Cut-off value	Sensitivity (%)	Specificity (%)	Youden Index	AUC(95% CI)	<i>P</i> -value
Male			(,,,)			
	22.004	0.775	0.501	0.017		. 0. 001
BMI	23.004	0.735	0.581	0.316	0.707 (0.672, 0.742)	< 0.001
WHR	0.906	0.586	0.703	0.289	0.688 (0.650, 0.725)	< 0.001
LAP	63.892	0.496	0.770	0.266	0.677 (0.640, 0.713)	< 0.001
Female						
BMI	21.767	0.816	0.507	0.323	0.698 (0.658, 0.737)	< 0.001
WHR	0.860	0.742	0.552	0.294	0.684 (0.643, 0.726)	< 0.001
LAP	30.860	0.689	0.674	0.363	0.721 (0.680, 0.761)	< 0.001
						1
8 BM	I: body mass	index; WHR: wais	t-hip rate; LAP: 1	ipid accumulatio	n product; AUC: area u	inder
	•	index; WHR: wais ratio; CI=confiden	•	ipid accumulatio	n product; AUC: area i	inder
	•		•	ipid accumulatio	n product; AUC: area u	inder
9 curv 10	ve; OR=Odds		ce interval.	-		inder
9 curv 10	ve; OR=Odds	ratio; CI=confiden on effects between	ce interval.	nistory of hyperte		
9 curv 10 11 Tab	ve; OR=Odds	ratio; CI=confiden on effects between	ce interval. LAP and family h	nistory of hyperte	ension	
9 curv 10 11 Tab Variables	ve; OR=Odds	ratio; CI=confiden on effects between es N	ce interval. LAP and family h	nistory of hyperte	ension	

BMJ Open

				24
-	+	215	1.189 (0.772, 1.832)	$AP = 0.516 (0.238, 0.794)^*$
+	-	173	1.362 (0.875, 2.121)	SI = 3.998 (0.897, 17.820)
+	+	128	3.203*** (2.002, 5.124)	
Female				
LAP ^a	Family his	tory ^b		
-	-	657	1 (reference)	RERI = -0.673 (-2.566, 1.220)
-	+	276	1.995** (1.284, 3.099)	AP = -0.328 (-1.451, 0.795)
+	-	108	1.729*(1.023, 2.922)	SI = 0.610 (0.125, 2.979)
+	+	36	2.051 (0.919, 4.589)	
3 (4 5 6	attributable prop CI=confidence inter ^a , grouped by the ^b , family history o	portion due to rval; ***, $P < 0.001$; cut-off values in T of hypertension was	s defined as one parent or both educational level, physical act	index; OR=Odds ratio; parents having hypertension.

BMJ Open

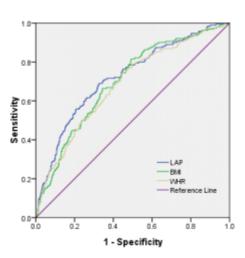


Fig.2 The ROC curve of different obesity indexes in predicting hypertension in females. LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio.

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods	1	Q1	
Study design	4	Present key elements of study design early in the paper	Page 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Page 5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 6-7
Bias	9	Describe any efforts to address potential sources of bias	Page 6

Study size	10	Explain how the study size was arrived at	Page 5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 7-8
		(b) Describe any methods used to examine subgroups and interactions	Page 7-8
		(c) Explain how missing data were addressed	Page 5
		(d) If applicable, describe analytical methods taking account of sampling strategy	Page 5
		(e) Describe any sensitivity analyses	Not applicable
Results		Cr.	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Page 8; Table 2
		(b) Give reasons for non-participation at each stage	Not application
		(c) Consider use of a flow diagram	Not application
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Page 8; Table 2
		(b) Indicate number of participants with missing data for each variable of interest	Not application
Outcome data	15*	Report numbers of outcome events or summary measures	Page 8; Table 2
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Page 9-10; Table 4; Table 6
		(b) Report category boundaries when continuous variables were categorized	Page 6-8; Table 2;

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		Table 3 ; Table 6
	(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not application
17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Page 9-10; Table
18	Summarise key results with reference to study objectives	Page 11-12
19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Page 12-13
20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Page 10-13
21	Discuss the generalisability (external validity) of the study results	Page 12-13
22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Page 13
	18 19 20 21	17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 18 Summarise key results with reference to study objectives 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 21 Discuss the generalisability (external validity) of the study results 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Interaction of lipid accumulation product and family history of hypertension on hypertension risk: A cross-sectional study in the Southern Chinese population

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029253.R1
Article Type:	Original research
Date Submitted by the Author:	26-Aug-2019
Complete List of Authors:	Huang, junxuan; Guangzhou Medical University Bao, XinYu; Guangzhou Medical University Xie, yixian; Guangzhou Medical University Zhang, xiaoxia; Guangzhou Medical University Peng, xin; Guangzhou Medical University Liu, yan; Guangzhou Medical University Cheng, mengjiao; Guangzhou Medical University Ma, JinXiang; Guangzhou Medical University wang, peixi; General Practice Center, Nanhai Hospital, Southern Medical University
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Diabetes and endocrinology
Keywords:	Hypertension < CARDIOLOGY, LAP, Family history, Interaction effect

SCHOLARONE[™] Manuscripts

BMJ Open

	1
1	Interaction of lipid accumulation product and family history of hypertension on
2	hypertension risk: A cross-sectional study in the Southern Chinese population
3	Jun-Xuan Huang ¹ , Xin-Yu Bao ¹ , Yi-Xian Xie ¹ , Xiao-Xia Zhang ¹ , Xin Peng ¹ , Yan
4	Liu ¹ , Meng-Jiao Cheng ¹ , Jin-Xiang Ma ^{1*} and Pei-Xi Wang ^{2*}
5	Institution address:
6	¹ Guangzhou Medical University, Guangzhou, 510182, China.
7	² General Practice Center, Nanhai Hospital, Southern Medical University, Foshan,
8	528244, China.
9	Email address:
10	circle_wong@yeah.net (JX.H.); 1027473041@qq.com (XY.B.);
11	yixian.xie@yahoo.com (YX.X.); zhangxiaoxia405@163.com (XX.Z.);
12	609167985@qq.com (X.P.); 1763136904@qq.com (Y.L.);
13	15700727758@163.com (MJ.C.); mjx777108@hotmail.com (JX.M);
14	peixi001@163.com (PX.W.)
15	* Author to whom correspondence should be addressed; E-mail:
16	mjx777108@hotmail.com, peixi001@163.com

1 ABSTRACT

Objectives: This study aimed to investigate the applicability of a novel index based on WC and TG, named lipid accumulation product (LAP) in the Southern Chinese population, and compare the predictive effects of LAP and other obesity indicators on hypertension risk. Moreover, this study investigated the interactive effects of LAP and family history of hypertension.

Methods: A total of 2079 community-dwelling adults in Southern China were enrolled in this cross-sectional study. The participants underwent the questionnaire survey, anthropometric tests, and laboratory examinations. The multivariate logistic regression model and receiver operating characteristic (ROC) curves were used to assess the association between hypertension risk and obesity indexes, including LAP, body mass index (BMI), waist-hip ratio (WHR), waist circumference (WC), Triglyceride (TG). The interaction effects were evaluated by relative excess risk of interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI).

Results: Higher LAP levels had relatively higher risk of hypertension in both sex (males: adjusted odds ratio [OR] = 2.79 per SD increase, 95% confidence interval [CI] = 1.43-5.44, P < 0.001; females: adjusted OR:3.15.95%CI=1.56-6.39, P < 0.001). LAP (area under curve [AUC] = 0.721; 95% CI: 0.680–0.761) was a better indicator in identifying hypertension risk than BMI, WHR and TG in females, but WC performed better in males. A significant interaction between LAP and family history of hypertension was observed in males (RERI = 1.652, 95% CI: 0.267-3.037; AP = 0.516, 95% CI: 0.238–0.794; SI = 3.998, 95% CI: 0.897–17.820), but no statisitically significant differences in females.

Conclusions: LAP was significantly associated with the hypertension risk in the
Southern Chinese population, and LAP performed better on hypertension risk than did
BMI, WHR and TG in the Southern China females population. The synergistic effect
of LAP and family history of hypertension was demonstrated.

BMJ Open

3	
4	
5	
6	
7	
8 9	
9	
10	
11	
12	
13	
14	
15	
15	
16 17	
17	
18	
19 20	
20	
20	
21 22 23	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1 Keywords: Hypertension, LAP, Family history, Interac	iction	effect
--	--------	--------

Strengths and limitations of this study 2

3 Strengths:

1. Our study is the first to examine the validity of LAP, which was calculated using a 4 modified formula, in the Southern China population. 5

Limitations: 6

- 1. This is a cross-sectional study, the results are not sufficient to indicate causality. 7
- 2. The population of our study can partially represent the general population in the 8 Southern China, but cannot fully represent this region. 9
- 10 3. Lack of the adjustment for renal function, and other risk factors for hypertension 11 (such as serum uric acid) in our study.
- 4. This study has small sample size, so further studies with a larger sample size are 12
- 13 needed to investigate whether the modified LAP applies to all the residents dwelling
- in Southern China. 14

INTRODUCTION

Hypertension, a significant risk factor of cardiovascular disease,¹ is one of the most prevalent public health problems in the world, and it is the leading contributor to the global burden of disease and mortality. Nowadays, the number of adults with hypertension in the world is being predicted to increase by about 60% to a total of 1.56 billion in 2025, and one-third of adults are suffering from hypertension in China.2,3

Accumulating evidence proves that obesity, especially visceral fat, and family history of hypertension could significantly contribute to hypertension.⁴⁻⁶ Numerous studies have demonstrated that positive family history is an important risk factor for hypertension.⁶⁻⁹ When it comes to obesity, the indexes that are most frequently used to assess obesity are body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR); however, these traditional obesity indexes can merely reflect the degrees of overweight and abdominal obesity but cannot distinguish between subcutaneous fat and visceral fat.¹⁰ Micromagnetic resonance imaging and microcomputed tomography, the gold standard measurement methods of visceral fat, are not only inconvenient but also expensive;¹¹ moreover, they are not suitable for large-scale epidemiological investigations. Therefore, it is necessary for us to identify a new obesity indicator that can predict visceral fat from subcutaneous fat conveniently and economically.

Recently, increasing attention has been directed towards lipid accumulation product (LAP). LAP, a new obesity index computed from WC and triglyceride (TG), has been shown to be a useful indicator of visceral fat,¹² as demonstrated by Kahn in 2005¹³. Some studies suggest that LAP can also be used to identify metabolic syndromes,^{14,15} type 2 diabetes mellitus,¹⁶ stroke¹⁷ and arterial stiffness.¹⁸ Additionally, several cross-sectional studies conducted in Japan,¹⁹ India,¹⁴ and Brazil indicate that LAP is significantly associated with cardiovascular disease and is a better indicator than BMI for identifying the cardiovascular risk.^{13, 20} A few national studies have investigated the association between LAP and hypertension in China, and all of them were

BMJ Open

conducted in northern China, including Bengbu,²¹ Beijing,²² and Inner Mongolia.²³ With a vast territory, China has tremendous difference between South and North. Due to the geographical environment and dietary habits that have formed throughout its long history, there are some dietary and cultural differences between Northern and Southern China.²⁴ The Northern region shows a high intake of wheat, tubers and liquor,etc. While southerner has a high intake of rice, vegetables, meat, poultry, fish etc.²⁴ The Carbohydrate-rich pattern of the northern region is associated with a high risk of hypertriglyceridemia and higher BMI. Meanwile, significant differences are found in SBP/DBP between southern Chinese and northern Chinese owing to different climate and dietary habit between southern and northern.²⁵ Studies have found that the northerners were heavier and had higher triglycerides level than southerners.^{26,27} Differences in dietary habits, or lifestyle, individuals from different regions should lead to different LAP. LAP has a different situation in the north and south. Thus, the applicability of LAP in predicting hypertension in Southern China is worth studying. However, rare studies have compared LAP with other obesity indexes in the Southern Chinese population. In addition, almost all studies about LAP used the formula that was developed based on the third National Health and Nutrition Examination Survey in the US. Therefore, it is reasonable to suggest that the calculation formula of LAP needs to be modified in the Chinese population.

To the best of our knowledge, no studies have attempted to adjust the calculation formula of LAP so that it can apply to the Southern Chinese population, and rare studies have explored additive interactions between family history of hypertension and LAP. Thus, the primary purpose of this study was to investigate the applicability of LAP in the Southern Chinese population and compare the predictive effects of LAP and other obesity indicators on hypertension risk. And the secondary purpose of the study was to assess interactive effects between LAP and family history of hypertension to predict the hypertension risk in the Southern Chinese population.

- 28 METHODS
- 29 Study design and subjects

A cross-sectional survey based on community health was conducted in the FoShan city of Guangdong province in the Southern China. Recruiting the enrollors took place in March 2017. The study samples were selected by a multistage and stratified random sampling method. The stratification according to the economic level and randomly selected street communities at economic levels, then randomly selected communities in street communities according to proportion. Communities residents were then randomly selected from the household lists. A total of 3760 individuals were enrolled in this study; among them, 1681 participants who lacked complete data on demographic characteristics, anthropometric tests, or laboratory examinations were excluded. Finally, 2079 adults who had complete data were included in the analysis.

Patient and public involvement

12 Patients or public were not involved in this study.

13 Ethics statement

 This study was approved by the Ethics Committee of Guangzhou Medical University.
Written informed consent was obtained from each study participant before
investigation.

17 General study questionnaire

An interview-based survey was performed using a questionnaire by trained staff. Socio-demographic data, family history of hypertension, cigarette smoking, and alcohol drinking were investigated. Smokers were defined as the participants smoking at least 1 cigarette/day for at least 6 months. Drinkers were defined as individuals consuming at least 30 ml alcohol/week for 1 year or more. Physical activities were divided into "insufficiently active" and "sufficiently active." Participants with "insufficiently active" were defined as those who performed activity less than 150min/week. Participants with "sufficiently active" were defined as those who exercised more than 150min/week.²⁸ Marital status was classified as "currently not married" and "currently married"; "married" was regarded as "currently married," and "divorced/widowed/single" was regarded as "currently not married." Educational

Page 7 of 32

BMJ Open

level was categorized as "elementary school or lower," "secondary school," and "senior high school or higher."

3 Anthropometric tests and laboratory examinations

The participants were required to take off their shoes and wear lightweight clothing for weight and height measurements. WC was measured at the level of 1 cm above the navel.²⁹ Automatic sphygmomanometer (OMRON, hem-7125) was used to measure blood pressure (BP) of participants. BP measurement was conducted thrice in a quiet environment, and the participants rested at least one minute between each time of measurement. The mean of the three measurements was used in the analysis. Prehypertension was defined as systolic blood pressure (SBP) of 120-139 mmHg and/or diastolic blood pressure (DBP) of 80-89 mmHg, and hypertension was defined as SBP of \geq 140 mmHg, DBP of \geq 90 mmHg, and/or a reported medical history of anti-hypertensive medication.²⁹ The BMI was calculated as weight in kilograms divided by the square of the height in meters. Overweight was defined as BMI of 24–27.9 kg/m², and obesity was defined as BMI of \geq 28 kg/m². The fasting blood samples were collected from the participants in the morning after an overnight fast and were used to assess fasting plasma glucose, total cholesterol, and TG levels.

According to Kahn's theory,¹³ LAP is calculated as [WC (cm) - The minimum of WC (male)] \times [TG (mmol/L)] for males and [WC (cm) - The minimum of WC (female) × [TG (mmol/L)] for females, and the minimum waist size theoretically contains only the abdomen, muscle, viscera, and vertebral bone.¹³ Visceral fat can be estimated by the difference between the WC and the minimum waist size. In the present study, the WC of the studied population was skewed; therefore, the WC was log-transformed. The minimum WC was estimated by the mean WC minus two standard deviations after log-transformation in the local participants aged 18-24 vears.13, 22

27 Statistical analyses

28 According to the hypertension status, the enrollees were divided into three groups

(normotension, prehypertension, and hypertension). The frequency (%) was used to describe sex, marital status, education level, physical activity, BMI, smoker, and drinker. Mean \pm standard deviation (SDs) was used to describe the WC, WHR, fasting plasma glucose, total cholesterol, TG, SBP, DBP, and LAP. LAP was divided into four groups by the quartiles, i.e., Q1, Q2, Q3, and Q4. The differences of quantitative data across different hypertension statuses were analyzed by the Kruskal-Wallis H test because the data had skewed distribution. Categorical variables were analyzed by the Chi-squared test. The multivariate logistic regression model was used to analyze the relationship between LAP and risk factors of hypertension and prehypertension. The receiver operating characteristics (ROC) curves were applied to identify the superior obesity index and the best cut-off value of LAP to predict the hypertension risk. Moreover, the interaction effects between LAP and family history of hypertension were assessed by some relevant indicators, including the relative excess risk of interaction (RERI = $OR_{11} - OR_{10} - OR_{01} + 1$), the attributable proportion due to interaction (AP = $[OR_{11} - OR_{10} - OR_{01} + 1]/OR_{11}$), and the synergy index (SI = $[OR_{11} - OR_{11} - OR_{11}]/OR_{11}$). /[OR₀₁ - 1] + [OR₁₀ - 1]). If the interaction effect was not observed, the confidence interval of RERI and AP contained 0 and the confidence interval of S included 1.30 The above indicators were calculated using an Excel table designed by Andersson et al..³⁰ All reported *P*-values were two-tailed, and a *P*-value of < 0.05 was considered significant. Statistical analyses were performed using SPSS version 19.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

23 LAP

According to Kahn's theory,¹³ LAP was calculated as (WC - 60.6) × (TG [mmol/L]) in males and (WC - 54.1) × (TG [mmol/L]) in females based on the actual data obtained from the Southern Chinese population .²²

27 Basic characteristics of the study participants

A total of 2079 adults with an average age of 41.06 years were enrolled in the present

Page 9 of 32

BMJ Open

study, including 1002 males (48.29%) and 1077 females (51.80%). The overall prevalence rates of normotension, prehypertension, and hypertension were 40.02%, 37.95%, and 22.03%, respectively. Male participants had a high prevalence of prehypertension and hypertension than female participants (P < 0.001). Statistically significant differences in age (P < 0.001), marital status (P < 0.001), education level (P < 0.001), smoker (P < 0.001), drinker (P < 0.001), and family history of hypertension (P = 0.005) were observed between normotension, prehypertension, and hypertension groups. However, no significant differences were observed in physical activity (P = 0.550) among the three groups. Anthropometric measurements found significant differences in BMI (P < 0.001), WC (P < 0.001), WHR (P < 0.001), LAP (P < 0.001) between the groups. And significant differences found in laboratory examinations including fasting plasma glucose (P < 0.001), total cholesterol (P < 0.001) 0.001), SBP (P < 0.001), and DBP (P < 0.001) between the groups (Table 1).

14 LAP and the risk factors of hypertension

In order to investigate the relationship between LAP and blood pressure, LAP was divided into four groups by quartile in different sex (Table 2). A significant association was observed between LAP and blood pressure in both male and female. The results in male and female were shown that SBP (P < 0.001) and DBP (P < 0.001) were relatively elevated in participants with higher LAP levels.

Multinomial logistic regression analysis was conducted to evaluate the association between LAP quartiles and hypertension status (Table 3). Participants with the third and the fourth quartile of LAP were more likely to develop prehypertension and hypertension than those with the first quartile in both male and female.

After adjusting for age, marital status and educational level, the risks of prehypertension (adjusted OR: 3.14, 95% CI: 1.95–5.07) and hypertension (adjusted OR: 9.02; 95% CI: 5.11–15.93) significantly increased in male participants with the fourth quartile compared with those with the first quartile. For the female, increased risks of prehypertension (adjusted OR: 3.26, 95% CI: 2.09–5.10) and hypertension (adjusted OR: 6.32; 95% CI: 3.42–11.65) were observed in participants with the

1 fourth LAP quartile compared with those with the first one.

After controlling for age, marital status, educational level, physical activity, smoker, drinker, BMI, WHR, fasting plasma glucose and family history of hypertension, the risks of prehypertension (adjusted OR: 1.67, 95% CI: 0.96-2.92) and hypertension (adjusted OR: 2.79, 95%CI: 1.43-5.44) significantly increased in male participants with the fourth quartile compared with those with the first quartile. Meanwhile, increased risks of prehypertension (adjusted OR: 2.10, 95% CI: 1.26-3.51) and hypertension (adjusted OR: 3.15, 95%CI: 1.56-6.39) were observed in female participants with the fourth LAP quartile compared with those with the first one.

The results of ROC curves analysis in males and females were shown in Figs. 1 and 2 and Table 4. LAP (AUC = 0.721; 95% CI: 0.680-0.761) was a better indicator to predict different types of hypertension than BMI (AUC = 0.698; 95% CI: 0.658-0.737), WHR (AUC = 0.684; 95% CI: 0.643-0.726) and TG (AUC = 0.663; 95% CI: 0.620-0.706) in females; however, WC (AUC = 0.734 95% CI: 0.700-0.769) performed better than BMI (AUC = 0.707, 95% CI: 0.672-0.742), WHR (AUC = 0.688; 95% CI: 0.650-0.725), LAP (AUC = 0.677; 95% CI: 0.640-0.713) and TG (AUC = 0.607; 95% CI: 0.568-0.646) in males. The best cut-off values of LAP to predict hypertension were 63.892 in males and 30.860 in females.

19 Interaction effects between LAP and family history of hypertension

The interaction effects between LAP and family history of hypertension are presented in Table 5. Significant interaction effects between LAP and family history of hypertension were observed in males. The results of RERI (1.652; 95% CI: 0.267–3.037) and AP (0.516; 95% CI: 0.238–0.794) indicated a significant interaction effect of family history of hypertension and LAP on hypertension, but the result of SI (3.998; 95% CI: 0.897–17.820) did not.

However, no statistically significant interaction effects were found between LAP
and family history of hypertension in females, as indicated by all the three indicators.
RERI was - 0.673 (95% CI: -2.566–1.220); AP was -0.328 (95% CI: -1.451–0.795);

11

3	
4	
5	
5 6	
0	
/	
8 9 10	
9	
10	
11	
12	
13 14	
15	
16 17	
10	
18 19	
19	
20	
21	
20 21 22 23 24 25 26 27 28 29	
23	
24	
25	
26	
27	
28	
29	
29 30	
31	
32	
22	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 and SI was 0.610 (95% CI: 0.125–2.979).

Discussion

2

With the rapid development of the economy and sedentary lifestyle, elevated blood pressure has become a common and serious public health issue.³¹ The prevalence of prehypertension and hypertension has significantly increased.³² Elevated blood pressure is caused by diverse factors, among which obesity is closely related to hypertension.³³ An increase in body weight is typically followed by enhanced blood pressure.¹² Extensive studies have found that obesity, especially visceral adipose tissue, could strongly increase the blood pressure.³³

The mechanisms underlying the interaction between obesity and hypertension are complicated. The mechanisms of obesity-induced hypertension include sodium retention, insulin resistance, activation of renin-angiotensin-aldosterone, altered vascular function, and secretion of relevant adipokines.³⁴ In addition, the mechanisms of blood pressure increase can be activated by visceral fat.³⁵

Substantial evidences proved that the harm of the fat accumulation was greater than 15 the total amount of fat.^{36, 37} However, traditional obesity indexes, such as BMI, WC, 16 and WHR, have some limitations when distinguishing between subcutaneous fat and 17 18 visceral fat. Therefore, a new obesity index that can predict visceral fat easily and 19 effectively is urgently needed. After Kahn first demonstrated that LAP performs better than BMI for recognizing the cardiovascular risk, domestic and foreign scholars 20 have paid increasing attention to LAP. LAP, a combination of WC and TG, is an 21 accessible and inexpensive way to assess visceral fat.¹³ It is a well-known fact that TG 22 can reflect the degree of visceral fat accumulation and WC is strongly associated with 23 hypertension.¹² Notably, hypertriglyceridemic waist (HTGW) is also calculated based 24 on the combination of TG and WC. However, LAP, a continuous indicator, is superior 25 26 to reflect visceral fat than HTGW,³⁸ a discontinuous indicator.²¹ Therefore, LAP was 27 used as a visceral obesity indicator in this study.

LAP based on the hypothesis of minimum waist circumference includes the rachis,

abdominal viscera and muscle.13 Therefore, the differences between the actual WC and the minimum WC can represent abdominal adipose tissue.¹³ Notably, LAP in almost all studies is calculated by data obtained based on the third National Health and Nutrition Examination Survey in the United States.¹³ Because of differences in race, dietary habits, or lifestyle, individuals from different countries should have different visceral adipose tissues. It has been demonstrated that there are considerable differences in visceral adipose tissues between Chinese individuals and Europeans or Americans.³⁹ Therefore, LAP was calculated in our study using a modified formula so that it could apply to the individuals dwelling in Southern China.

As expected, a significant association was found between LAP and hypertension in the present study. Our findings are consistent with those in studies by Zhong et al,¹⁷ Song et al,³⁷ and Shen et al,²² all of which have demonstrated that LAP is an effective and reliable diagnostic indicator of hypertension. Participants with significantly higher LAP had higher risks of prehypertension and hypertension than those with lower LAP. Multinomial logistic regression analysis revealed that after adjusting for other factors, the risks of prehypertension and hypertension in the group with the highest LAP level were 2.10 and 3.15 times higher in females, respectively, than those in the group with the lowest LAP.

Wang et al.found LAP is a better index to predict the risk of hypertension.⁴⁰ However, Gao et al found that the performance of LAP was superior to that of BMI in male Mongolians;²³ this findings may be due to the apparently lower prevalence of high TG in female Mongolians than in male Mongolians (13.20% vs 23.10%, P <(0.05), and the facts might disturb the association between LAP and hypertension in female Mongolians. Several study found the superiority of LAP over BMI for detection of hypertension and prehypertension in both genders.^{21,37,40} However, in the present study, we also found that LAP perform better than BMI in female. According to Kahn,⁴¹ the annual LAP changes were reduced at older age in male. Advancing age is associated with a progressive increase in systolic BP levels and with development and progression of arterial hypertension because of a number of factors, including

Page 13 of 32

BMJ Open

atherosclerotic changes, large artery stiffening, altered renal function, and arterial baroreflex impairmen,⁴² That is to say, increase in blood pressure was thought to be an unavoidable consequence of aging. Thus, the superiority of LAP for predicting hypertension in male may be disturbed by the larger-scale proportion of elder man (23.7%) in our study. In our study, LAP perform better in predicting the hypertension risk than TG in both sex. However, due to low predictive value of TG in southern China, LAP which combines of TG and WC is slightly inferior to WC.

In general, LAP, which applied to the Southern Chinese population, was a better indicator for predicting the hypertension risk in females in this study. In addition, large studies have demonstrated that family history of hypertension is a critical risk factor for hypertension, and individuals with family history of hypertension are 2-4 times more likely to develop hypertension than those without the family history of hypertension.⁴³ The interaction analysis in this study indicates the synergistic effect of LAP and family history on the hypertension risk in males, but no statisitically significant differences in the interaction effect in females. In fact, cardiovascular events occur at a lower rate in females than in males.⁴⁴ In our study, the female participants who had both LAP and family history of hypertension were rarely observed and the prevalence rates of hypertension at a lower rate in females than in males no matter premenopausal status or menopausal status.⁴⁵ Our study suffer from a small sample size, especially in females. The fewer positive female observers which had higher LAP and family history of hypertension lead to no statistically significant differences in the interaction effect on the hypertension risk in females. The interaction in female was not statistically significant, but their synergistic effect was obvious. The synergistic effect between family history of hypertension and LAP on the hypertension risk was demonstrated in our study as well as in other studies.^{21, 40} Visceral obesity and family history of hypertension may result in increased blood pressure through some unknown mechanisms. However, further studies are needed to investigate the interaction effect between LAP and family history of hypertension on the hypertension risk.

To date, LAP is an inexpensive screening tool to identify visceral adipose tissue, and the method has high reproducibility. LAP, which was proposed by Kahn, was developed for the Western population. Thus this study explored the validity of LAP, which was calculated based on the Southern China population. The findings suggest LAP might perform better in predicting the hypertension risk than BMI, WHR and TG in Southern Chinese females.

This study has some limitations. First of all, because this is a cross-sectional study, the present results are not sufficient to indicate causality. Secondly, the population of our study can partially represent the general population in the Southern China, but can not fully represent this region. Furthermore, this article is lack of adjustment for renal function, and other risk factors for hypertension (such as serum uric acid). Finally, because of the small sample size in this study, further studies with a larger sample size are needed to investigate whether the modified LAP applies to all the residents dwelling in Southern China.

15 CONCLUSION

In conclusion, LAP was significantly associated with the hypertension risk, and higher LAP levels had relatively higher blood pressure. LAP performed better in predicting hypertension than did BMI, WHR and TG in the Southern China female population. The synergistic effect of LAP and family history of hypertension was demonstrated..

21 Acknowledgements

We gratefully acknowledge Dr. Pei-Xi Wang, Dr. Jin-Xiang Ma, Xin-Yu
Bao,Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and Meng-Jiao Cheng for their
excellent work in study coordination, data collection, and management.

Contributors

Jun-Xuan Huang, Pei-Xi Wang and Jin-Xiang Ma conceived and designed the study.
Jun-Xuan Huang, Xin-Yu Bao, Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and
Meng-Jiao Cheng contributed to collection of the data, analyzed the data and
interpretation of the results. Jun-Xuan Huang wrote the draft manuscript. Jin-Xiang

2		
3 4	1	Ma, Pei-Xi Wang and Jun-Xuan Huang finalized the manuscript with inputs from all
5 6	2	authors. All of the authors approved the final version submitted for publication.
7	3	Funding
8 9		0
10 11	4	This study was supported by Talent Introduction Fund of Guangzhou Medical
12	5	University (2009).
13 14	6	Competing interests
15 16	7	The authors declared that they had no conflict of interest.
17 18 19	8	Ethics statement
20 21	9	This study was approved by the Ethics Committee of Guangzhou Medical University.
22 23	10	Written informed consent was obtained from each study participant before
24 25	11	investigation.
26 27	12	Data sharing statement
28		
29 30	13	Our data might not be shared directly, because it's our team work and the data
31 32	14	belongs
33	15	to our team. Thus consent should be attained from team members.
34 35	16	References
36 37	17	1. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension:
38 39	18	analysis of worldwide data. <i>TheLancet</i> 2005;365(9455):217-223.
40 41	19	doi:10.1016/S0140-6736(05)17741-1
42 43	20	2. Beaney T, Schutte AE, Tomaszewski M, et al. May Measurement Month 2017: an
44 45	21	analysis of blood pressure screening results worldwide. The Lancet Global
46 47	22	Health 2018;6(7):e736-e743. doi:10.1016/S2214-109X(18)30259-6
47 48 49	23	3. Bundy JD, He J. Hypertension and Related Cardiovascular Disease Burden in
50	24	China. Ann Glob Health 2018;82(2):227-233. doi:10.1016/j.aogh.2016.02.002
51 52	25	4. Macia E, Gueye L, Duboz P. Hypertension and Obesity in Dakar, Senegal. Plos
53 54	26	One 2016;11(9):e0161544. doi:10.1371/journal.pone.0161544
55 56	27	5. Tang L, Zhang F, Tong N. The association of visceral adipose tissue and
57 58	28	subcutaneous adipose tissue with metabolic risk factors in a large population of
59 60	29	Chinese adults. <i>Clin Endocrinol</i> 2016;85(1):46-53. doi:10.1111/cen.13013

1 2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30

31

32

33

34

35 36

37 38

39 40

41 42

43 44

45 46

47 48

49 50

51 52

53 54

55 56

57 58

59 60

- 6. Wandeler G, Paccaud F, Vollenweider P, et al. Strength of Family History in 1 Predicting Levels of Blood Pressure, Plasma Glucose and Cholesterol. Public 2 Health Genom 2010;13(3):143-154. doi:10.1159/000233228 3 7. Liu M, He Y, Jiang B, et al. Association Between Family History and 4 Chinese Elderly. Medicine 2015;94(48):e2226. 5 Hypertension Among doi:10.1097/MD.00000000002226 6 8. Al-Safi SA, Aboul-Enein FH, Aboul-Enein BH, et al. Influence of family history 7 and lifestyle on blood pressure and heart rate in young adults in Jordan. Public 8 Health 2006;120(11):1027-1032. doi:10.1016/j.puhe.2006.06.009 9 10 9. Alhawari HH, Al-Shelleh S, Alhawari HH, et al. Blood Pressure and Its Association with Gender, Body Mass Index, Smoking, and Family History 11 Students. Int J2018;2018:1-5. 12 among University Hypertens 13 doi:10.1155/2018/4186496 10. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional 14 differences. Obes Rev 2010;11(1):11-18. doi:10.1111/j.1467-789X.2009.00623.x 15 11. Chen W, Wilson JL, Khaksari M, et al. Abdominal fat analyzed by DEXA scan 16 reflects visceral body fat and improves the phenotype description and the 17 risk mice. Am J Physiol-Endoc assessment of metabolic in M18 2012;303(5):E635-E643. doi:10.1152/ajpendo.00078.2012 19 12. Nurdiantami Y, Watanabe K, Tanaka E, et al. Association of general and central 20 Clin obesity with hypertension. Nutr 2018;37(4):1259-1263. 21 doi:10.1016/j.clnu.2017.05.012 22 13. Kahn HS. The "lipid accumulation product" performs better than the body mass 23 index for recognizing cardiovascular risk: a population-based comparison. Bmc 24 Cardiovasc Disor 2005;5(1):26-26. doi:10.1186/1471-2261-5-26 25 14. Ray L, Ravichandran K, Nanda SK. Comparison of Lipid Accumulation Product 26 Index with Body Mass Index and Waist Circumference as a Predictor of 27 28 Metabolic Syndrome in Indian Population. Metab Syndr Relat D 2018;16(5):240-245. doi:10.1089/met.2017.0119 29
 - 30 15. Cicero A F G, Gitto S, Fogacci F, et al. Fatty liver index is associated to pulse

Page 17 of 32

BMJ Open

1	wave velocity in healthy subjects: Data from the Brisighella Heart Study.
2	European Journal of Internal Medicine 2018:S0953620518301262.
3	doi:10.1097/01.hjr.0000136566.89429.63
4	16. Lee JW, Lim NK, Park HY. The product of fasting plasma glucose and
5	triglycerides improves risk prediction of type 2 diabetes in middle-aged
6	Koreans. Bmc Endocr Disord 2018;18(1):33. doi:10.1186/s12902-018-0259-x
7	17. Zhong C, Xia W, Zhong X, et al. Lipid Accumulation Product and Hypertension
8	Related to Stroke: a 9.2-Year Prospective Study Among Mongolians in China. J
9	Atheroscler Thromb 2016;23(7):830-838. doi:10.5551/jat.33514
10	18. Cicero A F G, D"Addato S, Reggi A, et al. Gender Difference in Hepatic Steatosis
11	Index and Lipid Accumulation Product Ability to Predict Incident Metabolic
12	Syndrome in the Historical Cohort of the Brisighella Heart Study. Metabolic
13	Syndrome and Related Disorders 2013; 11(6):412-416.
14	19. Wakabayashi I. Associations of Blood Lipid-Related Indices with Blood Pressure
15	and Pulse Pressure in Middle-Aged Men. Metab Syndr Relat D 2015;13(1):22-28.
16	doi:10.1089/met.2014.0093
17	20. de Oliveira CC, Roriz AKC, Ramos LB, et al. Indicators of Adiposity Predictors
18	of Metabolic Syndrome in the Elderly. Ann Nutr Metab 2017;70(1):9-15.
19	doi:10.1159/000455333
20	21. Song J, Chen X, Zhao Y, et al. Risk factors for prehypertension and their
21	interactive effect: a cross- sectional survey in China. Bmc Cardiovasc Disor
22	2018;18(1). doi:10.1186/s12872-018-0917-y
23	22. Shen YY, Chen JC, Li G, et al. Relationship of lipid accumulation product with
24	hypertension and diabetes among Beijing residents study. Zhonghua yu fang yi
25	xue za zhi [Chinese journal of preventive medicine] 2017;51(5):415.
26	23. Gao X, Wang G, Wang A, et al. Comparison of lipid accumulation product with
27	body mass index as an indicator of hypertension risk among Mongolians in
28	China. <i>Obes Res Clin Pract</i> 2013;7(4):e308-e314.
29	doi:10.1016/j.orcp.2012.02.002
30	24. Song F , Cho M S . Geography of Food Consumption Patterns between South and

Page 18 of 32

	18
1	North China. Foods 2017;6(5). doi:10.3390/foods6050034.
2	25. Huang Z , Wu X , Stamler J , et al. A north-south comparison of blood pressure
3	and factors related to blood pressure in the People's Republic of China: a report
4	from the PRC-USA Collaborative Study of Cardiovascular Epidemiology.
5	Journal of Hypertension 1994; 12(9):1103-12.
6	26. Wu Z , Yao C , Zhao D , et al. Cardiovascular disease risk factor levels and their
7	relations to CVD rates in Chinaresults of Sino-MONICA project. European
8	Journal of Cardiovascular Prevention & Rehabilitation 2004; 11(4):275-283.
9	27. Zhao L, Stamler J, Yan L L, et al. Blood Pressure Differences Between Northern
10	and Southern Chinese: Role of Dietary Factors The International Study on
11	Macronutrients and Blood Pressure. <i>Hypertension</i> 2004; 43(6):1332-1337.
12	28. Rosenberg DE, Bull FC, Marshall AL, Sallis JF, Bauman AE. Assessment of
13	sedentary behavior with the international physical activity questionnaire.
14	J Phys Act Health. 2008;5:S30-44.
15	29. Zhang M, Batu B, Tong W, et al. Prehypertension and Cardiovascular Risk Factor
16	Clustering Among Mongolian Population in Rural and Animal Husbandry Area,
17	Inner Mongolia, China. Circ J 2009;73(8):1437-1441.
18	doi:10.1253/circj.CJ-09-0101
19	30. Andersson T, Alfredsson L, Källberg H, et al. Calculating measures of biological
20	interaction. Eur J Epidemiol $2005;20(7):575-579$.
21	doi:10.1007/s10654-005-7835-x
22	31. Lackland DT, Beilin LJ, Campbell NRC, et al. Global Implications of Blood
23	Pressure Thresholds and Targets. <i>Hypertension</i> 2018;71(6):985-987.
24	doi:10.1161/HYPERTENSIONAHA.118.11280
25	32. Wang Z, Zeng X, Chen Z, et al. Association of visceral and total body fat with
26	hypertension and prehypertension in a middle-aged Chinese population. J
27	Hypertens 2015;33(8):1555-62. doi:10.1097/HJH.00000000000000000
28	33. Stabouli S, Papakatsika S, Kotsis V. The role of obesity, salt and exercise on
29	blood pressure in children and adolescents. Expert Rev Cardiovasc Ther
30	2011;9(6):753-61. doi:10.1586/erc.11.63

BMJ Open

23			
3 4			
4 5			
5 6			
о 7			
/ 8			
0 9			
	0		
1	1		
1	2		
1	3		
1	4		
1	5		
1	6		
	7		
1	8		
1	9		
2	0		
2	1		
2	2		
2	3		
2	4		
2	90123456789		
2	6		
2	7		
2	8		
2	9		
	0		
	1		
3			
	3		
	4		
	5		
	6 7		
с С	7 8 9		
2 2	o a		
כ ⊿	0		
4 4			
4			
	3		
	4		
	5		
	6		
4			
	8		
4	9		
	0		
5			
	2		
	3		
	4		
	5		
	6		
5			
	8		
	9		
6	0		

1	34. Kotchen T	A. Obesity-Relate	ed Hype	rtensi	on: Epidemiol	ogy, Pathophysiology, and
2	Clinical	Management.	Am	J	Hypertens	2010;23(11):1170-1178.
3	doi:10.10	38/ajh.2010.172				

35. Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of
gluco- and mineralocorticoid hormones in the setting of cardiometabolic
alterations: Adipose tissue and adrenal hormones. *Ann Ny Acad Sci*2012;1264(1):87-102. doi:10.1111/j.1749-6632.2012.06597.x

- 36. Li Y, Bujo H, Takahashi K, et al. Visceral fat: higher responsiveness of fat mass
 and gene expression to calorie restriction than subcutaneous fat. *Exp Biol Med (Maywood)* 2003;228(10):1118-23.
- 37. Song J, Zhao Y, Nie S, et al. The effect of lipid accumulation product and its
 interaction with other factors on hypertension risk in Chinese Han population: A
 cross-sectional study. *Plos One* 2018;13(6):e0198105.
 doi:10.1371/journal.pone.0198105
- 38. Janghorbani M, Aminorroaya A, Amini M. Comparison of Different Obesity 15 16 Indices for Predicting Incident Hypertension. High Blood Pressure & Cardiovascular Prevention 2017;24(2):157-166. doi:10.1007/s40292-017-0186-3 17 39. Nazare J, Smith JD, Borel A, et al. Ethnic influences on the relations between 18 19 abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity 20 and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. The 21 American Journal Clinical Nutrition 2012;96(4):714-726. 22 of doi:10.3945/ajcn.112.035758 23
 - 40. Wang H, Chen Y, Sun G, et al. Validity of cardiometabolic index, lipid
 accumulation product, and body adiposity index in predicting the risk of
 hypertension in Chinese population. *Postgraduate Medicine* 2018;130(3):325-333.
 doi:10.1080/00325481.2018.1444901
- 41.Kahn H S, Cheng Y J. Longitudinal changes in BMI and in an index estimating
 excess lipids among white and black adults in the United States. *Int J Obes* 2008;
 32(1):136-143.

1	42. Pinto E. Blood pressure and ageing. Postgrad Med J 2007; Feb;83(976):109-14.
2	doi: 10.1136/pgmj.2006.048371
3	43. TOZAWA M, OSHIRO S, ISEKI C, et al. Family History of Hypertension and
4	Blood Pressure in a Screened Cohort. Hypertens Res 2001;24(2):93-98.
5	doi:10.1291/hypres.24.93
6	44. Doumas M, Papademetriou V, Faselis C, et al. Gender Differences in
7	Hypertension: Myths and Reality. Curr Hypertens Rep 2013;15(4):321-330.
8	doi:10.1007/s11906-013-0359-y
9	45. Ramezani TF, Behboudi-Gandevani S, Ghanbarian A, et al. Effect of menopause
10	on cardiovascular disease and its risk factors: a 9-year follow-up study.
11	Climacteric. 2014 Apr;17(2):164-72. doi: 10.3109/13697137.2013.828197.
12	
13	The titles and legends of figure
14	Title
15	Fig.1 The ROC curve of different obesity indexes in predicting hypertension in males.
16	legend
17	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC:
18	waist circumference; TG: Triglyceride.
19	
20	Title
21	Fig.2 The ROC curve of different obesity indexes in predicting hypertension in
22	females.
23	legend
24	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC:
25	waist circumference; TG: Triglyceride.
26	
27	
27	

Table 1 Basic characteristics of the participants

Variables	Normotension	Prehypertension	Hypertension	χ^2 / Z	<i>P</i> -value
	(N = 832)	(N = 789)	(N = 458)		
Sex (%)				135.625	< 0.001
Male	32.57	58.68	58.52		
Female	67.43	41.32	41.48		
Age (years)	36.42 ± 10.59	41.38 ± 12.71	48.93 ± 12.75	267.206	< 0.001
Marital status (%)				21.287	< 0.001
Currently not married	23.20	18.76	12.66		
Currently married	76.80	81.24	87.34		
Education level (%)				101.355	< 0.001
Elementary school and lower	15.87	21.55	36.46		
Secondary school	36.30	38.53	39.96		
Senior high school and higher	47.83	39.92	23.58		
Physical activity (%)				2.688	0.611

Seldom or never	35.70	34.22	31.22		
Moderate	17.43	18.25	18.78		
High	46.87	47.53	50.00		
Smoker (%)				50.346	< 0.001
Non-smoker	82.25	71.61	67.90		
Smoker	16.18	26.87	28.61		
Former smoker	0.97	1.52	3.49		
Drinker (%)				30.865	< 0.001
Non-drinker	84.11	76.34	72.53		
Drinker	14.91	22.39	24.62		
Former drinker	0.98	1.27	2.85		
BMI				255.012	< 0.001
< 18.5	13.70	5.20	2.18		
18.5–23.9	68.51	54.88	41.70		
24–27.9	14.30	31.69	37.55		

BMJ Open

\geq 28	3.49	8.24	18.56		
WC	75.61±8.19	81.61±9.04	87.02±9.95	411.441	< 0.001
WHR	0.85 ± 0.06	0.88 ± 0.07	0.91 ± 0.06	248.475	< 0.001
Fasting plasma glucose (mmol/L)	4.69 ± 0.82	4.98 ± 1.33	5.31 ± 1.86	90.399	< 0.001
Total cholesterol (mmol/L)	4.70 ± 0.96	4.98 ± 1.07	5.26 ± 1.15	88.325	< 0.001
Triglyceride (mmol/L)	1.26 ± 0.83	1.77 ± 1.77	2.15 ± 2.25	178.995	< 0.001
Systolic blood pressure (mmHg)	107.97 ± 7.80	125.45 ± 6.65	144.78 ± 18.55	1533.137	< 0.001
Diastolic blood pressure (mmHg)	69.49 ± 6.40	79.59 ± 5.99	91.49 ± 11.33	1206.505	< 0.001
Family history of hypertension (%)				18.391	0.005
Only father	11.42	11.03	11.14		
Only mother	12.02	15.08	17.25		
Both parents	5.41	4.82	8.95		
Neither	71.15	69.07	62.66		
LAP	29.14 ± 27.00	52.15 ± 63.50	75.87 ± 99.81	355.133	< 0.001

BMI: body mass index; WC: waist circumference; WHR: waist-hip rate; LAP: lipid accumulation product.

Table

Table 2 Comparison of blood pressure among four quartiles of LAP

Variables		LAP	- Z	<i>P</i> -valu			
v artables		Q1	Q2	Q3	Q4	- 1	r-van
Male	No.						
Systolic blood press	sure (mmHg)	119.33 ± 13.72	125.61 ± 14.86	129.23 ± 16.38	133.36 ± 17.85	106.793	< 0.00
Diastolic blood pres	ssure (mmHg)	75.84 ± 9.89	80.55 ± 9.84	82.56 ± 10.74	85.64 ± 11.36	106.285	< 0.00
Female							
Systolic blood press	sure (mmHg)	110.45 ± 13.91	114.95 ± 15.07	119.66 ± 15.91	130.25 ± 19.78	184.926	< 0.00
Diastolic blood pres	ssure (mmHg)	71.05 ± 9.45	73.29 ± 9.60	76.21 ± 9.96	81.04 ± 11.70	134.730	< 0.00
Diastolic blood pres				C NC	81.04 ± 11.70	134.730	< 0.00
				C NC	81.04 ± 11.70 OR ^c (95% CI		< 0.00
	ssion analysis of LA		n hypertension status	^h C	h/	0)	< 0.00
inomial logistic regre	or analysis of LA	AP associated with	n hypertension status OR ^b (95% CI)	^h C	OR°(95% CI	0)	
inomial logistic regre Quartiles of LAP	or analysis of LA	AP associated with	n hypertension status OR ^b (95% CI)	^h C	OR ^c (95% Cl prehyperten	l) sion hyper	< 0.00
inomial logistic regre Quartiles of LAP Male	or analysis of LA OR ^a (95% CI) prehypertension	AP associated with	n hypertension status OR ^b (95% CI) prehypertensior	hypertension	OR ^c (95% Cl prehyperten	l) sion hyper	tension
inomial logistic regre Quartiles of LAP Male	oR ^a (95% CI) prehypertension	AP associated with hypertension 1 (reference)	n hypertension status OR ^b (95% CI) prehypertensior	hypertension 1 (reference)	OR ^c (95% Cl prehyperten 1 (reference	l) sion hyper	tension

BMJ Open

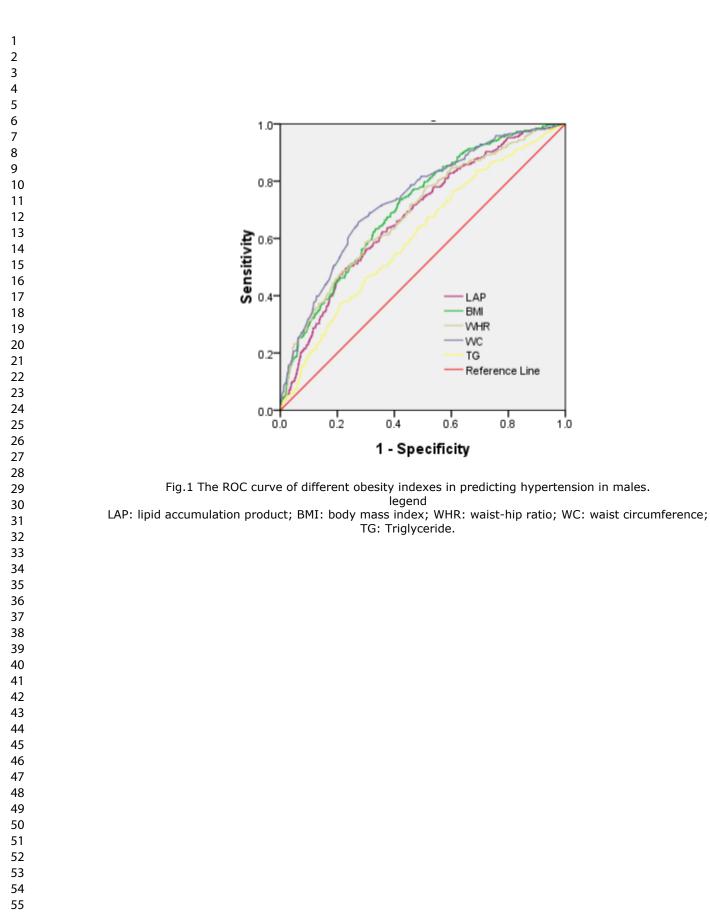
Q2	2.98***	4.70***	2.22***	2.38**	1.73*	1.61
	(1.88, 4.72)	(2.34, 9.45)	(1.48, 3.34)	(1.36, 4.16)	(1.12, 2.67)	(0.89, 2.94)
Q3	4.48***	8.26***	2.68***	3.90***	1.66*	1.75
	(2.85, 7.03)	(4.21, 16.21)	(1.74, 4.12)	(2.24, 6.82)	(1.03, 2.68)	(0.94, 3.26)
Q4	4.65***	17.82***	3.14***	9.02***	1.67	2.79***
	(2.93, 7.36)	(9.21, 34.46)	(1.95, 5.07)	(5.11, 15.93)	(0.96, 2.92)	(1.43, 5.44)
Female						
Q1	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)
Q2	1.75**	2.19**	1.046	1.19	0.91	1.015
	(1.22, 2.51)	(1.27, 3.77)	(0.69,1.58)	(0.62,2.29)	(0.59,1.41)	(0.51,2.03)
Q3	3.35***	6.50***	1.68**	1.87	1.31	1.19
	(2.27, 4.93)	(3.83, 11.02)	(1.11,2.52)	(0.99,3.49)	(0.84,2.05)	(0.60,2.38)
Q4	5.99***	20.06***	3.26***	6.32***	2.10**	3.15***
	(3.74, 9.59)	(11.37, 35.38)	(2.09,5.10)	(3.42,11.65)	(1.26,3.51)	(1.56,6.39)

1 OR=Odds ratio; CI=confidence interval; ****, P < 0.001; **, P < 0.01; *, P < 0.05.

2 ^a, unadjusted.

 3 ^b, adjusted for age, sex, marital status, educational level

^c, adjusted for physical activity, smoker, drinker, BMI, WHR, fasting plasma glucose, family history of hypertension, and all the factors in b.


Table 4 Predicting hypertension by different obesity indexes

Variables	Cut-off value	Sensitivity (%)	Specificity (%)	Youden Index	AUC(95% CI)	<i>P</i> -value
Male		5				
BMI	23.004	73.51	58.08	0.316	0.707 (0.672, 0.742)	< 0.001
WHR	0.906	58.58	70.27	0.289	0.688 (0.650, 0.725)	< 0.001
LAP	63.892	49.63	76.99	0.266	0.677 (0.640, 0.713)	< 0.001
WC	85.05	65.67	72.60	0.383	0.734 (0.700, 0.769)	< 0.001
TG	1.91	46.27	70.14	0.164	0.607 (0.568, 0.646)	< 0.001
Female						
BMI	21.767	81.58	50.73	0.323	0.698 (0.658, 0.737)	< 0.001
WHR	0.860	74.21	55.24	0.294	0.684 (0.643, 0.726)	< 0.001
LAP	30.860	68.95	67.42	0.363	0.721 (0.680, 0.761)	< 0.001
WC	79.90	72.11	64.94	0.370	0.725 (0.686, 0.766)	< 0.001

Table 5 Inter	raction effects bet	tween LAP and	family history of hypertension	
Variables	Variables	N	OR ^c (95% CI)	Interaction indexes (95% CI)
Male			09	
LAPa	Family history	y ^b		
-	-	486	1 (reference)	RERI = 1.652 (0.267, 3.037)*
-	+	215	1.189 (0.772, 1.832)	$AP = 0.516 (0.238, 0.794)^*$
+	-	173	1.362 (0.875, 2.121)	SI = 3.998 (0.897, 17.820)
+	+	128	3.203*** (2.002, 5.124)	
Female LAP ^a	Family history	y ^b		
-	-	657	1 (reference)	RERI = -0.673 (-2.566, 1.220)

	-	+	276	1.995** (1.284, 3.099)	AP = -0.328 (-1.451, 0.795)
	+	-	108	1.729*(1.023, 2.922)	SI = 0.610 (0.125, 2.979)
	+	+	36	2.051 (0.919, 4.589)	
1 2		•	•	I: relative excess risk of interact **, <i>P</i> < 0.01; *, <i>P</i> < 0.05.	tion ; AP: attributable proportion due to interaction; SI: synergy index; OR=Odd
3	^a , gro	uped by the cut-of	ff values in Table 4.	b.	
1	^b , fam	ily history of hyp	ertension was defin	ed as one parent or both parents	having hypertension.
5	°, adjı	isted for age, mar	ital status, education	nal level, physical activity, smol	ker, drinker, BMI, and WHR.
					ker, drinker, BMI, and WHR.

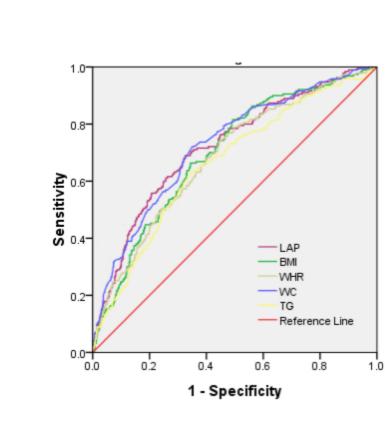


Fig.2 The ROC curve of different obesity indexes in predicting hypertension in females. legend LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC: waist circumference;

TG: Triglyceride.

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods			
Study design	4	Present key elements of study design early in the paper	Page 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Page 5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 6-7
Bias	9	Describe any efforts to address potential sources of bias	Page 3
Study size	10	Explain how the study size was arrived at	Page 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 7-8
		(b) Describe any methods used to examine subgroups and interactions	Page 7-8
		(c) Explain how missing data were addressed	Page 5
		(d) If applicable, describe analytical methods taking account of sampling strategy	Page 5
		(e) Describe any sensitivity analyses	Not applicable

STROPE 2007 (v4) Statement—Chacklist of itoms that should be included in reports of cross sactional studies

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	Page 8-9; Table 1			
		confirmed eligible, included in the study, completing follow-up, and analysed				
		(b) Give reasons for non-participation at each stage	Not application			
		(c) Consider use of a flow diagram	Not application			
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	Page 8-9; Table 1			
		confounders				
		(b) Indicate number of participants with missing data for each variable of interest	Not application			
Outcome data	15*	Report numbers of outcome events or summary measures				
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence				
		interval). Make clear which confounders were adjusted for and why they were included	Table 5			
		(b) Report category boundaries when continuous variables were categorized	Page 6-8; Table 1;			
			Table 2 ; Table 5			
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not application			
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses				
Discussion						
Key results	18	Summarise key results with reference to study objectives	Page 12-14			
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and	Page 14			
		magnitude of any potential bias				
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	Page 12-14			
		similar studies, and other relevant evidence				
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 13			
Other information						
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	Page 14-15			
		which the present article is based				

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Interaction of lipid accumulation product and family history of hypertension on hypertension risk: A cross-sectional study in the Southern Chinese population

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029253.R2
Article Type:	Original research
Date Submitted by the Author:	06-Oct-2019
Complete List of Authors:	Huang, junxuan; Guangzhou Medical University Bao, XinYu; Guangzhou Medical University Xie, yixian; Guangzhou Medical University Zhang, xiaoxia; Guangzhou Medical University Peng, xin; Guangzhou Medical University Liu, yan; Guangzhou Medical University Cheng, mengjiao; Guangzhou Medical University Ma, JinXiang; Guangzhou Medical University wang, peixi; General Practice Center, Nanhai Hospital, Southern Medical University
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Diabetes and endocrinology
Keywords:	Hypertension < CARDIOLOGY, LAP, Family history, Interaction effect

SCHOLARONE[™] Manuscripts

BMJ Open

1
Interaction of lipid accumulation product and family history of hypertension on hypertension risk: A cross-sectional study in the Southern Chinese population
Jun-Xuan Huang ¹ , Xin-Yu Bao ¹ , Yi-Xian Xie ¹ , Xiao-Xia Zhang ¹ , Xin Peng ¹ , Yan Liu ¹ , Meng-Jiao Cheng ¹ , Jin-Xiang Ma ^{1*} and Pei-Xi Wang ^{2*}
Institution address:
¹ Guangzhou Medical University, Guangzhou, 510182, China.
² General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, 528244, China.
Email address:
circle_wong@yeah.net (JX.H.); 1027473041@qq.com (XY.B.);
yixian.xie@yahoo.com (YX.X.); zhangxiaoxia405@163.com (XX.Z.);
609167985@qq.com (X.P.); 1763136904@qq.com (Y.L.);
15700727758@163.com (MJ.C.); mjx777108@hotmail.com (JX.M);
peixi001@163.com (PX.W.)
* Author to whom correspondence should be addressed; E-mail:
mjx777108@hotmail.com, peixi001@163.com

1 ABSTRACT

Objectives: This study aimed at investigating the applicability of a novel index based on waist circumference (WC) and Triglyceride (TG) which was named lipid accumulation product (LAP) in the Southern Chinese population, and compared the predictive effects of LAP and other obesity indicators on hypertension risk. Moreover, this study investigated the interactive effects of LAP and family history of hypertension.

Methods: A total number of 2079 of community-dwelling adults in Southern China were enrolled in this cross-sectional study. The participants underwent questionnaire surveys, anthropometric tests, and laboratory examinations. The multivariate logistic regression model and receiver operating characteristic (ROC) curves, including LAP, body mass index (BMI), waist-hip ratio (WHR), WC, and TG were used to assess the association between hypertension risk and obesity indexes. The interaction effects were evaluated by relative excess risk of interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI).

Results: Higher LAP levels have a relatively higher risk of having hypertension in both sexes (males: adjusted odds ratio [OR] = 2.79 per SD increase, 95% confidence interval [CI] = 1.43-5.44, P < 0.001; females: adjusted OR:3.15.95%CI=1.56-6.39, P< 0.001). LAP (area under curve [AUC] = 0.721; 95% CI: 0.680-0.761) is a better indicator in identifying hypertension risk than BMI, WHR, and TG in females, but WC performed better in males. A significant interaction between LAP and family history of hypertension was observed in males (RERI = 1.652, 95% CI: 0.267–3.037; AP = 0.516, 95% CI: 0.238–0.794; SI = 3.998, 95% CI: 0.897–17.820), but there is no statistically significant differences in females.

Conclusions: LAP significantly associated with hypertension risk in the Southern
Chinese population. It has better performance than BMI, WHR, and TG on predicting
hypertension risk of the Southern Chinese female population. This demonstrated the
synergistic effect between LAP and family history of hypertension.

BMJ Open

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
12 13 14 15 16 17	
16	
17	
10	
18 19	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1	Keywords: Hy	pertension, LAP,	Family history	v. Interaction	effect
-					

Strengths and limitations of this study 2

3 Strengths:

1. Our study is the first to examine the validity of LAP, which was calculated using a 4 modified formula, in the Southern China population. 5

Limitations: 6

- 1. This is a cross-sectional study; the results are not sufficient to indicate causality. 7
- 2. The population of our study can partially represent the general population in the 8 9 Southern China but cannot fully represent this region.
- 3. Lack of the adjustment for renal function, and other risk factors for hypertension 10 (such as serum uric acid) in our study. 11
- 4. This study has small sample size, so further studies with a larger sample size are 12
- needed to investigate whether the modified LAP applies to all the residents dwelling 13
 - in Southern China. 14

1 INTRODUCTION

Hypertension, a significant risk factor of cardiovascular disease,¹ is one of the most prevalent public health problems in the world and is the leading contributor to the global burden of disease and mortality. Nowadays, the number of adults with hypertension in the world is being predicted to increase by about 60% to a total of 1.56 billion in 2025, and one-third of adults are suffering from hypertension in China.^{2,3}

Obesity, especially visceral fat, and family history of hypertension contributes to hypertension significantly.⁴⁻⁶ Numerous studies agree on the idea that people with hypertension's family history have higher chance to get hypertension.⁶⁻⁹ Usually, when it comes to obesity, the indexes that are most frequently used to assess obesity are body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR); however, these traditional obesity indexes merely reflect the degrees of overweight and abdominal obesity, also, cannot distinguish the difference between subcutaneous fat and visceral fat.¹⁰ Micromagnetic resonance imaging and microcomputed tomography, which are the visceral fat golden standard measurement methods, is inconvenient and expensive.¹¹ Moreover, they are not suitable for large-scale epidemiological investigations. Therefore, it is necessary to discover a new obesity indicator that can predict visceral fat from subcutaneous fat more conveniently and economically.

Recently, increasing attention has been directed towards lipid accumulation product (LAP). LAP, a new obesity index computed from WC and triglyceride (TG), is a useful indicator of visceral fat,¹² as demonstrated by Kahn in 2005¹³. Some studies suggest that LAP can also be used to identify metabolic syndromes,^{14, 15} type 2 diabetes mellitus,¹⁶ stroke,¹⁷ and arterial stiffness.¹⁸ Additionally, several cross-sectional studies conducted in Japan,¹⁹ India,¹⁴ and Brazil indicate that LAP significantly associated with cardiovascular disease and is a better indicator than BMI for identifying cardiovascular risk.^{13, 20} A few national studies have investigated the association between LAP and hypertension in China, and all of them were conducted

BMJ Open

in northern China, including Bengbu,²¹ Beijing,²² and Inner Mongolia.²³ With a vast territory, China has a tremendous difference between South and North. Due to the geographical environment and dietary habits that have formed throughout its long history, there are some dietary and cultural differences between Northern and Southern China.²⁴ The Northern region shows a high intake of wheat, tubers, and liquor, etc. While southerner has a high intake of rice, vegetables, meat, poultry, fish etc.²⁴ The Carbohydrate-rich pattern of the northern region is associated with a high risk of hypertriglyceridemia and higher BMI. Meanwhile, significant differences are found in systolic blood pressure (SBP)/diastolic blood pressure (DBP) between southern Chinese and northern Chinese owing to different climate and dietary habits between southern and northern.²⁵ Studies have found that the northerners were heavier and had higher triglycerides level than southerners.^{26, 27} Differences in dietary habits, or lifestyle, individuals from different regions should lead to different LAP. LAP has a different situation in the north and south. Thus, the applicability of LAP in predicting hypertension in Southern China is worth studying. However, rare studies have compared LAP with other obesity indexes in the Southern Chinese population. Besides, almost all studies about LAP used the formula that was developed based on the third National Health and Nutrition Examination Survey in the US. Therefore, it is reasonable to suggest that the calculation formula of LAP needs to be modified in the Chinese population.

To the best of our knowledge, no studies have attempted to adjust the calculation formula of LAP so that it can apply to the Southern Chinese population, and rare studies have explored additive interactions between family history of hypertension and LAP. Thus, the primary purpose of this study was to investigate the applicability of LAP in the Southern Chinese population and compare the predictive effects of LAP and other obesity indicators on hypertension risk. And the secondary purpose of the study was to assess interactive effects between LAP and family history of hypertension to predict the hypertension risk in the Southern Chinese population.

29 METHODS

1 Study design and subjects

A cross-sectional survey based on community health was conducted in the Foshan city of Guangdong province in Southern China. Recruiting the enrollers took place on March 2017. The study samples were selected by a multistage and stratified random sampling method. The stratification according to the economic levels and randomly selected street communities at economic levels, then randomly selected communities in street communities according to proportion. Communities residents were then randomly selected from the household lists. A total of 3760 individuals were enrolled in this study; among them, 1681 participants who lacked complete data on demographic characteristics, anthropometric tests, or laboratory examinations were excluded. There are no statistically significant differences in age and sex between excluded participants and included participants. Finally, 2079 adults who had complete data were included in the analysis.

Patient and public involvement

15 Patients or public were not involved in this study.

Ethics statement

This study was approved by the Ethics Committee of Guangzhou Medical University.
Written informed consent was obtained from each study participant before
investigation.

20 General study questionnaire

An interview-based survey was performed using a questionnaire by trained staff. Socio-demographic data, family history of hypertension, cigarette smoking, and alcohol drinking were investigated. Smokers were defined as the participants smoking at least 1 cigarette/day for at least 6 months. Drinkers were defined as individuals consuming at least 30 ml alcohol/week for 1 year or more. Physical activities were divided into "insufficiently active" and "sufficiently active." Participants with "insufficiently active" were defined as those who performed activity less than 150min/week. Participants with "sufficiently active" were defined as those who

Page 7 of 36

BMJ Open

exercised more than 150min/week.²⁸ Marital status was classified as "currently not
married" and "currently married"; "married" was regarded as "currently married," and
"divorced/widowed/single" was regarded as "currently not married." Educational
level was categorized as "elementary school or lower," "secondary school," and
"senior high school or higher."

6 Anthropometric tests and laboratory examinations

The participants were required to take off their shoes and wear lightweight clothing for weight and height measurements. WC was measured at the level of 1 cm above the navel.²⁹ Automatic sphygmomanometer (OMRON, hem-7125) was used to measure blood pressure (BP) of participants. BP measurement was conducted thrice in a quiet environment, and the participants rested at least one minute between each time of measurement. The mean of the three measurements was used in the analysis. Prehypertension was defined as SBP of 120-139 mmHg and/or DBP of 80-89 mmHg, and hypertension was defined as SBP of \geq 140 mmHg, DBP of \geq 90 mmHg, and/or a reported medical history of anti-hypertensive medication.²⁹ The BMI was calculated as weight in kilograms divided by the square of the height in meters. Overweight was defined as BMI of 24–27.9 kg/m², and obesity was defined as BMI of \geq 28 kg/m². The fasting blood samples were collected from the participants in the morning after an overnight fast and were used to assess fasting plasma glucose, total cholesterol, and TG levels.

According to Kahn's theory,¹³ LAP is calculated as [WC (cm) - The minimum of WC (male)] \times [TG (mmol/L)] for males and [WC (cm) - The minimum of WC (female)] \times [TG (mmol/L)] for females, and the minimum waist size theoretically contains only the abdomen, muscle, viscera, and vertebral bone.¹³ Visceral fat can be estimated by the difference between the WC and the minimum waist size. In the present study, the WC of the studied population was skewed; therefore, the WC was log-transformed. The minimum WC was estimated by the mean WC minus two standard deviations after log-transformation in the local participants aged 18-24 years.13, 22

Statistical analyses

According to the hypertension status, the enrollees were divided into three groups (normotension, prehypertension, and hypertension). The frequency (%) was used to describe sex, marital status, education level, physical activity, BMI, smoker, and drinker. Mean ± standard deviation (SDs) was used to describe the WC, WHR, fasting plasma glucose, total cholesterol, TG, SBP, DBP, and LAP. LAP was divided into four groups by the quartiles, i.e., Q1, Q2, Q3, and Q4. The differences of quantitative data across different hypertension statuses were analyzed by the Kruskal-Wallis H test because the data had skewed distribution. Categorical variables were analyzed by the Chi-squared test. The multivariate logistic regression model was used to analyze the relationship between LAP and risk factors of hypertension and prehypertension. The receiver operating characteristics (ROC) curves were applied to identify the superior obesity index and the best cut-off value of LAP to predict the hypertension risk. Moreover, the interaction effects between LAP and family history of hypertension were assessed by some relevant indicators, including the relative excess risk of interaction (RERI = $OR_{11} - OR_{10} - OR_{01} + 1$), the attributable proportion due to interaction (AP = $[OR_{11} - OR_{10} - OR_{01} + 1]/OR_{11}$), and the synergy index (SI = $[OR_{11} - OR_{11} - OR_{11}]/OR_{11}$). /[OR₀₁ - 1] + [OR₁₀ - 1]). If the interaction effect was not observed, the confidence interval of RERI and AP contained 0 and the confidence interval of S included 1.30 The above indicators were calculated using an Excel table designed by Andersson et al.³⁰ All reported *P*-values were two-tailed, and a *P*-value of < 0.05 was considered significant. Statistical analyses were performed using SPSS version 19.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

25 LAP

According to Kahn's theory,¹³ LAP was calculated as (WC - 60.6) × (TG [mmol/L]) in males and (WC - 54.1) × (TG [mmol/L]) in females based on the actual data obtained from the Southern Chinese population.²²

Basic characteristics of the study participants

A total number of 2079 of adults with an average age of 41.06 years were enrolled in the present study, including 1002 males (48.29%) and 1077 females (51.80%). The overall prevalence rates of normotension, prehypertension, and hypertension were 40.02%, 37.95%, and 22.03%, respectively. Male participants had a high prevalence of prehypertension and hypertension than female participants (P < 0.001). Statistically significant differences in age (P < 0.001), marital status (P < 0.001), education level (P < 0.001), smoker (P < 0.001), drinker (P < 0.001), and family history of hypertension (P = 0.005) were observed between normotension, prehypertension, and hypertension groups. However, no significant differences were observed in physical activity (P = 0.550) among the three groups. Anthropometric measurements found significant differences in BMI ($P \le 0.001$), WC ($P \le 0.001$), WHR ($P \le 0.001$), LAP (P < 0.001) between the groups. Statistically significant differences found in laboratory examinations including fasting plasma glucose (P < 0.001), total cholesterol (P < 0.001), SBP (P < 0.001), and DBP (P < 0.001) between the groups (Table 1). And the basic characteristics of different sex of study participants were shown in table 2.

18 LAP and the risk factors of hypertension

In order to investigate the relationship between LAP and blood pressure, LAP was divided into four groups by quartile in different sex (Table 3). A significant association was observed between LAP and blood pressure in both male and female. The results in males and females showed that SBP (P < 0.001) and DBP (P < 0.001) were relatively elevated in participants with higher LAP levels.

Multinomial logistic regression analysis was conducted to evaluate the association between LAP quartiles and hypertension status (Table 4). Participants with the third and the fourth quartile of LAP were more likely to develop prehypertension and hypertension than those with the first quartile in both males and females.

After adjusting for age, marital status, and educational level, the risks of

prehypertension (adjusted OR: 3.14, 95% CI: 1.95–5.07) and hypertension (adjusted OR: 9.02; 95% CI: 5.11–15.93) significantly increased in male participants with the fourth quartile compared with those with the first quartile. For females, increasing risks of prehypertension (adjusted OR: 3.26, 95% CI: 2.09–5.10) and hypertension (adjusted OR: 6.32; 95% CI: 3.42–11.65) were observed in participants with the fourth LAP quartile compared with those with the first one.

After controlling for age, marital status, educational level, physical activity, smoking, alcohol consumption, BMI, WHR, fasting plasma glucose, and family history of hypertension, the risks of prehypertension (adjusted OR: 1.67, 95% CI: 0.96-2.92) and hypertension (adjusted OR: 2.79, 95%CI: 1.43-5.44) significantly increased in male participants with the fourth quartile compared with those with the first quartile. Meanwhile, increasing risks of prehypertension (adjusted OR: 2.10, 95%) CI: 1.26-3.51) and hypertension (adjusted OR: 3.15, 95%CI: 1.56-6.39) were observed in female participants with the fourth LAP quartile compared with those with the first one.

The results of ROC curves analysis in males and females were shown in Figure. 1 and 2 and Table 5. LAP (AUC = 0.721; 95% CI: 0.680–0.761) was a better indicator to predict different types of hypertension than BMI (AUC = 0.698; 95% CI: 0.658-0.737), WHR (AUC = 0.684; 95% CI: 0.643-0.726) and TG (AUC = 0.663; 95% CI: 0.620–0.706) in females; however, WC (AUC = 0.734 95% CI: 0.700–0.769) performed better than BMI (AUC = 0.707, 95% CI: 0.672-0.742), WHR (AUC = 0.688; 95% CI: 0.650-0.725), LAP (AUC = 0.677; 95% CI: 0.640-0.713) and TG (AUC = 0.607; 95% CI: 0.568-0.646) on males. The best cut-off values of LAP to predict hypertension were 63.892 in males and 30.860 in females.

25 Interaction effects between LAP and family history of hypertension

The interaction effects between LAP and family history of hypertension are presented in Table 6. Significant interaction effects between LAP and family history of hypertension were observed in males. The results of RERI (1.652; 95% CI: 0.267–3.037) and AP (0.516; 95% CI: 0.238–0.794) indicated a significant interaction

2

5

1

BMJ Open

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
18 19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55 56
57
58
59

60

effect of family history of hypertension and LAP on hypertension, but the result of SI (3.998; 95% CI: 0.897-17.820) did not.

However, no statistically significant interaction effects were found between LAP 3 and family history of hypertension in females, which is indicated by all the three 4 indicators. RERI was - 0.673 (95% CI: -2.566-1.220); AP was -0.328 (95% CI: -1.451–0.795); and SI was 0.610 (95% CI: 0.125–2.979). 6

7 Discussion

With the rapid development of the economy and sedentary lifestyle, elevated blood 8 pressure has become a common and serious public health issue.³¹ The prevalence of 9 prehypertension and hypertension significantly increased.³² Elevated blood pressure is 10 caused by diverse factors, among which obesity is closely related to hypertension.³³ 11 The prevalence of obesity increased by 13% in urban areas and by 85% in rural areas 12 in China, and more attention should thus be paid to this issue.¹⁷ Extensive studies 13 found that obesity, especially visceral adipose tissue, could strongly increase the 14 blood pressure.33 15

The mechanisms underlying the interaction between obesity and hypertension are 16 complicated. The mechanisms of obesity-induced hypertension include sodium 17 retention, insulin resistance, activation of renin-angiotensin-aldosterone, altered 18 vascular function, and secretion of relevant adipokines.³⁴ Besides, the mechanisms of 19 blood pressure increase can be activated by visceral fat.³⁵ 20

Substantial evidence proved that the harm of the fat accumulation was greater than 21 the total amount of fat.^{36, 37} However, traditional obesity indexes, such as BMI, WC, 22 and WHR, have limitations of distinguishing differences between subcutaneous fat 23 and visceral fat. Therefore, a new obesity index that can predict visceral fat easily and 24 effectively is urgently needed. After Kahn first demonstrated that LAP performs 25 better than BMI for recognizing the cardiovascular risk, domestic and foreign scholars 26 paid increasing attention to LAP. LAP, a combination of WC and TG, is an accessible 27 and inexpensive way to assess visceral fat.¹³ It is a well-known fact that TG reflect the 28

degree of visceral fat accumulation and WC strongly associated with hypertension.¹²
Notably, hypertriglyceridemic waist (HTGW) is also calculated based on the
combination of TG and WC. However, LAP, as a continuous indicator, is superior to
reflect visceral fat than HTGW,³⁸ a discontinuous indicator.²¹ Therefore, LAP was
used as a visceral obesity indicator in this study.

LAP is based on the hypothesis of minimum waist circumference includes the rachis, abdominal viscera and muscle.¹³ Therefore, the differences between the actual WC and the minimum WC can represent abdominal adipose tissue.¹³ Notably, LAP in almost all studies is calculated by data obtained based on the third National Health and Nutrition Examination Survey in the United States.¹³ Because of differences in race, dietary habits, or lifestyle, individuals from different countries should have different visceral adipose tissues. It demonstrated that there are considerable differences in visceral adipose tissues between Chinese individuals and Europeans or Americans.³⁹ Therefore, LAP was calculated in our study using a modified formula so that it could apply to the individuals dwelling in Southern China.

As expected, a significant association was found between LAP and hypertension in the present study. Our findings are consistent with those in studies by Zhong et al.¹⁷ Song et al.³⁷ and Shen et al.²² all of which have demonstrated that LAP is an effective and reliable diagnostic indicator of hypertension. Participants with significantly higher LAP had higher risks of prehypertension and hypertension than those with lower LAP. Multinomial logistic regression analysis revealed that after adjusting for other factors, the risks of prehypertension and hypertension in the group with the highest LAP level were 2.10 and 3.15 times higher in females, respectively, than those in the group with the lowest LAP.

Wang et al.found LAP is a better index to predict the risk of hypertension.⁴⁰ However, Gao et al found that the performance of LAP was superior to that of BMI in male Mongolians;²³ this findings may be due to the apparently lower prevalence of high TG in female Mongolians than in male Mongolians (13.20% vs 23.10%, P <0.05), and the facts might disturb the association between LAP and hypertension in Page 13 of 36

BMJ Open

female Mongolians. Several studies found the superiority of LAP over BMI for detection of hypertension and prehypertension in both genders.^{21, 37, 40} However, in the present study, we also found that LAP perform better than BMI in female. According to Kahn,⁴¹ the annual LAP changes were reduced at older age in male. Advancing age is associated with a progressive increase in systolic BP levels and with development and progression of arterial hypertension because of a number of factors, including atherosclerotic changes, large artery stiffening, altered renal function, and arterial baroreflex impairmen,⁴² That is to say, increase in blood pressure was thought to be an unavoidable consequence of aging. Thus, the superiority of LAP for predicting hypertension in male may be disturbed by the larger-scale proportion of elder man (23.7%) in our study. In our study, LAP perform better in predicting the hypertension risk than TG in both sex. However, due to low predictive value of TG in southern China, LAP which combines of TG and WC is slightly inferior to WC.

In general, LAP, which applied to the Southern Chinese population, was a better indicator for predicting the hypertension risk in females in this study. In addition, large studies have demonstrated that family history of hypertension is a critical risk factor for hypertension, and individuals with family history of hypertension are 2-4 times more likely to develop hypertension than those without the family history of hypertension.⁴³ The interaction analysis in this study indicates the synergistic effect of LAP and family history on the hypertension risk in males, but no statistically significant differences in the interaction effect in females. In fact, cardiovascular events occur at a lower rate in females than in males.⁴⁴ In our study, the female participants who had both LAP and family history of hypertension were rarely observed and the prevalence rates of hypertension at a lower rate in females than in males no matter premenopausal status or menopausal status.⁴⁵ Our study suffers from a small sample size, especially in females. The fewer positive female observers which had higher LAP and family history of hypertension lead to no statistically significant differences in the interaction effect on the hypertension risk in females. The interaction in female was not statistically significant, but their synergistic effect was

obvious. The synergistic effect between family history of hypertension and LAP on
the hypertension risk was demonstrated in our study as well as in other studies.^{21, 40}
Visceral obesity and family history of hypertension may result in increased blood
pressure through some unknown mechanisms. However, further studies are needed to
investigate the interaction effect between LAP and family history of hypertension on
the hypertension risk.

To date, LAP is an inexpensive screening tool to identify visceral adipose tissue,
and the method has high reproducibility. LAP, which was proposed by Kahn, was
developed for the Western population. Thus this study explored the validity of LAP,
which was calculated based on the Southern China population. The findings suggest
LAP might perform better in predicting the hypertension risk than BMI, WHR and
TG in Southern Chinese females.

This study has some limitations. First of all, because this is a cross-sectional study, the present results are not sufficient to indicate causality. Secondly, the population of our study can partially represent the general population in the Southern China, but can not fully represent this region. Furthermore, this article is lack of adjustment for renal function, and other risk factors for hypertension (such as serum uric acid). Finally, because of the small sample size in this study, further studies with a larger sample size are needed to investigate whether the modified LAP applies to all the residents dwelling in Southern China.

21 CONCLUSION

In conclusion, LAP significantly associated with the hypertension risk, and higher LAP levels had relatively higher blood pressure. LAP performed better in predicting hypertension of the Southern China female population than BMI, WHR, and TG did. This demonstrated the synergistic effect of LAP and family history of hypertension.

26 Acknowledgements

We gratefully acknowledge Dr. Pei-Xi Wang, Dr. Jin-Xiang Ma, Xin-Yu
Bao,Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and Meng-Jiao Cheng for their
excellent work in study coordination, data collection, and management.

2		
3 4	1	Contributors
5 6	2	Jun-Xuan Huang, Pei-Xi Wang and Jin-Xiang Ma conceived and designed the study.
7 8	3	Jun-Xuan Huang, Xin-Yu Bao, Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and
9 10	4	Meng-Jiao Cheng contributed to collection of the data, analyzed the data and
11 12	5	interpretation of the results. Jun-Xuan Huang wrote the draft manuscript. Jin-Xiang
13 14	6	Ma, Pei-Xi Wang and Jun-Xuan Huang finalized the manuscript with inputs from all
15	7	authors. All of the authors approved the final version submitted for publication.
16 17	8	Funding
18 19	9	This study was supported by Talent Introduction Fund of Guangzhou Medical
20 21	10	University (2009).
22 23	11	Competing interests
24 25	12	The authors declared that they had no conflict of interest.
26 27 28	13	Ethics statement
29 30	14	This study was approved by the Ethics Committee of Guangzhou Medical University.
31 32	15	Written informed consent was obtained from each study participant before
33 34 35	16	investigation.
36 37	17	Data sharing statement
38 39	18	Our data might not be shared directly, because it's our team work and the data
40 41	19	belongs
42 43	20	to our team. Thus consent should be attained from team members.
44 45	21	References
46	22	1. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension:
47 48	23	analysis of worldwide data. TheLancet 2005;365(9455):217-223.
49 50	24	doi:10.1016/S0140-6736(05)17741-1
51 52	25	2. Beaney T, Schutte AE, Tomaszewski M, et al. May Measurement Month 2017: an
53 54	26	analysis of blood pressure screening results worldwide. The Lancet Global
55 56	27	Health 2018;6(7):e736-e743. doi:10.1016/S2214-109X(18)30259-6
57 58	28	3. Bundy JD, He J. Hypertension and Related Cardiovascular Disease Burden in
59 60	29	China. Ann Glob Health 2018;82(2):227-233. doi:10.1016/j.aogh.2016.02.002

1 2		16
3	1	4. Macia E, Gueye L, Duboz P. Hypertension and Obesity in Dakar, Senegal. <i>Plos</i>
4 5	1	
6 7	2	One 2016;11(9):e0161544. doi:10.1371/journal.pone.0161544
8	3	5. Tang L, Zhang F, Tong N. The association of visceral adipose tissue and
9 10	4	subcutaneous adipose tissue with metabolic risk factors in a large population of
11 12	5	Chinese adults. Clin Endocrinol 2016;85(1):46-53. doi:10.1111/cen.13013
13 14	6	6. Wandeler G, Paccaud F, Vollenweider P, et al. Strength of Family History in
15 16	7	Predicting Levels of Blood Pressure, Plasma Glucose and Cholesterol. Public
17	8	Health Genom 2010;13(3):143-154. doi:10.1159/000233228
18 19	9	7. Liu M, He Y, Jiang B, et al. Association Between Family History and
20 21	10	Hypertension Among Chinese Elderly. <i>Medicine</i> 2015;94(48):e2226.
22 23	11	doi:10.1097/MD.0000000002226
24 25		
26	12	8. Al-Safi SA, Aboul-Enein FH, Aboul-Enein BH, et al. Influence of family history
27 28	13	and lifestyle on blood pressure and heart rate in young adults in Jordan. Public
29 30	14	Health 2006;120(11):1027-1032. doi:10.1016/j.puhe.2006.06.009
31 32	15	9. Alhawari HH, Al-Shelleh S, Alhawari HH, et al. Blood Pressure and Its
33	16	Association with Gender, Body Mass Index, Smoking, and Family History
34 35	17	among University Students. Int J Hypertens 2018;2018:1-5.
36 37	18	doi:10.1155/2018/4186496
38 39	19	10. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional
40 41	20	differences. Obes Rev 2010;11(1):11-18. doi:10.1111/j.1467-789X.2009.00623.x
42	21	11. Chen W, Wilson JL, Khaksari M, et al. Abdominal fat analyzed by DEXA scan
43 44		
45 46	22	reflects visceral body fat and improves the phenotype description and the
47 48	23	assessment of metabolic risk in mice. Am J Physiol-Endoc M
49 50	24	2012;303(5):E635-E643. doi:10.1152/ajpendo.00078.2012
51	25	12. Nurdiantami Y, Watanabe K, Tanaka E, et al. Association of general and central
52 53	26	obesity with hypertension. <i>Clin Nutr</i> 2018;37(4):1259-1263.
54 55	27	doi:10.1016/j.clnu.2017.05.012
56 57	28	13. Kahn HS. The "lipid accumulation product" performs better than the body mass
58	29	index for recognizing cardiovascular risk: a population-based comparison. Bmc
59 60	30	<i>Cardiovasc Disor</i> 2005;5(1):26-26. doi:10.1186/1471-2261-5-26

```
Page 17 of 36
```

1 2		17							
2 3 4	1	14. Ray L, Ravichandran K, Nanda SK. Comparison of Lipid Accumulation Product							
5 6	2	Index with Body Mass Index and Waist Circumference as a Predictor of							
7 8	3	Metabolic Syndrome in Indian Population. Metab Syndr Relat D							
9 10	4	2018;16(5):240-245. doi:10.1089/met.2017.0119							
11 12	5	15. Cicero A F G, Gitto S, Fogacci F, et al. Fatty liver index is associated to pulse							
13 14	6	wave velocity in healthy subjects: Data from the Brisighella Heart Study.							
15 16	7	European Journal of Internal Medicine 2018:S0953620518301262.							
17 18	8	doi:10.1097/01.hjr.0000136566.89429.63							
19 20	9	16. Lee JW, Lim NK, Park HY. The product of fasting plasma glucose and							
21 22	10	triglycerides improves risk prediction of type 2 diabetes in middle-aged Koreans.							
23 24	11	<i>Bmc Endocr Disord</i> 2018;18(1):33. doi:10.1186/s12902-018-0259-x							
25 26	12	17. Zhong C, Xia W, Zhong X, et al. Lipid Accumulation Product and Hypertension							
27 28	13	Related to Stroke: a 9.2-Year Prospective Study Among Mongolians in China. J							
29 30	14	Atheroscler Thromb 2016;23(7):830-838. doi:10.5551/jat.33514							
31 32	15	18. Cicero A F G, D"Addato S, Reggi A, et al. Gender Difference in Hepatic Steatosis							
33 34	16	Index and Lipid Accumulation Product Ability to Predict Incident Metabolic							
35 36	17	Syndrome in the Historical Cohort of the Brisighella Heart Study. Metabolic							
37	18	Syndrome and Related Disorders 2013; 11(6):412-416.							
38 39	19	19. Wakabayashi I. Associations of Blood Lipid-Related Indices with Blood Pressure							
40 41	20	and Pulse Pressure in Middle-Aged Men. <i>Metab Syndr Relat D</i> 2015;13(1):22-28.							
42 43	21	doi:10.1089/met.2014.0093							
44 45	22	20. de Oliveira CC, Roriz AKC, Ramos LB, et al. Indicators of Adiposity Predictors							
46 47	23	of Metabolic Syndrome in the Elderly. Ann Nutr Metab 2017;70(1):9-15.							
48 49	24	doi:10.1159/000455333							
50 51	25	21. Song J, Chen X, Zhao Y, et al. Risk factors for prehypertension and their							
52 53	26	interactive effect: a cross- sectional survey in China. Bmc Cardiovasc Disor							
54 55	27	2018;18(1). doi:10.1186/s12872-018-0917-y							
56 57	28	22. Shen YY, Chen JC, Li G, et al. Relationship of lipid accumulation product with							
58 59	29	hypertension and diabetes among Beijing residents study. Zhonghua yu fang yi							
60	30	xue za zhi [Chinese journal of preventive medicine] 2017;51(5):415.							

1	23. Gao X, Wang G, Wang A, et al. Comparison of lipid accumulation product with
2	body mass index as an indicator of hypertension risk among Mongolians in
3	China. <i>Obes Res Clin Pract</i> 2013;7(4):e308-e314.
4	doi:10.1016/j.orcp.2012.02.002
5	24. Song F , Cho M S . Geography of Food Consumption Patterns between South and
6	North China. Foods 2017;6(5). doi:10.3390/foods6050034.
7	25. Huang Z , Wu X , Stamler J , et al. A north-south comparison of blood pressure
8	and factors related to blood pressure in the People's Republic of China: a report
9	from the PRC-USA Collaborative Study of Cardiovascular Epidemiology.
10	Journal of Hypertension 1994; 12(9):1103-12.
11	26. Wu Z, Yao C, Zhao D, et al. Cardiovascular disease risk factor levels and their
12	relations to CVD rates in Chinaresults of Sino-MONICA project. European
13	Journal of Cardiovascular Prevention & Rehabilitation 2004; 11(4):275-283.
14	27. Zhao L, Stamler J, Yan L L, et al. Blood Pressure Differences Between Northern
15	and Southern Chinese: Role of Dietary Factors The International Study on
16	Macronutrients and Blood Pressure. Hypertension 2004; 43(6):1332-1337.
17	28. Rosenberg DE, Bull FC, Marshall AL, Sallis JF, Bauman AE. Assessment of
18	sedentary behavior with the international physical activity questionnaire.
19	J Phys Act Health. 2008;5:S30-44.
20	29. Zhang M, Batu B, Tong W, et al. Prehypertension and Cardiovascular Risk Factor
21	Clustering Among Mongolian Population in Rural and Animal Husbandry Area,
22	Inner Mongolia, China. Circ J 2009;73(8):1437-1441.
23	doi:10.1253/circj.CJ-09-0101
24	30. Andersson T, Alfredsson L, Källberg H, et al. Calculating measures of biological
25	interaction. <i>Eur J Epidemiol</i> 2005;20(7):575-579.
26	doi:10.1007/s10654-005-7835-x
27	31. Lackland DT, Beilin LJ, Campbell NRC, et al. Global Implications of Blood
28	Pressure Thresholds and Targets. Hypertension 2018;71(6):985-987.
29	doi:10.1161/HYPERTENSIONAHA.118.11280
30	32. Wang Z, Zeng X, Chen Z, et al. Association of visceral and total body fat with

BMJ Open

1	hypertension and prehypertension in a middle-aged Chinese population. J
2	Hypertens 2015;33(8):1555-62. doi:10.1097/HJH.00000000000000000
3	33. Stabouli S, Papakatsika S, Kotsis V. The role of obesity, salt and exercise on
4	blood pressure in children and adolescents. Expert Rev Cardiovasc Ther
5	2011;9(6):753-61. doi:10.1586/erc.11.63
6	34. Kotchen TA. Obesity-Related Hypertension: Epidemiology, Pathophysiology, and
7	Clinical Management. Am J Hypertens 2010;23(11):1170-1178.
8	doi:10.1038/ajh.2010.172
9	35. Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of
10	gluco- and mineralocorticoid hormones in the setting of cardiometabolic
11	alterations: Adipose tissue and adrenal hormones. Ann Ny Acad Sci
12	2012;1264(1):87-102. doi:10.1111/j.1749-6632.2012.06597.x
13	36. Li Y, Bujo H, Takahashi K, et al. Visceral fat: higher responsiveness of fat mass
14	and gene expression to calorie restriction than subcutaneous fat. Exp Biol Med
15	(Maywood) 2003;228(10):1118-23.
16	37. Song J, Zhao Y, Nie S, et al. The effect of lipid accumulation product and its
17	interaction with other factors on hypertension risk in Chinese Han population: A
18	cross-sectional study. <i>Plos One</i> 2018;13(6):e0198105.
19	doi:10.1371/journal.pone.0198105
20	38. Janghorbani M, Aminorroaya A, Amini M. Comparison of Different Obesity
21	Indices for Predicting Incident Hypertension. High Blood Pressure &
22	Cardiovascular Prevention 2017;24(2):157-166. doi:10.1007/s40292-017-0186-3
23	39. Nazare J, Smith JD, Borel A, et al. Ethnic influences on the relations between
24	abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic
25	risk profile: the International Study of Prediction of Intra-Abdominal Adiposity
26	and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. The
27	American Journal of Clinical Nutrition 2012;96(4):714-726.
28	doi:10.3945/ajcn.112.035758
29	40. Wang H, Chen Y, Sun G, et al. Validity of cardiometabolic index, lipid
30	accumulation product, and body adiposity index in predicting the risk of

1	hypertension in Chinese population. Postgraduate Medicine 2018;130(3):325-333.
2	doi:10.1080/00325481.2018.1444901
3	41. Kahn H S, Cheng Y J. Longitudinal changes in BMI and in an index estimating
4	excess lipids among white and black adults in the United States. Int J Obes 2008;
5	32(1):136-143.
6	42. Pinto E. Blood pressure and ageing. Postgrad Med J 2007; Feb;83(976):109-14.
7	doi: 10.1136/pgmj.2006.048371
8	43. TOZAWA M, OSHIRO S, ISEKI C, et al. Family History of Hypertension and
9	Blood Pressure in a Screened Cohort. Hypertens Res 2001;24(2):93-98.
10	doi:10.1291/hypres.24.93
11	44. Doumas M, Papademetriou V, Faselis C, et al. Gender Differences in
12	Hypertension: Myths and Reality. Curr Hypertens Rep 2013;15(4):321-330.
13	doi:10.1007/s11906-013-0359-y
14	45. Ramezani TF, Behboudi-Gandevani S, Ghanbarian A, et al. Effect of menopause
15	on cardiovascular disease and its risk factors: a 9-year follow-up study.
16	Climacteric. 2014 Apr;17(2):164-72. doi: 10.3109/13697137.2013.828197.
17	
18	The titles and legends of figure
19	Title
20	Fig.1 The ROC curve of different obesity indexes in predicting hypertension in males.
21	legend
22	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC:
23	waist circumference; TG: Triglyceride.
24	
25	Title
26	Fig.2 The ROC curve of different obesity indexes in predicting hypertension in
27	females.
28	legend
29	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC:
30	waist circumference; TG: Triglyceride.

Table 1 Basic characteristics of the participants

Variables	Normotension	Prehypertension	Hypertension	χ^2 / Z	<i>P</i> -value
	(N = 832)	(N = 789)	(N = 458)		
Sex (%)				135.625	< 0.001
Male	32.57	58.68	58.52		
Female	67.43	41.32	41.48		
Age (years)	36.42 ± 10.59	41.38 ± 12.71	48.93 ± 12.75	267.206	< 0.001
Marital status (%)				21.287	< 0.001
Currently not married	23.20	18.76	12.66		
Currently married	76.80	81.24	87.34		
Education level (%)				101.355	< 0.001
Elementary school and lower	15.87	21.55	36.46		
Secondary school	36.30	38.53	39.96		
Senior high school and higher	47.83	39.92	23.58		
Physical activity (%)				2.688	0.611

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Seldom or never	35.70	34.22	31.22		
	Moderate	17.43	18.25	18.78		
	High	46.87	47.53	50.00		
Sr	moker (%)				50.346	< 0.001
	Non-smoker	82.25	71.61	67.90		
	Smoker	16.18	26.87	28.61		
	Former smoker	0.97	1.52	3.49		
D	rinker (%)				30.865	< 0.001
	Non-drinker	84.11	76.34	72.53		
	Drinker	14.91	22.39	24.62		
	Former drinker	0.98	1.27	2.85		
B	MI				255.012	< 0.001
	< 18.5	13.70	5.20	2.18		
	18.5–23.9	68.51	54.88	41.70		
	24–27.9	14.30	31.69	37.55		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

≥28	3.49	8.24	18.56		
WC	75.61±8.19	81.61±9.04	87.02±9.95	411.441	< 0.
WHR	0.85 ± 0.06	0.88 ± 0.07	0.91 ± 0.06	248.475	< 0.
Fasting plasma glucose (mmol/L)	4.69 ± 0.82	4.98 ± 1.33	5.31 ± 1.86	90.399	< 0.
Total cholesterol (mmol/L)	4.70 ± 0.96	4.98 ± 1.07	5.26 ± 1.15	88.325	< 0.
Triglyceride (mmol/L)	1.26 ± 0.83	1.77 ± 1.77	2.15 ± 2.25	178.995	< 0.
Systolic blood pressure (mmHg)	107.97 ± 7.80	125.45 ± 6.65	144.78 ± 18.55	1533.137	< 0.
Diastolic blood pressure (mmHg)	69.49 ± 6.40	79.59 ± 5.99	91.49 ± 11.33	1206.505	< 0.
Family history of hypertension (%)				18.391	0.00
Only father	11.42	11.03	11.14		
Only mother	12.02	15.08	17.25		
Both parents	5.41	4.82	8.95		
Neither	71.15	69.07	62.66		
LAP	29.14 ± 27.00	52.15 ± 63.50	75.87 ± 99.81	355.133	< 0.

1 BMI: body mass index; WC: waist circumference; WHR: waist-hip rate; LAP: lipid accumulation product.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Male					Female				
Normotension (N = 271)	Prehypertension (N = 463)	Hypertension (N = 268)	χ^2 / Z	<i>P</i> -value	Normotension (N = 561)	Prehypertension (N = 326)	Hypertension (N = 190)	χ^2 / Z	P-value
36.57 ± 11.02	39.90 ± 12.37	47.15 ± 12.95	91.532	< 0.001	36.35 ± 10.39	43.48 ± 12.92	51.43 ± 12.11	201.378	< 0.001
			26.019	< 0.001				7.928	0.019
31.37	22.46	13.06			19.25	13.50	12.11		
68.63	77.54	86.94			80.75	86.50	87.89		
			24.179	< 0.001				116.258	< 0.001
15.13	15.33	25.00			16.22	30.37	52.63		
37.64	40.39	45.15			35.65	35.89	32.63		
47.23	44.28	29.85			48.13	33.74	14.74		
			0.807	0.668				2.979	0.226
58.30	56.16	54.48			50.62	47.24	43.68		
	Normotension (N = 271) 36.57 ± 11.02 31.37 68.63 15.13 37.64 47.23	Normotension (N = 271) Prehypertension (N = 463) 36.57 ± 11.02 39.90 ± 12.37 31.37 22.46 68.63 77.54 15.13 15.33 37.64 40.39 47.23 44.28	Normotension $(N = 271)$ Prehypertension $(N = 463)$ Hypertension $(N = 268)$ 36.57 ± 11.02 39.90 ± 12.37 47.15 ± 12.95 31.37 22.46 13.06 68.63 77.54 86.94 15.13 15.33 25.00 37.64 40.39 45.15 47.23 44.28 29.85	Normotension (N = 271)Prehypertension (N = 463)Hypertension (N = 268) χ^2 / Z (N = 268) 36.57 ± 11.02 39.90 ± 12.37 47.15 ± 12.95 91.532 26.019 31.37 22.46 13.06 68.63 77.54 86.94 24.179 15.13 15.33 25.00 37.64 40.39 45.15 29.85 44.28 29.85	Normotension (N = 271)Prehypertension (N = 463)Hypertension (N = 268) χ^2 / Z P-value (P-value) 36.57 ± 11.02 39.90 ± 12.37 47.15 ± 12.95 91.532 <0.001 31.37 22.46 13.06 26.019 <0.001 31.37 22.46 13.06 24.179 <0.001 51.3 15.33 25.00 24.179 <0.001 15.13 15.33 25.00 <12.179 <0.001 37.64 40.39 45.15 <12.15 <12.15 47.23 44.28 29.85 <12.179 <0.668	Normotension (N = 271)Prehypertension (N = 463)Hypertension (N = 268) χ^2/Z 	Normotension (N = 271) Prehypertension (N = 463) Hypertension (N = 268) χ^2 / Z P-value (N = 561) Mormotension (N = 326) 36.57 ± 11.02 39.90 ± 12.37 47.15 ± 12.95 91.532 <0.001 36.35 ± 10.39 43.48 ± 12.92 31.37 22.46 13.06 <0.001 19.25 13.50 68.63 77.54 86.94 $_{24.179}$ <0.001 86.50 15.13 15.33 25.00 16.22 30.37 37.64 40.39 45.15 15.5 35.65 35.89 47.23 44.28 29.85 10.668 18.13 33.74	Normotension (N = 271) Prehypertension (N = 463) Hypertension (N = 268) $2^2/Z$ P-value (N = 561) Normotension (N = 326) Hypertension (N = 190) 36.57 ± 11.02 39.90 ± 12.37 47.15 ± 12.95 91.532 <0.001 36.35 ± 10.39 43.48 ± 12.92 51.43 ± 12.11 31.37 22.46 13.06 $= 4.001$ $= 4.021$	Normotension (N = 263) Prequence (N = 268) P-value (N = 260) Normotension (N = 561) Prequence (N = 326) Hypertension (N = 326) Hypertension (N = 326) $2^2/Z$ 36.57 ± 11.02 9.90 ± 12.37 47.15 ± 12.95 91.532 <0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	25	of	36	5
------	----	----	----	---

BMJ Open

1 2 3										2	.5
3 4 5 6 7 8	sufficiently active	41.70	43.84	45.52	7 027	0.122	49.38	52.76	56.32	5 902	0 122
8 9	Smoker (%)				7.037	0.132				5.893	0.122
9 10 11	Non-smoker	47.78	52.27	46.27			99.82	99.08	99.42		
12 13	Smoker	49.26	45.36	48.13			0.18	0.61	1.05		
14 15	Former smoker	2.96	2.38	5.60			0.00	0.31	0.53		
16 17 18	Drinker (%)				3.790	0.432				4.993	0.255
19 20	Non-drinker	60.74	61.47	57.30			95.62	97.53	94.15		
21 22	Drinker	36.67	36.36	38.20			4.20	2.47	5.32		
23 24 25	Former drinker	2.59	2.16	4.49			0.18	0.00	0.53		
25 26 27	BMI				148.700	< 0.001				99.205	< 0.001
28 29	< 18.5	16.61	4.54	1.49			12.30	6.13	3.16		
30 31	18.5–23.9	65.68	54.64	38.43			69.88	55.21	46.32		
32 33 34	24–27.9	14.39	33.26	39.18			14.26	29.45	35.26		
34 35 36	≥ 28	3.32	7.56	20.90			3.57	9.20	15.26		
37 38 39	WC	77.26±7.85	82.95±8.49	88.71±9.43	193.623	< 0.001	74.82±8.24	79.72±9.46	84.63±10.20	154.819	< 0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

									2	6
WHR	0.86±0.06	0.89±0.06	0.92±0.06	126.195	< 0.001	0.84±0.07	0.86±0.07	0.89±0.06	183.524	< 0.00
Fasting plasma glucose (mmol/L)	4.76 ± 1.08	4.98 ± 1.38	5.30 ± 1.94	24.275	< 0.001	4.65 ± 0.66	4.99 ± 1.26	5.31 ± 1.75	71.169	< 0.00
Total cholesterol (mmol/L)	4.73 ± 1.00	4.98 ± 1.06	5.17 ± 1.25	20.500	< 0.001	4.69 ± 0.94	4.98 ± 1.08	5.39 ± 0.98	73.075	< 0.00
Triglyceride (mmol/L)	1.54 ± 1.08	1.93 ± 1.94	2.38 ± 2.68	40.974	< 0.001	1.12 ± 0.64	1.54 ± 1.47	1.82 ± 1.40	90.583	< 0.0
Systolic blood pressure (mmHg)	110.52 ± 6.13	125.60 ± 6.54	145.64 ± 17.04	706.430	< 0.001	106.73 ± 8.21	125.23 ± 6.81	143.57±20.48	755.356	< 0.0
Diastolic blood pressure (mmHg)	70.82 ± 5.79	80.27 ± 5.75	93.11 ± 10.66	592.747	< 0.001	68.84 ± 6.59	78.63 ± 6.19	89.20 ± 11.87	553.348	< 0.0
Family history of hypertension (%)				16.427	0.012				6.847	0.335
Only father	10.70	11.23	13.81			11.76	10.74	7.37		
Only mother	11.44	17.28	18.28			12.30	11.96	15.79		
Both parents	6.27	4.75	9.70			4.99	4.91	7.89		
Neither	71.59	66.74	58.21			70.94	72.39	68.95		
LAP	38.69 ± 34.85	58.43 ± 65.52	87.83 ± 120.94	113.508	< 0.001	24.52 ± 20.75	43.24 ± 59.48	58.98 ± 54.19	159.320	< 0.0

BMJ Open

1	BMI: body mass index; WC: waist circumferen	ce; WHR: waist-hip	rate; LAP: lipid acc	cumulation product.			
2							
3							
4							
5							
6	Table 3 Comparison of blood pressure among four	r quartiles of LAP					
7		LAP					
8	Variables	Q1	Q2	Q3	Q4	- Z	P-va
9		IV IV	Q2	QJ	Q4		
10 11	Male						
12	Systolic blood pressure (mmHg)	119.33 ± 13.72	125.61 ± 14.86	129.23 ± 16.38	133.36 ± 17.85	106.793	< 0.0
13	Systeme blood pressure (mining)	119.55 ± 15.72	125.01 ± 14.00	129.23 ± 10.38	155.50 ± 17.85	100.795	< 0.0
14	Diastolic blood pressure (mmHg)	75.84 ± 9.89	80.55 ± 9.84	82.56 ± 10.74	85.64 ± 11.36	106.285	< 0.0
15 16	Female						
17 18	Systolic blood pressure (mmHg)	110.45 ± 13.91	114.95 ± 15.07	119.66 ± 15.91	130.25 ± 19.78	184.926	< 0.0
19 20	Diastolic blood pressure (mmHg)	71.05 ± 9.45	73.29 ± 9.60	76.21 ± 9.96	81.04 ± 11.70	134.730	< 0.0
21							
22							
23							
	For p	eer review only - http	o://bmjopen.bmj.co	m/site/about/guide	lines.xhtml		

Table 4 Multinomial logistic regression analysis of LAP associated with hypertension status

	OR ^a (95% CI)		OR ^b (95% CI)		OR ^c (95% CI)	
Quartiles of LAP	prehypertension	hypertension	prehypertension	hypertension	prehypertension	hypertension
Male						
Q1	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)
Q2	2.98***	4.70***	2.22***	2.38**	1.73*	1.61
	(1.88, 4.72)	(2.34, 9.45)	(1.48, 3.34)	(1.36, 4.16)	(1.12, 2.67)	(0.89, 2.94)
Q3	4.48***	8.26***	2.68***	3.90***	1.66*	1.75
	(2.85, 7.03)	(4.21, 16.21)	(1.74, 4.12)	(2.24, 6.82)	(1.03, 2.68)	(0.94, 3.26)
Q4	4.65***	17.82***	3.14***	9.02***	1.67	2.79***
	(2.93, 7.36)	(9.21, 34.46)	(1.95, 5.07)	(5.11, 15.93)	(0.96, 2.92)	(1.43, 5.44)
Female						
Q1	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)
Q2	1.75**	2.19**	1.046	1.19	0.91	1.015
	(1.22, 2.51)	(1.27, 3.77)	(0.69,1.58)	(0.62,2.29)	(0.59,1.41)	(0.51,2.03)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Q3	3	.35***	6.50***	1.68**	1.87	1.31	1.19
		(2	2.27, 4.93)	(3.83, 11.02)	(1.11,2.52)	(0.99,3.4	(0.84,2.05)	(0.60,2.38)
	Q4	5	.99***	20.06***	3.26***	6.32***	2.10**	3.15***
		(.	3.74, 9.59)	(11.37, 35.38)	(2.09,5.10)	(3.42,11	.65) (1.26,3.51)	(1.56,6.39)
OR=Od	dds ratio; CI=conf	fidence interv	ral; ***, P < 0.0	01; **, <i>P</i> < 0.01; *, <i>P</i>	< 0.05.			
^a , unadj	justed.							
^b , adjus	sted for age, sex, n	narital status,	educational le	evel				
^c , adjust	ted for physical a	ctivity smok	or drinkor BN	AL WHR fasting pla	sma glucose fai	mily history of l	wnertension and all t	he factors in h
	ieu iei physieui u	cuvity, smok	er, urmker, Div	in, write, fasting pla	sina giucose, iai	inity mstory of i	rypertension, and an t	
-	ieu ioi physicul u	etivity, smok	er, urinker, Div	in, which issuing plu			Typertension, and an t	
Table 5	5 Predicting hyper						sypertension, and an t	
Table 5					Specificity	Youden	AUC(95% CI)	<i>P</i> -value
Table 5		rtension by d	ifferent obesity	y indexes	61	10		
Table 5		rtension by d	ifferent obesity Cut-off	y indexes Sensitivity	Specificity	Youden		
Table 5		rtension by d	ifferent obesity Cut-off	y indexes Sensitivity	Specificity	Youden		<i>P</i> -value
Table 5		rtension by d Variables Male	ifferent obesity Cut-off value	y indexes Sensitivity (%)	Specificity (%)	Youden Index	AUC(95% CI)	<i>P</i> -value
Table 5		rtension by de Variables Male BMI	Cut-off value 23.004	y indexes Sensitivity (%) 73.51	Specificity (%) 58.08	Youden Index 0.316	AUC(95% CI) 0.707 (0.672, 0.742)	<i>P</i> -value < 0.001 < 0.001

Variables Male LAP ^a	Family history ^b						
Male	Family history ^b						
Male	Family history ^b						
ariables							
	Variables	N	OR ^c (95% CI)	Int	eraction indexe	s (95% CI)	
Fable 6 Inter	raction effects betwee	n LAP and fam	ily history of hyp	ertension		<u>0</u> //	
-	mass index; WHR: w tio; CI=confidence int	-	LAP: lipid accur	nulation product	; WC: waist c	ircumference; TG: Tri	iglyceride; AUC: area
	TG	1.26	63.68	64.49	0.282	0.663 (0.620, 0.706)	< 0.001
	WC	79.90	72.11	64.94	0.370	0.725 (0.686, 0.766)	< 0.001
	LAP	30.860	68.95	67.42	0.363	0.721 (0.680, 0.761)	< 0.001
	WHR	0.860	74.21	55.24	0.294	0.684 (0.643, 0.726)	< 0.001
	BMI	21.767	81.58	50.73	0.323	0.698 (0.658, 0.737)	< 0.001
	Female						
	10	1.91	46.27	70.14	0.164	0.607 (0.568, 0.646)	< 0.001
	TG						

-	-	486	1 (reference)	$RERI = 1.652 (0.267, 3.037)^{*}$
-	+	215	1.189 (0.772, 1.832)	$AP = 0.516 (0.238, 0.794)^*$
+	-	173	1.362 (0.875, 2.121)	SI = 3.998 (0.897, 17.820)
+	+	128	3.203*** (2.002, 5.124)	
Female				
LAP ^a	Family history ^b			
-	-	657	1 (reference)	RERI = -0.673 (-2.566, 1.220
-	+	276	1.995** (1.284, 3.099)	AP = -0.328 (-1.451, 0.795)
+	-	108	1.729*(1.023, 2.922)	SI = 0.610 (0.125, 2.979)

LAP: lipid accumulation production; RERI: relative excess risk of interaction ; AP: attributable proportion due to interaction; SI: synergy index; OR=Odds ratio; CI=confidence interval; ***, P < 0.001; **, P < 0.01; *, P < 0.05.

^a, grouped by the cut-off values in Table 4.

^b, family history of hypertension was defined as one parent or both parents having hypertension.

^c, adjusted for age, marital status, educational level, physical activity, smoker, drinker, BMI, and WHR.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

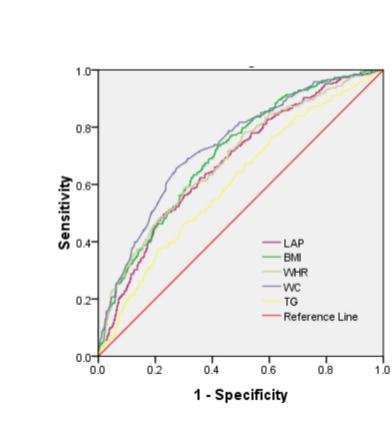
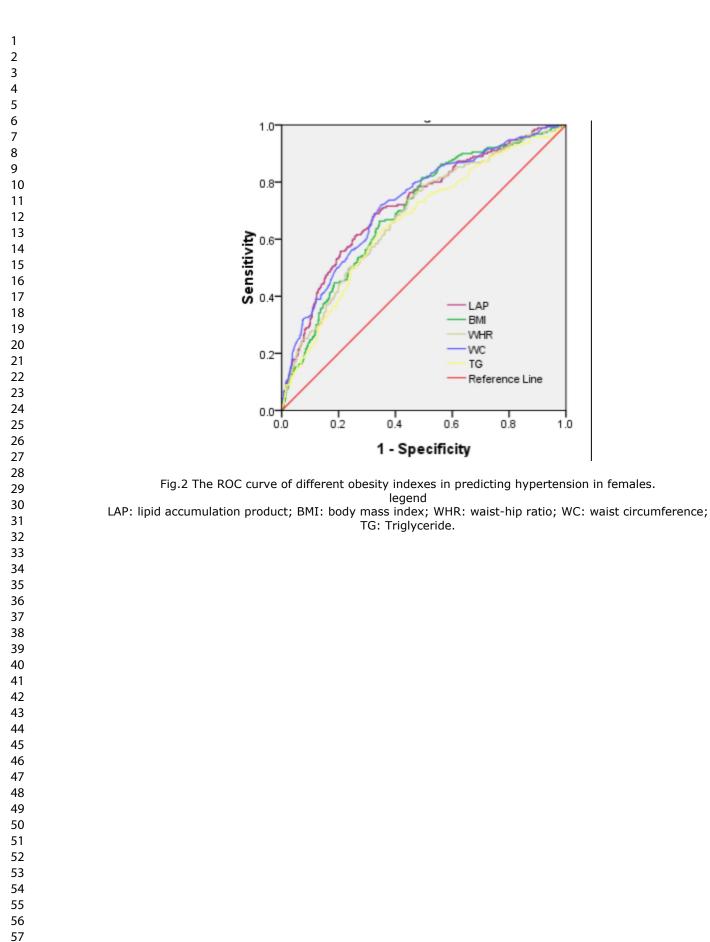



Fig.1 The ROC curve of different obesity indexes in predicting hypertension in males. legend LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC: waist circumference; TG: Triglyceride.

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods	•	el.	
Study design	4	Present key elements of study design early in the paper	Page 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Page 5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 6-7
Bias	9	Describe any efforts to address potential sources of bias	Page 3

Page	35	of	36
------	----	----	----

Study size	10	Explain how the study size was arrived at	Page 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 7-8
		(b) Describe any methods used to examine subgroups and interactions	Page 7-8
		(c) Explain how missing data were addressed	Page 5
		(d) If applicable, describe analytical methods taking account of sampling strategy	Page 5
		(e) Describe any sensitivity analyses	Not applicable
Results		Cr.	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Page 8-9; Table 1 Table 2
		(b) Give reasons for non-participation at each stage	Not application
		(c) Consider use of a flow diagram	Not application
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Page 8-9; Table 1 Table 2
		(b) Indicate number of participants with missing data for each variable of interest	Not application
Outcome data	15*	Report numbers of outcome events or summary measures	Page 8-9; Table 1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Page 9-10; Table Table 6
		(b) Report category boundaries when continuous variables were categorized	Page 6-8; Table 1 Table 2; Table 3 ;

		Table 6
	(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not application
17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Page 10-11; Table
18	Summarise key results with reference to study objectives	Page 12-14
19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Page 14
20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Page 12-14
21	Discuss the generalisability (external validity) of the study results	Page 13
22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Page 14-15
	18 19 20 21	20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 21 Discuss the generalisability (external validity) of the study results 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Interaction of lipid accumulation product and family history of hypertension on hypertension risk: A cross-sectional study in the Southern Chinese population

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029253.R3
Article Type:	Original research
Date Submitted by the Author:	24-Oct-2019
Complete List of Authors:	Huang, junxuan; Guangzhou Medical University Bao, XinYu; Guangzhou Medical University Xie, yixian; Guangzhou Medical University Zhang, xiaoxia; Guangzhou Medical University Peng, xin; Guangzhou Medical University Liu, yan; Guangzhou Medical University Cheng, mengjiao; Guangzhou Medical University Ma, JinXiang; Guangzhou Medical University wang, peixi; General Practice Center, Nanhai Hospital, Southern Medical University
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Diabetes and endocrinology
Keywords:	Hypertension < CARDIOLOGY, LAP, Family history, Interaction effect

SCHOLARONE[™] Manuscripts

BMJ Open

1

2		
3 4 5	1	Interaction of lipid accumulation product and family history of hypertension on
5 6 7	2	hypertension risk: A cross-sectional study in the Southern Chinese population
7 8 9	3	Jun-Xuan Huang ¹ , Xin-Yu Bao ¹ , Yi-Xian Xie ¹ , Xiao-Xia Zhang ¹ , Xin Peng ¹ , Yan
9 10 11	4	Liu ¹ , Meng-Jiao Cheng ¹ , Jin-Xiang Ma ^{1*} and Pei-Xi Wang ^{2*}
12 13	5	Institution address:
14	3	
15 16	6	¹ Guangzhou Medical University, Guangzhou, 510182, China.
17 18	7	² General Practice Center, Nanhai Hospital, Southern Medical University, Foshan,
19 20	8	528244, China.
21 22	9	Email address:
23 24	,	
24 25 26	10	circle_wong@yeah.net (JX.H.); 1027473041@qq.com (XY.B.);
27 28	11	yixian.xie@yahoo.com (YX.X.); zhangxiaoxia405@163.com (XX.Z.);
29 30 31	12	609167985@qq.com (X.P.); 1763136904@qq.com (Y.L.);
32 33	13	15700727758@163.com (MJ.C.); mjx777108@hotmail.com (JX.M);
34 35 26	14	peixi001@163.com (PX.W.)
36 37 28	15	* Author to whom correspondence should be addressed; E-mail:
38 39 40	16	mjx777108@hotmail.com, peixi001@163.com
41		
42 43		
44		
45 46		
40		
48		
49 50		
50		
52		
53 54		
54 55		
56		

1 ABSTRACT

Objectives: This study aimed at investigating the applicability of a novel index based on waist circumference (WC) and Triglyceride (TG) which was named lipid accumulation product (LAP) in the Southern Chinese population, and compared the predictive effects of LAP and other obesity indicators on hypertension risk. Moreover, this study investigated the interactive effects of LAP and family history of hypertension.

Methods: A total number of 2079 of community-dwelling adults in Southern China were enrolled in this cross-sectional study. The participants underwent questionnaire surveys, anthropometric tests, and laboratory examinations. The multivariate logistic regression model and receiver operating characteristic (ROC) curves, including LAP, body mass index (BMI), waist-hip ratio (WHR), WC, and TG were used to assess the association between hypertension risk and obesity indexes. The interaction effects were evaluated by relative excess risk of interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI).

Results: Higher LAP levels have a relatively higher risk of having hypertension in both sexes (males: adjusted odds ratio [OR] = 2.79 per SD increase, 95% confidence interval [CI] = 1.43-5.44, P < 0.001; females: adjusted OR:3.15.95%CI=1.56-6.39, P< 0.001). LAP (area under curve [AUC] = 0.721; 95% CI: 0.680-0.761) is a better indicator in identifying hypertension risk than BMI, WHR, and TG in females, but WC performed better in males. A significant interaction between LAP and family history of hypertension was observed in males (RERI = 1.652, 95% CI: 0.267–3.037; AP = 0.516, 95% CI: 0.238–0.794; SI = 3.998, 95% CI: 0.897–17.820), but there is no statistically significant differences in females.

Conclusions: LAP significantly associated with hypertension risk in the Southern Chinese population. It has better performance than BMI, WHR, and TG on predicting hypertension risk of the Southern Chinese female population. Moreover, LAP and family history of hypertension might synergistically increase the risk of hypertension.

BMJ Open

2	
3 4 5 6 7 8	1
4	1
5	2
7	2 3
8	3
9	5
10	4
11 12	
13	5
14	6
15	6
16	7
17	7
18 19	
20	8
21	9
22	9
23	
24 25	10
26	11
27	11
28	10
29	12
30 31 32 33 34	13
31	
33	14
34	
35	
36	
37 38	
30 39	
40	
41	
42	
43	
44 45	
43 46	
47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57	
58 59	

60

1 Keywords: Hypertension, LAP, Family history, Interaction effect

2 Strengths and limitations of this study

Strengths:

Our study is the first to examine the validity of LAP, which was calculated using a
 modified formula, in the Southern China population.

6 Limitations:

- 1. This is a cross-sectional study; the results are not sufficient to indicate causality.
- 8 2. The population of our study can partially represent the general population in the9 Southern China but cannot fully represent this region.
- 3. Lack of the adjustment for renal function, and other risk factors for hypertension(such as serum uric acid) in our study.
- 12 4. This study has small sample size, so further studies with a larger sample size are
- 13 needed to investigate whether the modified LAP applies to all the residents dwelling

J.C.Z.ONI

14 in Southern China.

1 INTRODUCTION

Hypertension, a significant risk factor of cardiovascular disease,¹ is one of the most prevalent public health problems in the world and is the leading contributor to the global burden of disease and mortality. Nowadays, the number of adults with hypertension in the world is being predicted to increase by about 60% to a total of 1.56 billion in 2025, and one-third of adults are suffering from hypertension in China.^{2,3}

Obesity, especially visceral fat, and family history of hypertension contributes to hypertension significantly.⁴⁻⁶ Numerous studies agree on the idea that people with hypertension's family history have higher chance to get hypertension.⁶⁻⁹ Usually, when it comes to obesity, the indexes that are most frequently used to assess obesity are body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR); however, these traditional obesity indexes merely reflect the degrees of overweight and abdominal obesity, also, cannot distinguish the difference between subcutaneous fat and visceral fat.¹⁰ Micromagnetic resonance imaging and microcomputed tomography, which are the visceral fat golden standard measurement methods, is inconvenient and expensive.¹¹ Moreover, they are not suitable for large-scale epidemiological investigations. Therefore, it is necessary to discover a new obesity indicator that can predict visceral fat from subcutaneous fat more conveniently and economically.

Recently, increasing attention has been directed towards lipid accumulation product (LAP). LAP, a new obesity index computed from WC and triglyceride (TG), is a useful indicator of visceral fat,¹² as demonstrated by Kahn in 2005¹³. Some studies suggest that LAP can also be used to identify metabolic syndromes,^{14, 15} type 2 diabetes mellitus,¹⁶ stroke,¹⁷ and arterial stiffness.¹⁸ Additionally, several cross-sectional studies conducted in Japan,¹⁹ India,¹⁴ and Brazil indicate that LAP significantly associated with cardiovascular disease and is a better indicator than BMI for identifying cardiovascular risk.^{13, 20} A few national studies have investigated the association between LAP and hypertension in China, and all of them were conducted

BMJ Open

in northern China, including Bengbu,²¹ Beijing,²² and Inner Mongolia.²³ With a vast territory, China has a tremendous difference between South and North. Due to the geographical environment and dietary habits that have formed throughout its long history, there are some dietary and cultural differences between Northern and Southern China.²⁴ The Northern region shows a high intake of wheat, tubers, and liquor, etc. While southerner has a high intake of rice, vegetables, meat, poultry, fish etc.²⁴ The Carbohydrate-rich pattern of the northern region is associated with a high risk of hypertriglyceridemia and higher BMI. Meanwhile, significant differences are found in systolic blood pressure (SBP)/diastolic blood pressure (DBP) between southern Chinese and northern Chinese owing to different climate and dietary habits between southern and northern.²⁵ Studies have found that the northerners were heavier and had higher triglycerides level than southerners.^{26, 27} Differences in dietary habits, or lifestyle, individuals from different regions should lead to different LAP. LAP has a different situation in the north and south. Thus, the applicability of LAP in predicting hypertension in Southern China is worth studying. However, rare studies have compared LAP with other obesity indexes in the Southern Chinese population. Besides, almost all studies about LAP used the formula that was developed based on the third National Health and Nutrition Examination Survey in the US. Therefore, it is reasonable to suggest that the calculation formula of LAP needs to be modified in the Chinese population.

To the best of our knowledge, no studies have attempted to adjust the calculation formula of LAP so that it can apply to the Southern Chinese population, and rare studies have explored additive interactions between family history of hypertension and LAP. Thus, the primary purpose of this study was to investigate the applicability of LAP in the Southern Chinese population and compare the predictive effects of LAP and other obesity indicators on hypertension risk. And the secondary purpose of the study was to assess interactive effects between LAP and family history of hypertension to predict the hypertension risk in the Southern Chinese population.

29 METHODS

1 Study design and subjects

A cross-sectional survey based on community health was conducted in the Foshan city of Guangdong province in Southern China. Recruiting the enrollers took place on March 2017. The study samples were selected by a multistage and stratified random sampling method. The stratification according to the economic levels and randomly selected street communities at economic levels, then randomly selected communities in street communities according to proportion. Communities residents were then randomly selected from the household lists. A total of 3760 individuals were enrolled in this study; among them, 1681 participants who lacked complete data on demographic characteristics, anthropometric tests, or laboratory examinations were excluded. There are no statistically significant differences in age and sex between excluded participants and included participants. Finally, 2079 adults who had complete data were included in the analysis.

Patient and public involvement

15 Patients or public were not involved in this study.

Ethics statement

This study was approved by the Ethics Committee of Guangzhou Medical University.
Written informed consent was obtained from each study participant before
investigation.

20 General study questionnaire

An interview-based survey was performed using a questionnaire by trained staff. Socio-demographic data, family history of hypertension, cigarette smoking, and alcohol drinking were investigated. Smokers were defined as the participants smoking at least 1 cigarette/day for at least 6 months. Drinkers were defined as individuals consuming at least 30 ml alcohol/week for 1 year or more. Physical activities were divided into "insufficiently active" and "sufficiently active." Participants with "insufficiently active" were defined as those who performed activity less than 150min/week. Participants with "sufficiently active" were defined as those who Page 7 of 37

BMJ Open

exercised more than 150min/week.²⁸ Marital status was classified as "currently not married" and "currently married"; "married" was regarded as "currently married," and "divorced/widowed/single" was regarded as "currently not married." Educational level was categorized as "elementary school or lower," "secondary school," and "senior high school or higher."

6 Anthropometric tests and laboratory examinations

The participants were required to take off their shoes and wear lightweight clothing for weight and height measurements. WC was measured at the level of 1 cm above the navel.²⁹ Automatic sphygmomanometer (OMRON, hem-7125) was used to measure blood pressure (BP) of participants. BP measurement was conducted thrice in a quiet environment, and the participants rested at least one minute between each time of measurement. The mean of the three measurements was used in the analysis. Prehypertension was defined as SBP of 120-139 mmHg and/or DBP of 80-89 mmHg, and hypertension was defined as SBP of \geq 140 mmHg, DBP of \geq 90 mmHg, and/or a reported medical history of anti-hypertensive medication.²⁹ The BMI was calculated as weight in kilograms divided by the square of the height in meters. Overweight was defined as BMI of 24–27.9 kg/m², and obesity was defined as BMI of \geq 28 kg/m². The fasting blood samples were collected from the participants in the morning after an overnight fast and were used to assess fasting plasma glucose, total cholesterol, and TG levels.

According to Kahn's theory,¹³ LAP is calculated as [WC (cm) - The minimum of WC (male)] \times [TG (mmol/L)] for males and [WC (cm) - The minimum of WC (female)] \times [TG (mmol/L)] for females, and the minimum waist size theoretically contains only the abdomen, muscle, viscera, and vertebral bone.¹³ Visceral fat can be estimated by the difference between the WC and the minimum waist size. In the present study, the WC of the studied population was skewed; therefore, the WC was log-transformed. The minimum WC was estimated by the mean WC minus two standard deviations after log-transformation in the local participants aged 18-24 vears.13, 22

1 Statistical analyses

According to the hypertension status, the enrollees were divided into three groups (normotension, prehypertension, and hypertension). The frequency (%) was used to describe sex, marital status, education level, physical activity, BMI, smoker, and drinker. Mean ± standard deviation (SDs) was used to describe the WC, WHR, fasting plasma glucose, total cholesterol, TG, SBP, DBP, and LAP. LAP was divided into four groups by the quartiles, i.e., Q1, Q2, Q3, and Q4. The differences of quantitative data across different hypertension statuses were analyzed by the Kruskal-Wallis H test because the data had skewed distribution. Categorical variables were analyzed by the Chi-squared test. The multivariate logistic regression model was used to analyze the relationship between LAP and risk factors of hypertension and prehypertension. The receiver operating characteristics (ROC) curves were applied to identify the superior obesity index and the best cut-off value of LAP to predict the hypertension risk. Moreover, the interaction effects between LAP and family history of hypertension were assessed by some relevant indicators, including the relative excess risk of interaction (RERI = $OR_{11} - OR_{10} - OR_{01} + 1$), the attributable proportion due to interaction (AP = $[OR_{11} - OR_{10} - OR_{01} + 1]/OR_{11}$), and the synergy index (SI = $[OR_{11} - OR_{11} - OR_{11}]/OR_{11}$). /[OR₀₁ - 1] + [OR₁₀ - 1]). If the interaction effect was not observed, the confidence interval of RERI and AP contained 0 and the confidence interval of S included 1.30 The above indicators were calculated using an Excel table designed by Andersson et al.³⁰ All reported *P*-values were two-tailed, and a *P*-value of < 0.05 was considered significant. Statistical analyses were performed using SPSS version 19.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

25 LAP

According to Kahn's theory,¹³ LAP was calculated as (WC - 60.6) × (TG [mmol/L]) in males and (WC - 54.1) × (TG [mmol/L]) in females based on the actual data obtained from the Southern Chinese population.²²

Basic characteristics of the study participants

A total number of 2079 of adults with an average age of 41.06 years were enrolled in the present study, including 1002 males (48.29%) and 1077 females (51.80%). The overall prevalence rates of normotension, prehypertension, and hypertension were 40.02%, 37.95%, and 22.03%, respectively. Male participants had a high prevalence of prehypertension and hypertension than female participants (P < 0.001). Statistically significant differences in age (P < 0.001), marital status (P < 0.001), education level (P < 0.001), smoker (P < 0.001), drinker (P < 0.001), and family history of hypertension (P = 0.005) were observed between normotension, prehypertension, and hypertension groups. However, no significant differences were observed in physical activity (P = 0.550) among the three groups. Anthropometric measurements found significant differences in BMI ($P \le 0.001$), WC ($P \le 0.001$), WHR ($P \le 0.001$), LAP (P < 0.001) between the groups. Statistically significant differences found in laboratory examinations including fasting plasma glucose (P < 0.001), total cholesterol (P < 0.001), SBP (P < 0.001), and DBP (P < 0.001) between the groups (Table 1). And the basic characteristics of different sex of study participants were shown in table 2.

18 LAP and the risk factors of hypertension

In order to investigate the relationship between LAP and blood pressure, LAP was divided into four groups by quartile in different sex (Table 3). A significant association was observed between LAP and blood pressure in both male and female. The results in males and females showed that SBP (P < 0.001) and DBP (P < 0.001) were relatively elevated in participants with higher LAP levels.

Multinomial logistic regression analysis was conducted to evaluate the association between LAP quartiles and hypertension status (Table 4). Participants with the third and the fourth quartile of LAP were more likely to develop prehypertension and hypertension than those with the first quartile in both males and females.

28 After adjusting for age, marital status, and educational level, the risks of

prehypertension (adjusted OR: 3.14, 95% CI: 1.95–5.07) and hypertension (adjusted OR: 9.02; 95% CI: 5.11–15.93) significantly increased in male participants with the fourth quartile compared with those with the first quartile. For females, increasing risks of prehypertension (adjusted OR: 3.26, 95% CI: 2.09–5.10) and hypertension (adjusted OR: 6.32; 95% CI: 3.42–11.65) were observed in participants with the fourth LAP quartile compared with those with the first one.

After controlling for age, marital status, educational level, physical activity, smoking, alcohol consumption, BMI, WHR, fasting plasma glucose, and family history of hypertension, the risks of prehypertension (adjusted OR: 1.67, 95% CI: 0.96-2.92) and hypertension (adjusted OR: 2.79, 95%CI: 1.43-5.44) significantly increased in male participants with the fourth quartile compared with those with the first quartile. Meanwhile, increasing risks of prehypertension (adjusted OR: 2.10, 95%) CI: 1.26-3.51) and hypertension (adjusted OR: 3.15, 95%CI: 1.56-6.39) were observed in female participants with the fourth LAP quartile compared with those with the first one.

The results of ROC curves analysis in males and females were shown in Figure. 1 and 2 and Table 5. LAP (AUC = 0.721; 95% CI: 0.680–0.761) was a better indicator to predict different types of hypertension than BMI (AUC = 0.698; 95% CI: 0.658-0.737), WHR (AUC = 0.684; 95% CI: 0.643-0.726) and TG (AUC = 0.663; 95% CI: 0.620–0.706) in females; however, WC (AUC = 0.734 95% CI: 0.700–0.769) performed better than BMI (AUC = 0.707, 95% CI: 0.672-0.742), WHR (AUC = 0.688; 95% CI: 0.650-0.725), LAP (AUC = 0.677; 95% CI: 0.640-0.713) and TG (AUC = 0.607; 95% CI: 0.568-0.646) on males. The best cut-off values of LAP to predict hypertension were 63.892 in males and 30.860 in females.

25 Interaction effects between LAP and family history of hypertension

The interaction effects between LAP and family history of hypertension are presented in Table 6. Significant interaction effects between LAP and family history of hypertension were observed in males. The results of RERI (1.652; 95% CI: 0.267–3.037) and AP (0.516; 95% CI: 0.238–0.794) indicated a significant interaction

3

4

5

6

1

BMJ Open

2		
3		
4		
5		
6		
7		
, 8		
9		
	0	
1		
1	2	
1	3	
1	4	
1	5	
1	6	
1		
	8	
	9	
י ר	ء م	
2	0 1 2 3 4 5 6 7	
2	1	
2	2	
2	3	
2	4	
2	5	
2	6	
2	7	
	8	
2	9	
	0	
	1	
3		
	3	
	4	
	5	
	6	
3	7	
3	8	
	9	
4	0	
4		
	2	
	3	
	4	
	4 5	
	6	
4		
	8	
	9	
5	0	
5	1	
5	2	
	3	
	4	
	5	
	5 6	
5 5		
5	8	

59 60

effect of family history of hypertension and LAP on hypertension, but the result of SI (3.998; 95% CI: 0.897-17.820) did not. 2

However, no statistically significant interaction effects were found between LAP and family history of hypertension in females, which is indicated by all the three indicators. RERI was - 0.673 (95% CI: -2.566-1.220); AP was -0.328 (95% CI: -1.451–0.795); and SI was 0.610 (95% CI: 0.125–2.979).

Discussion 7

8 With the rapid development of the economy and sedentary lifestyle, elevated blood 9 pressure has become a common and serious public health issue.³¹ The prevalence of prehypertension and hypertension significantly increased.³² Elevated blood pressure is 10 caused by diverse factors, among which obesity is closely related to hypertension.³³ 11 The prevalence of obesity increased by 13% in urban areas and by 85% in rural areas 12 in China, and more attention should thus be paid to this issue.¹⁷ Extensive studies 13 found that obesity, especially visceral adipose tissue, could strongly increase the 14 blood pressure.33 15

The mechanisms underlying the interaction between obesity and hypertension are 16 complicated. The mechanisms of obesity-induced hypertension include sodium 17 18 retention, insulin resistance, activation of renin-angiotensin-aldosterone, altered vascular function, and secretion of relevant adipokines.³⁴ Besides, the mechanisms of 19 blood pressure increase can be activated by visceral fat.³⁵ 20

Substantial evidence proved that the harm of the fat accumulation was greater than 21 the total amount of fat.^{36, 37} However, traditional obesity indexes, such as BMI, WC, 22 and WHR, have limitations of distinguishing differences between subcutaneous fat 23 24 and visceral fat. Therefore, a new obesity index that can predict visceral fat easily and effectively is urgently needed. After Kahn first demonstrated that LAP performs 25 better than BMI for recognizing the cardiovascular risk, domestic and foreign scholars 26 paid increasing attention to LAP. LAP, a combination of WC and TG, is an accessible 27 and inexpensive way to assess visceral fat.¹³ It is a well-known fact that TG reflect the 28

degree of visceral fat accumulation and WC strongly associated with hypertension.¹²
Notably, hypertriglyceridemic waist (HTGW) is also calculated based on the
combination of TG and WC. However, LAP, as a continuous indicator, is superior to
reflect visceral fat than HTGW,³⁸ a discontinuous indicator.²¹ Therefore, LAP was
used as a visceral obesity indicator in this study.

LAP is based on the hypothesis of minimum waist circumference includes the rachis, abdominal viscera and muscle.¹³ Therefore, the differences between the actual WC and the minimum WC can represent abdominal adipose tissue.¹³ Notably, LAP in almost all studies is calculated by data obtained based on the third National Health and Nutrition Examination Survey in the United States.¹³ Because of differences in race, dietary habits, or lifestyle, individuals from different countries should have different visceral adipose tissues. It demonstrated that there are considerable differences in visceral adipose tissues between Chinese individuals and Europeans or Americans.³⁹ Therefore, LAP was calculated in our study using a modified formula so that it could apply to the individuals dwelling in Southern China.

As expected, a significant association was found between LAP and hypertension in the present study. Our findings are consistent with those in studies by Zhong et al.¹⁷ Song et al.³⁷ and Shen et al.²² all of which have demonstrated that LAP is an effective and reliable diagnostic indicator of hypertension. Participants with significantly higher LAP had higher risks of prehypertension and hypertension than those with lower LAP. Multinomial logistic regression analysis revealed that after adjusting for other factors, the risks of prehypertension and hypertension in the group with the highest LAP level were 2.10 and 3.15 times higher in females, respectively, than those in the group with the lowest LAP.

Wang et al.found LAP is a better index to predict the risk of hypertension.⁴⁰ However, Gao et al found that the performance of LAP was superior to that of BMI in male Mongolians;²³ this findings may be due to the apparently lower prevalence of high TG in female Mongolians than in male Mongolians (13.20% vs 23.10%, P <0.05), and the facts might disturb the association between LAP and hypertension in Page 13 of 37

BMJ Open

female Mongolians. Several studies found the superiority of LAP over BMI for detection of hypertension and prehypertension in both genders.^{21, 37, 40} However, in the present study, we also found that LAP perform better than BMI in female. According to Kahn,⁴¹ the annual LAP changes were reduced at older age in male. Advancing age is associated with a progressive increase in systolic BP levels and with development and progression of arterial hypertension because of a number of factors, including atherosclerotic changes, large artery stiffening, altered renal function, and arterial baroreflex impairmen,⁴² That is to say, increase in blood pressure was thought to be an unavoidable consequence of aging. Thus, the superiority of LAP for predicting hypertension in male may be disturbed by the larger-scale proportion of elder man (23.7%) in our study. In our study, LAP perform better in predicting the hypertension risk than TG in both sex. However, due to low predictive value of TG in southern China, LAP which combines of TG and WC is slightly inferior to WC.

In general, LAP, which applied to the Southern Chinese population, was a better indicator for predicting the hypertension risk in females in this study. In addition, large studies have demonstrated that family history of hypertension is a critical risk factor for hypertension, and individuals with family history of hypertension are 2-4 times more likely to develop hypertension than those without the family history of hypertension.⁴³ The interaction analysis in this study indicates the synergistic effect of LAP and family history on the hypertension risk in males, but no statistically significant differences in the interaction effect in females. This findings might be due to the fact there was no statistically significant difference between females and the family history of hypertension in our study ($\chi^2=6.847$, P=0.0355>0.05). In fact, cardiovascular events occur at a lower rate in females than in males.⁴⁴ In our study, the female participants who had both LAP and family history of hypertension were rarely observed and the prevalence rates of hypertension at a lower rate in females than in males no matter premenopausal status or menopausal status.⁴⁵ Our study suffers from a small sample size, especially in females. The fewer positive female observers which had higher LAP and family history of hypertension lead to no

statistically significant differences in the interaction effect on the hypertension risk in females. The interaction in female was not statistically significant, but their synergistic effect was obvious. The synergistic effect between family history of hypertension and LAP on the hypertension risk was demonstrated in our study as well as in other studies.^{21, 40} Visceral obesity and family history of hypertension may result in increased blood pressure through some unknown mechanisms. However, further studies are needed to investigate the interaction effect between LAP and family history of hypertension on the hypertension risk.

To date, LAP is an inexpensive screening tool to identify visceral adipose tissue, and the method has high reproducibility. LAP, which was proposed by Kahn, was developed for the Western population. Thus this study explored the validity of LAP, which was calculated based on the Southern China population, and the interactive effects of LAP and family history of hypertension. The findings suggest LAP might perform better in predicting the hypertension risk than BMI, WHR and TG in Southern Chinese females. Furthermore, the interaction analysis in this study indicates the synergistic effect of LAP and family history on the hypertension risk. Although, the interaction in female was not statistically significant, their synergistic effect was obvious.

This study has some limitations. First of all, because this is a cross-sectional study, the present results are not sufficient to indicate causality. Secondly, the population of our study can partially represent the general population in the Southern China, but can not fully represent this region. Furthermore, this article is lack of adjustment for renal function, and other risk factors for hypertension (such as serum uric acid). Finally, because of the small sample size in this study, further studies with a larger sample size are needed to investigate whether the modified LAP applies to all the residents dwelling in Southern China.

27 CONCLUSION

In conclusion, LAP significantly associated with the hypertension risk, and higher
LAP levels had relatively higher blood pressure. LAP performed better in predicting

BMJ Open

1	hypertension of the Southern China female population than BMI, WHR, and TG did.
2	Moreover, LAP and family history of hypertension might synergistically increase the
3	risk of hypertension.
4	Acknowledgements
5	We gratefully acknowledge Dr. Pei-Xi Wang, Dr. Jin-Xiang Ma, Xin-Yu
6	Bao, Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and Meng-Jiao Cheng for their
7	excellent work in study coordination, data collection, and management.
8	Contributors
9	Jun-Xuan Huang, Pei-Xi Wang and Jin-Xiang Ma conceived and designed the study.
10	Jun-Xuan Huang, Xin-Yu Bao, Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and
11	Meng-Jiao Cheng contributed to collection of the data, analyzed the data and
12	interpretation of the results. Jun-Xuan Huang wrote the draft manuscript. Jin-Xiang
13	Ma, Pei-Xi Wang and Jun-Xuan Huang finalized the manuscript with inputs from all
14	authors. All of the authors approved the final version submitted for publication.
15	Funding
16	This study was supported by Talent Introduction Fund of Guangzhou Medical
17	University (2009).
18	Competing interests
19	The authors declared that they had no conflict of interest.
20	Ethics statement
21	This study was approved by the Ethics Committee of Guangzhou Medical University.
22	Written informed consent was obtained from each study participant before
23	investigation.
24	Data sharing statement
25	Our data might not be shared directly, because it's our team work and the data
26	belongs
27	to our team. Thus consent should be attained from team members.
28	References
29	1. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension:

1		analysis of worldwide data. <i>TheLancet</i> 2005;365(9455):217-223.
2		doi:10.1016/S0140-6736(05)17741-1
3	2.	Beaney T, Schutte AE, Tomaszewski M, et al. May Measurement Month 2017: an
4		analysis of blood pressure screening results worldwide. The Lancet Global
5		Health 2018;6(7):e736-e743. doi:10.1016/S2214-109X(18)30259-6
6	3.	Bundy JD, He J. Hypertension and Related Cardiovascular Disease Burden in
7		China. Ann Glob Health 2018;82(2):227-233. doi:10.1016/j.aogh.2016.02.002
8	4.	Macia E, Gueye L, Duboz P. Hypertension and Obesity in Dakar, Senegal. Plos
9		One 2016;11(9):e0161544. doi:10.1371/journal.pone.0161544
10	5.	Tang L, Zhang F, Tong N. The association of visceral adipose tissue and
11		subcutaneous adipose tissue with metabolic risk factors in a large population of
12		Chinese adults. Clin Endocrinol 2016;85(1):46-53. doi:10.1111/cen.13013
13	6.	Wandeler G, Paccaud F, Vollenweider P, et al. Strength of Family History in
14		Predicting Levels of Blood Pressure, Plasma Glucose and Cholesterol. Public
15		Health Genom 2010;13(3):143-154. doi:10.1159/000233228
16	7.	Liu M, He Y, Jiang B, et al. Association Between Family History and
17		Hypertension Among Chinese Elderly. Medicine 2015;94(48):e2226.
18		doi:10.1097/MD.00000000002226
19	8.	Al-Safi SA, Aboul-Enein FH, Aboul-Enein BH, et al. Influence of family history
20		and lifestyle on blood pressure and heart rate in young adults in Jordan. Public
21		Health 2006;120(11):1027-1032. doi:10.1016/j.puhe.2006.06.009
22	9.	Alhawari HH, Al-Shelleh S, Alhawari HH, et al. Blood Pressure and Its
23		Association with Gender, Body Mass Index, Smoking, and Family History
24		among University Students. Int J Hypertens 2018;2018:1-5.
25		doi:10.1155/2018/4186496
26	10	. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional
27		differences. Obes Rev 2010;11(1):11-18. doi:10.1111/j.1467-789X.2009.00623.x
28	11	. Chen W, Wilson JL, Khaksari M, et al. Abdominal fat analyzed by DEXA scan
29		reflects visceral body fat and improves the phenotype description and the
30		assessment of metabolic risk in mice. Am J Physiol-Endoc M

BMJ Open

		17
	1	2012;303(5):E635-E643. doi:10.1152/ajpendo.00078.2012
	2	12. Nurdiantami Y, Watanabe K, Tanaka E, et al. Association of general and central
	3	obesity with hypertension. Clin Nutr 2018;37(4):1259-1263.
C	4	doi:10.1016/j.clnu.2017.05.012
1 2	5	13. Kahn HS. The "lipid accumulation product" performs better than the body mass
3 4	6	index for recognizing cardiovascular risk: a population-based comparison. Bmc
2 3 4 5 6 7	7	Cardiovasc Disor 2005;5(1):26-26. doi:10.1186/1471-2261-5-26
7 3	8	14. Ray L, Ravichandran K, Nanda SK. Comparison of Lipid Accumulation Product
8 9 0 1	9	Index with Body Mass Index and Waist Circumference as a Predictor of
	10	Metabolic Syndrome in Indian Population. Metab Syndr Relat D
3 4	11	2018;16(5):240-245. doi:10.1089/met.2017.0119
2 3 4 5 6 7	12	15. Cicero A F G, Gitto S, Fogacci F, et al. Fatty liver index is associated to pulse
	13	wave velocity in healthy subjects: Data from the Brisighella Heart Study.
8 9 0 1	14	European Journal of Internal Medicine 2018:S0953620518301262.
	15	doi:10.1097/01.hjr.0000136566.89429.63
2 3 4	16	16. Lee JW, Lim NK, Park HY. The product of fasting plasma glucose and
5 5 7	17	triglycerides improves risk prediction of type 2 diabetes in middle-aged Koreans.
5 7 5	18	Bmc Endocr Disord 2018;18(1):33. doi:10.1186/s12902-018-0259-x
9	19	17. Zhong C, Xia W, Zhong X, et al. Lipid Accumulation Product and Hypertension
1	20	Related to Stroke: a 9.2-Year Prospective Study Among Mongolians in China. J
2 3	21	Atheroscler Thromb 2016;23(7):830-838. doi:10.5551/jat.33514
2 3 4 5 6 7	22	18. Cicero A F G, D"Addato S, Reggi A, et al. Gender Difference in Hepatic Steatosis
5 7	23	Index and Lipid Accumulation Product Ability to Predict Incident Metabolic
8 9 0 1	24	Syndrome in the Historical Cohort of the Brisighella Heart Study. Metabolic
) 1	25	Syndrome and Related Disorders 2013; 11(6):412-416.
2 3	26	19. Wakabayashi I. Associations of Blood Lipid-Related Indices with Blood Pressure
4 5	27	and Pulse Pressure in Middle-Aged Men. Metab Syndr Relat D 2015;13(1):22-28.
2 3 4 5 6 7 8 9	28	doi:10.1089/met.2014.0093
3 9	29	20. de Oliveira CC, Roriz AKC, Ramos LB, et al. Indicators of Adiposity Predictors
C	30	of Metabolic Syndrome in the Elderly. Ann Nutr Metab 2017;70(1):9-15.

1	doi:10.1159/000455333
2	21. Song J, Chen X, Zhao Y, et al. Risk factors for prehypertension and their
3	interactive effect: a cross- sectional survey in China. Bmc Cardiovasc Disor
4	2018;18(1). doi:10.1186/s12872-018-0917-y
5	22. Shen YY, Chen JC, Li G, et al. Relationship of lipid accumulation product with
6	hypertension and diabetes among Beijing residents study. Zhonghua yu fang yi
7	xue za zhi [Chinese journal of preventive medicine] 2017;51(5):415.
8	23. Gao X, Wang G, Wang A, et al. Comparison of lipid accumulation product with
9	body mass index as an indicator of hypertension risk among Mongolians in
10	China. Obes Res Clin Pract 2013;7(4):e308-e314.
11	doi:10.1016/j.orcp.2012.02.002
12	24. Song F , Cho M S . Geography of Food Consumption Patterns between South and
13	North China. Foods 2017;6(5). doi:10.3390/foods6050034.
14	25. Huang Z, Wu X, Stamler J, et al. A north-south comparison of blood pressure
15	and factors related to blood pressure in the People's Republic of China: a report
16	from the PRC-USA Collaborative Study of Cardiovascular Epidemiology.
17	Journal of Hypertension 1994; 12(9):1103-12.
18	26. Wu Z , Yao C , Zhao D , et al. Cardiovascular disease risk factor levels and their
19	relations to CVD rates in Chinaresults of Sino-MONICA project. European
20	Journal of Cardiovascular Prevention & Rehabilitation 2004; 11(4):275-283.
21	27. Zhao L, Stamler J, Yan L L, et al. Blood Pressure Differences Between Northern
22	and Southern Chinese: Role of Dietary Factors The International Study on
23	Macronutrients and Blood Pressure. <i>Hypertension</i> 2004; 43(6):1332-1337.
24	28. Rosenberg DE, Bull FC, Marshall AL, Sallis JF, Bauman AE. Assessment of
25	sedentary behavior with the international physical activity questionnaire.
26	J Phys Act Health. 2008;5:S30-44.
27	29. Zhang M, Batu B, Tong W, et al. Prehypertension and Cardiovascular Risk Factor
28	Clustering Among Mongolian Population in Rural and Animal Husbandry Area,
29	Inner Mongolia, China. Circ J 2009;73(8):1437-1441.
30	doi:10.1253/circj.CJ-09-0101

Page 19 of 37

BMJ Open

1	30. Andersson T, Alfredsson L, Källberg H, et al. Calculating measures of biological
2	interaction. <i>Eur J Epidemiol</i> 2005;20(7):575-579.
3	doi:10.1007/s10654-005-7835-x
4	31. Lackland DT, Beilin LJ, Campbell NRC, et al. Global Implications of Blood
5	Pressure Thresholds and Targets. Hypertension 2018;71(6):985-987.
6	doi:10.1161/HYPERTENSIONAHA.118.11280
7	32. Wang Z, Zeng X, Chen Z, et al. Association of visceral and total body fat with
8	hypertension and prehypertension in a middle-aged Chinese population. J
9	Hypertens 2015;33(8):1555-62. doi:10.1097/HJH.00000000000000000
10	33. Stabouli S, Papakatsika S, Kotsis V. The role of obesity, salt and exercise on
11	blood pressure in children and adolescents. Expert Rev Cardiovasc Ther
12	2011;9(6):753-61. doi:10.1586/erc.11.63
13	34. Kotchen TA. Obesity-Related Hypertension: Epidemiology, Pathophysiology, and
14	Clinical Management. Am J Hypertens 2010;23(11):1170-1178.
15	doi:10.1038/ajh.2010.172
16	35. Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of
17	gluco- and mineralocorticoid hormones in the setting of cardiometabolic
18	alterations: Adipose tissue and adrenal hormones. Ann Ny Acad Sci
19	2012;1264(1):87-102. doi:10.1111/j.1749-6632.2012.06597.x
20	36. Li Y, Bujo H, Takahashi K, et al. Visceral fat: higher responsiveness of fat mass
21	and gene expression to calorie restriction than subcutaneous fat. Exp Biol Med
22	(Maywood) 2003;228(10):1118-23.
23	37. Song J, Zhao Y, Nie S, et al. The effect of lipid accumulation product and its
24	interaction with other factors on hypertension risk in Chinese Han population: A
25	cross-sectional study. <i>Plos One</i> 2018;13(6):e0198105.
26	doi:10.1371/journal.pone.0198105
27	38. Janghorbani M, Aminorroaya A, Amini M. Comparison of Different Obesity
28	Indices for Predicting Incident Hypertension. High Blood Pressure &
29	Cardiovascular Prevention 2017;24(2):157-166. doi:10.1007/s40292-017-0186-3
30	39. Nazare J, Smith JD, Borel A, et al. Ethnic influences on the relations between

1	abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic
2	risk profile: the International Study of Prediction of Intra-Abdominal Adiposity
3	and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. The
4	American Journal of Clinical Nutrition 2012;96(4):714-726.
5	doi:10.3945/ajcn.112.035758
6	40. Wang H, Chen Y, Sun G, et al. Validity of cardiometabolic index, lipid
7	accumulation product, and body adiposity index in predicting the risk of
8	hypertension in Chinese population. Postgraduate Medicine 2018;130(3):325-333.
9	doi:10.1080/00325481.2018.1444901
10	41. Kahn H S, Cheng Y J. Longitudinal changes in BMI and in an index estimating
11	excess lipids among white and black adults in the United States. Int J Obes 2008;
12	32(1):136-143.
13	42. Pinto E. Blood pressure and ageing. Postgrad Med J 2007; Feb;83(976):109-14.
14	doi: 10.1136/pgmj.2006.048371
15	43. TOZAWA M, OSHIRO S, ISEKI C, et al. Family History of Hypertension and
16	Blood Pressure in a Screened Cohort. Hypertens Res 2001;24(2):93-98.
17	doi:10.1291/hypres.24.93
18	44. Doumas M, Papademetriou V, Faselis C, et al. Gender Differences in
19	Hypertension: Myths and Reality. Curr Hypertens Rep 2013;15(4):321-330.
20	doi:10.1007/s11906-013-0359-y
21	45. Ramezani TF, Behboudi-Gandevani S, Ghanbarian A, et al. Effect of menopause
22	on cardiovascular disease and its risk factors: a 9-year follow-up study.
23	Climacteric. 2014 Apr;17(2):164-72. doi: 10.3109/13697137.2013.828197.
24	
25	The titles and legends of figure
26	Title
27	Fig.1 The ROC curve of different obesity indexes in predicting hypertension in males.
28	legend
29	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC:
30	waist circumference; TG: Triglyceride.

1	21
2	
3 4 1	
5	
6 2	Title
7 8 3	Fig.2 The ROC curve of different obesity indexes in predicting hypertension in
9 10 4	females.
11 12 5	legend
13 14 6	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC:
15 7 16	waist circumference; TG: Triglyceride.
17	
18	
19 20	
20	
22	
23	
24	
25	
26 27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44	
45 46	
47	
48	
49	
50	
51 52	
53	
54	
55	
56	
57 58	
58 59	
60	

Variables	Normotension	Prehypertension	Hypertension	χ^2 / Z	<i>P</i> -value
	(N = 832)	(N = 789)	(N = 458)		
Sex (%)				135.625	< 0.001
Male	32.57	58.68	58.52		
Female	67.43	41.32	41.48		
Age (years)	36.42 ± 10.59	41.38 ± 12.71	48.93 ± 12.75	267.206	< 0.001
Marital status (%)				21.287	< 0.001
Currently not married	23.20	18.76	12.66		
Currently married	76.80	81.24	87.34		
Education level (%)				101.355	< 0.001
Elementary school and lower	15.87	21.55	36.46		
Secondary school	36.30	38.53	39.96		
Senior high school and higher	47.83	39.92	23.58		
Physical activity (%)				2.688	0.611

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Seldom or never	35.70	34.22	31.22		
Moderate	17.43	18.25	18.78		
High	46.87	47.53	50.00		
Smoker (%)				50.346	< 0.001
Non-smoker	82.25	71.61	67.90		
Smoker	16.18	26.87	28.61		
Former smoker	0.97	1.52	3.49		
Drinker (%)				30.865	< 0.001
Non-drinker	84.11	76.34	72.53		
Drinker	14.91	22.39	24.62		
Former drinker	0.98	1.27	2.85		
BMI				255.012	< 0.001
< 18.5	13.70	5.20	2.18		
18.5–23.9	68.51	54.88	41.70		
24–27.9	14.30	31.69	37.55		
For p	eer review only - http://	/bmjopen.bmj.con	n/site/about/guideline	es.xhtml	

≥28	3.49	8.24	18.56		
WC	75.61±8.19	81.61±9.04	87.02±9.95	411.441	< 0.001
WHR	0.85 ± 0.06	0.88 ± 0.07	0.91 ± 0.06	248.475	< 0.001
Fasting plasma glucose (mmol/L)	4.69 ± 0.82	4.98 ± 1.33	5.31 ± 1.86	90.399	< 0.001
Total cholesterol (mmol/L)	4.70 ± 0.96	4.98 ± 1.07	5.26 ± 1.15	88.325	< 0.001
Triglyceride (mmol/L)	1.26 ± 0.83	1.77 ± 1.77	2.15 ± 2.25	178.995	< 0.001
Systolic blood pressure (mmHg)	107.97 ± 7.80	125.45 ± 6.65	144.78 ± 18.55	1533.137	< 0.001
Diastolic blood pressure (mmHg)	69.49 ± 6.40	79.59 ± 5.99	91.49 ± 11.33	1206.505	< 0.001
Family history of hypertension (%)				18.391	0.005
Only father	11.42	11.03	11.14		
Only mother	12.02	15.08	17.25		
Both parents	5.41	4.82	8.95		
Neither	71.15	69.07	62.66		
LAP	29.14 ± 27.00	52.15 ± 63.50	75.87 ± 99.81	355.133	< 0.001

BMI: body mass index; WC: waist circumference; WHR: waist-hip rate; LAP: lipid accumulation product.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2 Basic characteristics of the participants

	Male					Female				
Variables	Normotension (N = 271)	Prehypertension (N = 463)	Hypertension (N = 268)	χ^2 / Z	<i>P</i> -value	Normotension (N = 561)	Prehypertension (N = 326)	Hypertension (N = 190)	χ^2 / Z	<i>P</i> -value
Age (years)	36.57 ± 11.02	39.90 ± 12.37	47.15 ± 12.95	91.532	< 0.001	36.35 ± 10.39	43.48 ± 12.92	51.43 ± 12.11	201.378	< 0.001
Marital status (%)				26.019	< 0.001				7.928	0.019
Currently not married	31.37	22.46	13.06			19.25	13.50	12.11		
Currently married	68.63	77.54	86.94			80.75	86.50	87.89		
Education level (%)				24.179	< 0.001				116.258	< 0.001
Elementary school and lower	15.13	15.33	25.00			16.22	30.37	52.63		
Secondary school	37.64	40.39	45.15			35.65	35.89	32.63		
Senior high school and higher	47.23	44.28	29.85			48.13	33.74	14.74		
Physical activity (%)				0.807	0.668				2.979	0.226
insufficiently active	58.30	56.16	54.48			50.62	47.24	43.68		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

									2	26
sufficiently active	41.70	43.84	45.52			49.38	52.76	56.32		
Smoker (%)				7.037	0.132				5.893	0.122
Non-smoker	47.78	52.27	46.27			99.82	99.08	99.42		
Smoker	49.26	45.36	48.13			0.18	0.61	1.05		
Former smoker	2.96	2.38	5.60			0.00	0.31	0.53		
Drinker (%)				3.790	0.432				4.993	0.255
Non-drinker	60.74	61.47	57.30			95.62	97.53	94.15		
Drinker	36.67	36.36	38.20			4.20	2.47	5.32		
Former drinker	2.59	2.16	4.49			0.18	0.00	0.53		
BMI				148.700	< 0.001				99.205	< 0.001
< 18.5	16.61	4.54	1.49			12.30	6.13	3.16		
18.5–23.9	65.68	54.64	38.43			69.88	55.21	46.32		
24–27.9	14.39	33.26	39.18			14.26	29.45	35.26		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

193.623

3.57

74.82±8.24

< 0.001

9.20

79.72±9.46

15.26

84.63±10.20

154.819 < 0.001

3.32

77.26±7.85

7.56

82.95±8.49

20.90

88.71±9.43

 ≥ 28

WC

Page 26 of 37

BMJ Open

1 2 3										2	7
4 5 6	WHR	0.86±0.06	0.89±0.06	0.92±0.06	126.195	< 0.001	0.84±0.07	0.86±0.07	0.89±0.06	183.524	< 0.001
7 8 9	Fasting plasma glucose (mmol/L)	4.76 ± 1.08	4.98 ± 1.38	5.30 ± 1.94	24.275	< 0.001	4.65 ± 0.66	4.99 ± 1.26	5.31 ± 1.75	71.169	< 0.001
10 11 12 13	Total cholesterol (mmol/L)	4.73 ± 1.00	4.98 ± 1.06	5.17 ± 1.25	20.500	< 0.001	4.69 ± 0.94	4.98 ± 1.08	5.39 ± 0.98	73.075	< 0.001
14 15	Triglyceride (mmol/L)	1.54 ± 1.08	1.93 ± 1.94	2.38 ± 2.68	40.974	< 0.001	1.12 ± 0.64	1.54 ± 1.47	1.82 ± 1.40	90.583	< 0.001
16 17 18 19	Systolic blood pressure (mmHg)	110.52 ± 6.13	125.60 ± 6.54	145.64 ± 17.04	706.430	< 0.001	106.73 ± 8.21	125.23 ± 6.81	143.57±20.48	755.356	< 0.001
20 21 22	Diastolic blood pressure (mmHg)	70.82 ± 5.79	80.27 ± 5.75	93.11 ± 10.66	592.747	< 0.001	68.84 ± 6.59	78.63 ± 6.19	89.20 ± 11.87	553.348	< 0.001
23 24 25 26	Family history of hypertension (%)				16.427	0.012				6.847	0.335
27 28	Only father	10.70	11.23	13.81			11.76	10.74	7.37		
29 30 31	Only mother	11.44	17.28	18.28			12.30	11.96	15.79		
32 33	Both parents	6.27	4.75	9.70			4.99	4.91	7.89		
34 35 36	Neither	71.59	66.74	58.21			70.94	72.39	68.95		
36 37 38	LAP	38.69 ± 34.85	58.43 ± 65.52	87.83 ± 120.94	113.508	< 0.001	24.52 ± 20.75	43.24 ± 59.48	58.98 ± 54.19	159.320	< 0.001
39 40 41 42 43 44 45 46			For peer re	eview only - http://	bmjopen.bn	nj.com/site/	about/guidelines.>	khtml			

Fable 3 (Comparison of blood pressure among four	quartiles of LAP					
	Variables	Q1	Q2	Q3	Q4	- Z	<i>P</i> -valu
	Male		(0)				
	Systolic blood pressure (mmHg)	119.33 ± 13.72	125.61 ± 14.86	129.23 ± 16.38	133.36 ± 17.85	106.793	< 0.001
	Diastolic blood pressure (mmHg)	75.84 ± 9.89	80.55 ± 9.84	82.56 ± 10.74	85.64 ± 11.36	106.285	< 0.001
	Female						
	Systolic blood pressure (mmHg)	110.45 ± 13.91	114.95 ± 15.07	119.66 ± 15.91	130.25 ± 19.78	184.926	< 0.001
	Diastolic blood pressure (mmHg)	71.05 ± 9.45	73.29 ± 9.60	76.21 ± 9.96	81.04 ± 11.70	134.730	< 0.001

Table 4 Multinomial logistic regression analysis of LAP associated with hypertension status Q _____ Μ Fe

	OR ^a (95% CI)		OR ^b (95% CI)		OR ^c (95% CI)	
Quartiles of LAP	prehypertension	hypertension	prehypertension	hypertension	prehypertension	hypertension
Male						
Q1	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)
Q2	2.98***	4.70***	2.22***	2.38**	1.73*	1.61
	(1.88, 4.72)	(2.34, 9.45)	(1.48, 3.34)	(1.36, 4.16)	(1.12, 2.67)	(0.89, 2.94)
Q3	4.48***	8.26***	2.68***	3.90***	1.66*	1.75
	(2.85, 7.03)	(4.21, 16.21)	(1.74, 4.12)	(2.24, 6.82)	(1.03, 2.68)	(0.94, 3.26)
Q4	4.65***	17.82***	3.14***	9.02***	1.67	2.79***
	(2.93, 7.36)	(9.21, 34.46)	(1.95, 5.07)	(5.11, 15.93)	(0.96, 2.92)	(1.43, 5.44)
Semale						
Q1	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)
Q2	1.75**	2.19**	1.046	1.19	0.91	1.015
	(1.22, 2.51)	(1.27, 3.77)	(0.69,1.58)	(0.62,2.29)	(0.59,1.41)	(0.51,2.03)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Q3	3	b.35***	6.50***	1.68**	1.87	1.31	1.19
		2.27, 4.93)	(3.83, 11.02)	(1.11,2.52)	(0.99,3.4	(0.84,2.05)	(0.60,2.38)
Q4	5	5.99***	20.06***	3.26***	6.32***	2.10**	3.15***
	(3.74, 9.59)	(11.37, 35.38)	(2.09,5.10)	(3.42,11.	.65) (1.26,3.51)	(1.56,6.39)
OR=Odds ratio; CI=co	onfidence interv	val; ***, P < 0.0)01; **, <i>P</i> < 0.01; *, <i>P</i>	P < 0.05.			
^a , unadjusted.							
^a , unadjusted. ^b , adjusted for age, sex	, marital status	, educational le	evel				
^b , adjusted for age, sex				asma glucose, fa	mily history of h	hypertension, and all th	e factors in b.
^b , adjusted for age, sex	l activity, smok	er, drinker, BN	MI, WHR, fasting pla	asma glucose, fa Specificity (%)	mily history of h Youden Index	AUC(95% CI)	e factors in b. P-value
^b , adjusted for age, sex ^c , adjusted for physica	l activity, smok	er, drinker, BM ifferent obesit <u></u> Cut-off	MI, WHR, fasting pla y indexes Sensitivity	Specificity	Youden		
^b , adjusted for age, sex ^c , adjusted for physica	l activity, smok pertension by d Variables	er, drinker, BM ifferent obesit <u></u> Cut-off	MI, WHR, fasting pla y indexes Sensitivity	Specificity	Youden		
^b , adjusted for age, sex ^c , adjusted for physica	l activity, smok pertension by d Variables Male	er, drinker, BM ifferent obesity Cut-off value	MI, WHR, fasting pla y indexes Sensitivity (%)	Specificity (%)	Youden Index	AUC(95% CI)	<i>P</i> -value

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

-	
2	1
•	
~	•

	WC	85.05	65.67	72.60	0.383	0.734 (0.700, 0.769)	< 0.001	
	TG	1.91	46.27	70.14	0.164	0.607 (0.568, 0.646)	< 0.001	
	Femal	e						
	BMI	21.767	81.58	50.73	0.323	0.698 (0.658, 0.737)	< 0.001	
	WH	R 0.860	74.21	55.24	0.294	0.684 (0.643, 0.726)	< 0.001	
	LAP	30.860	68.95	67.42	0.363	0.721 (0.680, 0.761)	< 0.001	
	WC	79.90	72.11	64.94	0.370	0.725 (0.686, 0.766)	< 0.001	
	TG mass index; WHR: tio; CI=confidence in		63.68 ; LAP: lipid accur	64.49 mulation product;	0.282 WC: waist c	0.663 (0.620, 0.706)	< 0.001 iglyceride; AUC: area und	er
OR=Odds rat	mass index; WHR:	waist-hip rate nterval.	; LAP: lipid accu	mulation product;				er
OR=Odds rat	mass index; WHR: tio; CI=confidence in	waist-hip rate nterval.	; LAP: lipid accu	mulation product; ertension		ircumference; TG: Tr		er
OR=Odds rat	mass index; WHR: tio; CI=confidence in raction effects betwe	waist-hip rate aterval. en LAP and fa	r; LAP: lipid accur	mulation product; ertension	WC: waist c	ircumference; TG: Tr		er (
OR=Odds rat Table 6 Inter Variables	mass index; WHR: tio; CI=confidence in raction effects betwe	waist-hip rate aterval. en LAP and fa	r; LAP: lipid accur	mulation product; ertension	WC: waist c	ircumference; TG: Tr		er (
OR=Odds rat Table 6 Inter Variables Male	mass index; WHR: tio; CI=confidence in raction effects betwe Variables	waist-hip rate aterval. en LAP and fa	r; LAP: lipid accur	mulation product; ertension	WC: waist c	ircumference; TG: Tr		er (
OR=Odds rat Table 6 Inter Variables Male	mass index; WHR: tio; CI=confidence in raction effects betwe Variables	waist-hip rate aterval. en LAP and fa	r; LAP: lipid accur	mulation product; ertension	WC: waist c	ircumference; TG: Tr		er (
OR=Odds rat Table 6 Inter Variables Male	mass index; WHR: tio; CI=confidence in raction effects betwe Variables	waist-hip rate aterval. en LAP and fa N	r; LAP: lipid accur mily history of hyp OR ^c (95% CI)	mulation product; ertension Inte	WC: waist c	ircumference; TG: Tr		er (

-	-	486	1 (reference)	RERI = 1.652 (0.267, 3.037)
-	+	215	1.189 (0.772, 1.832)	$AP = 0.516 (0.238, 0.794)^*$
+	-	173	1.362 (0.875, 2.121)	SI = 3.998 (0.897, 17.820)
+	+	128	3.203*** (2.002, 5.124)	
Female LAP ^a	Family history ^b			
-				
	-	657	1 (reference)	RERI = -0.673 (-2.566, 1.22
-	-+	657 276	1 (reference) 1.995** (1.284, 3.099)	RERI = -0.673 (-2.566, 1.22 AP = -0.328 (-1.451, 0.795)
-+	- + -			

LAP: lipid accumulation production; RERI: relative excess risk of interaction ; AP: attributable proportion due to interaction; SI: synergy index; OR=Odds ratio; CI=confidence interval; ***, P < 0.001; **, P < 0.01; *, P < 0.05.

^a, grouped by the cut-off values in Table 4.

 ^b, family history of hypertension was defined as one parent or both parents having hypertension.

^c, adjusted for age, marital status, educational level, physical activity, smoker, drinker, BMI, and WHR.

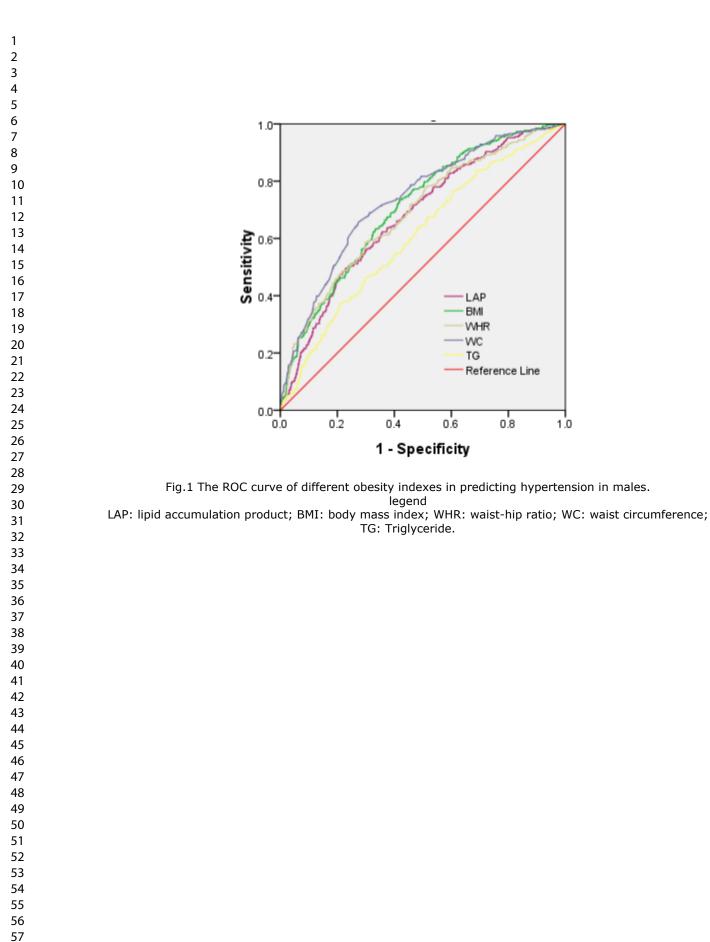
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

LAP BMI

WHR

WC


ΤG

0.6

Reference Line

0.8

1.0

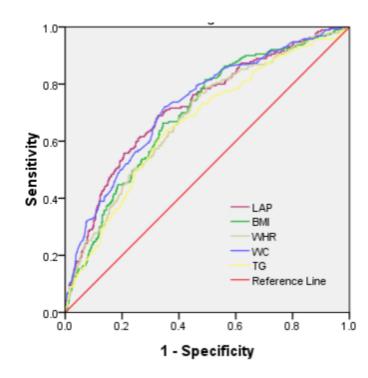


Fig.2 The ROC curve of different obesity indexes in predicting hypertension in females.legendLAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC: waist circumference; TG: Triglyceride.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods	I	<u>e</u>	
Study design	4	Present key elements of study design early in the paper	Page 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Page 5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 6-7
Bias	9	Describe any efforts to address potential sources of bias	Page 3

Study size	10	Explain how the study size was arrived at	Page 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 7-8
		(b) Describe any methods used to examine subgroups and interactions	Page 7-8
		(c) Explain how missing data were addressed	Page 5
		(d) If applicable, describe analytical methods taking account of sampling strategy	Page 5
		(e) Describe any sensitivity analyses	Not applicable
Results		Cr.	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Page 8-9; Table 1; Table 2
		(b) Give reasons for non-participation at each stage	Not application
		(c) Consider use of a flow diagram	Not application
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Page 8-9; Table 1; Table 2
		(b) Indicate number of participants with missing data for each variable of interest	Not application
Outcome data	15*	Report numbers of outcome events or summary measures	Page 8-9; Table 1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Page 9-10; Table 4; Table 6
		(b) Report category boundaries when continuous variables were categorized	Page 6-8; Table 1; Table 2; Table 3 ;

			Table 6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not application
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Page 10-11; Table
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 12-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Page 14
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Page 12-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Page 14-15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Interaction of lipid accumulation product and family history of hypertension on hypertension risk: A cross-sectional study in the Southern Chinese population

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029253.R4
Article Type:	Original research
Date Submitted by the Author:	04-Nov-2019
Complete List of Authors:	Huang, junxuan; Guangzhou Medical University Bao, XinYu; Guangzhou Medical University Xie, yixian; Guangzhou Medical University Zhang, xiaoxia; Guangzhou Medical University Peng, xin; Guangzhou Medical University Liu, yan; Guangzhou Medical University Cheng, mengjiao; Guangzhou Medical University Ma, JinXiang; Guangzhou Medical University wang, peixi; General Practice Center, Nanhai Hospital, Southern Medical University
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Diabetes and endocrinology
Keywords:	Hypertension < CARDIOLOGY, LAP, Family history, Interaction effect

SCHOLARONE[™] Manuscripts

BMJ Open

1

2		
3 4 5	1	Interaction of lipid accumulation product and family history of hypertension on
5 6 7	2	hypertension risk: A cross-sectional study in the Southern Chinese population
7 8 9	3	Jun-Xuan Huang ¹ , Xin-Yu Bao ¹ , Yi-Xian Xie ¹ , Xiao-Xia Zhang ¹ , Xin Peng ¹ , Yan
9 10 11	4	Liu ¹ , Meng-Jiao Cheng ¹ , Jin-Xiang Ma ^{1*} and Pei-Xi Wang ^{2*}
12 13	5	Institution address:
14	3	
15 16	6	¹ Guangzhou Medical University, Guangzhou, 510182, China.
17 18	7	² General Practice Center, Nanhai Hospital, Southern Medical University, Foshan,
19 20	8	528244, China.
21 22	9	Email address:
23 24	,	
24 25 26	10	circle_wong@yeah.net (JX.H.); 1027473041@qq.com (XY.B.);
27 28	11	yixian.xie@yahoo.com (YX.X.); zhangxiaoxia405@163.com (XX.Z.);
29 30 31	12	609167985@qq.com (X.P.); 1763136904@qq.com (Y.L.);
32 33	13	15700727758@163.com (MJ.C.); mjx777108@hotmail.com (JX.M);
34 35 26	14	peixi001@163.com (PX.W.)
36 37 28	15	* Author to whom correspondence should be addressed; E-mail:
38 39 40	16	mjx777108@hotmail.com, peixi001@163.com
41		
42 43		
44		
45 46		
40		
48		
49 50		
50		
52		
53 54		
54 55		
56		

1 ABSTRACT

Objectives: This study aimed at investigating the applicability of a novel index based on waist circumference (WC) and Triglyceride (TG) which was named lipid accumulation product (LAP) in the Southern Chinese population, and compared the predictive effects of LAP and other obesity indicators on hypertension risk. Moreover, this study investigated the interactive effects of LAP and family history of hypertension.

Methods: A total number of 2079 of community-dwelling adults in Southern China were enrolled in this cross-sectional study. The participants underwent questionnaire surveys, anthropometric tests, and laboratory examinations. The multivariate logistic regression model and receiver operating characteristic (ROC) curves, including LAP, body mass index (BMI), waist-hip ratio (WHR), WC, and TG were used to assess the association between hypertension risk and obesity indexes. The interaction effects were evaluated by relative excess risk of interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI).

Results: Higher LAP levels have a relatively higher risk of having hypertension in both sexes (males: adjusted odds ratio [OR] = 2.79 per SD increase, 95% confidence interval [CI] = 1.43-5.44, P < 0.001; females: adjusted OR:3.15.95%CI=1.56-6.39, P< 0.001). LAP (area under curve [AUC] = 0.721; 95% CI: 0.680-0.761) is a better indicator in identifying hypertension risk than BMI, WHR, and TG in females, but WC performed better in males. A significant interaction between LAP and family history of hypertension was observed in males (RERI = 1.652, 95% CI: 0.267–3.037; AP = 0.516, 95% CI: 0.238–0.794; SI = 3.998, 95% CI: 0.897–17.820), but there is no statistically significant differences in females.

Conclusions: LAP significantly associates with hypertension risk in the Southern
Chinese population. It has better performance than BMI, WHR, and TG on predicting
hypertension risk of the Southern Chinese female population. Moreover, LAP and
family history of hypertension might synergistically increase the risk of hypertension.

BMJ Open

2	
3	
4	
5	
6	
5 6 7	
Q	
8	
9	
9 10	
11	
12	
12	
15	
14	
12 13 14 15 16 17	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
26 27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

Keywords: Hypertension, LAP, Family history, Interaction effect 1

Strengths and limitations of this study 2

3 Strengths:

1. Our study is the first to examine the validity of LAP, which is calculated using a 4 modified formula, in the Southern China population. 5

Limitations: 6

- 1. This is a cross-sectional study; the results are not sufficient to indicate causality. 7
- 2. The population of our study can partially represent the general population in the 8 Southern China but cannot fully represent this region. 9

10 3. This study lacks of the adjustment for renal function, and other risk factors for 11 hypertension (such as serum uric acid).

- 4. This study has small sample size, so further studies with a larger sample size are 12
- 13 needed to investigate whether the modified LAP applies to all the residents dwelling
- in Southern China. 14

1 INTRODUCTION

Hypertension, a significant risk factor of cardiovascular disease,¹ is one of the most prevalent public health problems in the world and is the leading contributor to the global burden of disease and mortality. Nowadays, the number of adults with hypertension in the world is being predicted to increase by about 60% to a total of 1.56 billion in 2025, and one-third of adults are suffering from hypertension in China.^{2,3}

Obesity, especially visceral fat, and family history of hypertension contributes to hypertension significantly.⁴⁻⁶ Numerous studies agree on the idea that people with hypertension's family history have higher chance to get hypertension.⁶⁻⁹ Usually, when it comes to obesity, the indexes that are most frequently used to assess obesity are body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR); however, these traditional obesity indexes merely reflect the degrees of overweight and abdominal obesity, also, cannot distinguish the difference between subcutaneous fat and visceral fat.¹⁰ Micromagnetic resonance imaging and microcomputed tomography, which are the visceral fat golden standard measurement methods, is inconvenient and expensive.¹¹ Moreover, they are not suitable for large-scale epidemiological investigations. Therefore, it is necessary to discover a new obesity indicator that can predict visceral fat from subcutaneous fat more conveniently and economically.

Recently, increasing attention has been directed towards lipid accumulation product (LAP). LAP, a new obesity index computed from WC and triglyceride (TG), is a useful indicator of visceral fat,¹² as demonstrated by Kahn in 2005¹³. Some studies suggest that LAP can also be used to identify metabolic syndromes,^{14, 15} type 2 diabetes mellitus,¹⁶ stroke,¹⁷ and arterial stiffness.¹⁸ Additionally, several cross-sectional studies conducted in Japan,¹⁹ India,¹⁴ and Brazil indicate that LAP significantly associated with cardiovascular disease and is a better indicator than BMI for identifying cardiovascular risk.^{13, 20} A few national studies have investigated the association between LAP and hypertension in China, and all of them are conducted in

BMJ Open

northern China, including Bengbu,²¹ Beijing,²² and Inner Mongolia.²³ With a vast territory, China has a tremendous difference between South and North. Due to the geographical environment and dietary habits that have formed throughout its long history, there are some dietary and cultural differences between Northern and Southern China.²⁴ The Northern region shows a high intake of wheat, tubers, and liquor, etc. While southerner has a high intake of rice, vegetables, meat, poultry, fish etc.²⁴ The Carbohydrate-rich pattern of the northern region is associated with a high risk of hypertriglyceridemia and higher BMI. Meanwhile, significant differences are found in systolic blood pressure (SBP)/diastolic blood pressure (DBP) between southern Chinese and northern Chinese owing to different climate and dietary habits between southern and northern.²⁵ Studies have found that the northerners are heavier and have higher triglycerides level than southerners.^{26, 27} Differences in dietary habits, or lifestyle, individuals from different regions should lead to different LAP. LAP has a different situation in the north and south. Thus, the applicability of LAP in predicting hypertension in Southern China is worth studying. However, rare studies have compared LAP with other obesity indexes in the Southern Chinese population. Besides, almost all studies about LAP are using the formula based on the third National Health and Nutrition Examination Survey in the US. Therefore, it is reasonable to suggest that the calculation formula of LAP needs to be modified in the Chinese population.

To the best of our knowledge, no studies have attempted to adjust the calculation formula of LAP so that it can apply to the Southern Chinese population, and rare studies have explored additive interactions between family history of hypertension and LAP. Thus, the primary purpose of this study was to investigate the applicability of LAP in the Southern Chinese population and compare the predictive effects of LAP and other obesity indicators on hypertension risk. The secondary purpose of the study was to assess interactive effects between LAP and family history of hypertension to predict the hypertension risk in the Southern Chinese population.

29 METHODS

1 Study design and subjects

A cross-sectional survey based on community health was conducted in the Foshan city of Guangdong province in Southern China. Recruiting the enrollers took place on March 2017. The study samples were selected by a multistage and stratified random sampling method. The stratification according to the economic levels and randomly selected urban and rural at economic levels, then randomly selected communities according to proportion of urban and rural. Communities residents were then randomly selected from the household lists. A total of 3760 individuals were enrolled in this study; among them, 1681 participants who lacked complete data on demographic characteristics, anthropometric tests, or laboratory examinations were excluded. There were no statistically significant differences in age and sex between excluded participants and included participants. Finally, 2079 adults who had complete data were included in the analysis.

Patient and public involvement

15 Patients or public were not involved in this study.

Ethics statement

This study was approved by the Ethics Committee of Guangzhou Medical University.
Written informed consent was obtained from each study participant before
investigation.

20 General study questionnaire

An interview-based survey was performed using a questionnaire by trained staff. Socio-demographic data, family history of hypertension, cigarette smoking, and alcohol drinking were investigated. Smokers were defined as the participants smoking at least 1 cigarette/day for at least 6 months. Drinkers were defined as individuals consuming at least 30 ml alcohol/week for 1 year or more. Physical activities were divided into "insufficiently active" and "sufficiently active." Participants with "insufficiently active" were defined as those who performed activity less than 150 min/week. Participants with "sufficiently active" were defined as those who exercised Page 7 of 37

BMJ Open

more than 150min/week.²⁸ Marital status was classified as "currently not married" and "currently married"; "married" was regarded as "currently married," and "divorced/widowed/single" was regarded as "currently not married." Educational level was categorized as "elementary school or lower," "secondary school," and "senior high school or higher."

Anthropometric tests and laboratory examinations

The participants were required to take off their shoes and wear lightweight clothing for weight and height measurements. WC was measured at the level of 1 cm above the navel.²⁹ Automatic sphygmomanometer (OMRON, hem-7125) was used to measure blood pressure (BP) of participants. BP measurement was conducted thrice in a quiet environment, and the participants rested at least one minute between each time of measurement. The mean of the three measurements was used in the analysis. Prehypertension was defined as SBP of 120-139 mmHg and/or DBP of 80-89 mmHg, and hypertension was defined as SBP of \geq 140 mmHg, DBP of \geq 90 mmHg, and/or a reported medical history of anti-hypertensive medication.²⁹ The BMI was calculated as weight in kilograms divided by the square of the height in meters. Overweight was defined as BMI of 24–27.9 kg/m², and obesity was defined as BMI of \geq 28 kg/m². The fasting blood samples were collected from the participants in the morning after an overnight fast and were used to assess fasting plasma glucose, total cholesterol, and TG levels.

According to Kahn's theory,¹³ LAP is calculated as [WC (cm) - The minimum of WC (male)] × [TG (mmol/L)] for males and [WC (cm) - The minimum of WC (female)] \times [TG (mmol/L)] for females, and the minimum waist size theoretically contains only the abdomen, muscle, viscera, and vertebral bone.¹³ Visceral fat can be estimated by the difference between the WC and the minimum waist size. In the present study, the WC of the studied population was skewed; therefore, the WC was log-transformed. The minimum WC was estimated by the mean WC minus two standard deviations after log-transformation in the local participants aged 18-24 vears.13, 22

1 Statistical analyses

According to the hypertension status, the enrollees were divided into three groups (normotension, prehypertension, and hypertension). The frequency (%) was used to describe sex, marital status, education level, physical activity, BMI, smoker, and drinker. Mean ± standard deviation (SDs) was used to describe the WC, WHR, fasting plasma glucose, total cholesterol, TG, SBP, DBP, and LAP. LAP was divided into four groups by the quartiles, i.e., Q1, Q2, Q3, and Q4. The differences of quantitative data across different hypertension statuses were analyzed by the Kruskal-Wallis H test because the data had skewed distribution. Categorical variables were analyzed by the Chi-squared test. The multivariate logistic regression model was used to analyze the relationship between LAP and risk factors of hypertension and prehypertension. The receiver operating characteristics (ROC) curves were applied to identify the superior obesity index and the best cut-off value of LAP to predict the hypertension risk. Moreover, the interaction effects between LAP and family history of hypertension were assessed by some relevant indicators, including the relative excess risk of interaction (RERI = $OR_{11} - OR_{10} - OR_{01} + 1$), the attributable proportion due to interaction (AP = $[OR_{11} - OR_{10} - OR_{01} + 1]/OR_{11}$), and the synergy index (SI = $[OR_{11} - OR_{11} - OR_{11}]/OR_{11}$). /[OR₀₁ - 1] + [OR₁₀ - 1]). If the interaction effect was not observed, the confidence interval of RERI and AP contained 0 and the confidence interval of S included 1.30 The above indicators were calculated using an Excel table designed by Andersson et al.³⁰ All reported *P*-values were two-tailed, and a *P*-value of < 0.05 was considered significant. Statistical analyses were performed using SPSS version 19.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

25 LAP

According to Kahn's theory,¹³ LAP was calculated as (WC - 60.6) × (TG [mmol/L]) in males and (WC - 54.1) × (TG [mmol/L]) in females based on the actual data obtained from the Southern Chinese population.²²

Basic characteristics of the study participants

A total number of 2079 of adults with an average age of 41.06 years were enrolled in the present study, including 1002 males (48.29%) and 1077 females (51.80%). The overall prevalence rates of normotension, prehypertension, and hypertension were 40.02%, 37.95%, and 22.03%, respectively. Male participants had a high prevalence of prehypertension and hypertension than female participants (P < 0.001). Statistically significant differences in age (P < 0.001), marital status (P < 0.001), education level (P < 0.001), smoker (P < 0.001), drinker (P < 0.001), and family history of hypertension (P = 0.005) were observed between normotension, prehypertension, and hypertension groups. However, no significant differences were observed in physical activity (P = 0.550) among the three groups. Anthropometric measurements found significant differences in BMI ($P \le 0.001$), WC ($P \le 0.001$), WHR ($P \le 0.001$), LAP (P < 0.001) between the groups. Statistically significant differences found in laboratory examinations including fasting plasma glucose (P < 0.001), total cholesterol (P < 0.001), SBP (P < 0.001), and DBP (P < 0.001) between the groups (Table 1). And the basic characteristics of different sex of study participants were shown in table 2.

18 LAP and the risk factors of hypertension

In order to investigate the relationship between LAP and blood pressure, LAP was divided into four groups by quartile in different sex (Table 3). A significant association was observed between LAP and blood pressure in both male and female. The results in males and females showed that SBP (P < 0.001) and DBP (P < 0.001) were relatively elevated in participants with higher LAP levels.

Multinomial logistic regression analysis was conducted to evaluate the association between LAP quartiles and hypertension status (Table 4). Participants with the third and the fourth quartile of LAP were more likely to develop prehypertension and hypertension than those with the first quartile in both males and females.

28 After adjusting for age, marital status, and educational level, the risks of

prehypertension (adjusted OR: 3.14, 95% CI: 1.95–5.07) and hypertension (adjusted OR: 9.02; 95% CI: 5.11–15.93) significantly increased in male participants with the fourth quartile compared with those with the first quartile. For females, increasing risks of prehypertension (adjusted OR: 3.26, 95% CI: 2.09–5.10) and hypertension (adjusted OR: 6.32; 95% CI: 3.42–11.65) were observed in participants with the fourth LAP quartile compared with those with the first one.

After controlling for age, marital status, educational level, physical activity, smoking, alcohol consumption, BMI, WHR, fasting plasma glucose, and family history of hypertension, the risks of prehypertension (adjusted OR: 1.67, 95% CI: 0.96–2.92) and hypertension (adjusted OR: 2.79, 95%CI: 1.43–5.44) significantly increased in male participants with the fourth quartile compared with those with the first quartile. Meanwhile, increasing risks of prehypertension (adjusted OR: 2.10, 95%) CI: 1.26-3.51) and hypertension (adjusted OR: 3.15, 95%CI: 1.56-6.39) were observed in female participants with the fourth LAP quartile compared with those with the first one.

The results of ROC curves analysis in males and females were shown in Figure. 1 and 2 and Table 5. LAP (AUC = 0.721; 95% CI: 0.680–0.761) was a better indicator to predict different types of hypertension than BMI (AUC = 0.698; 95% CI: 0.658-0.737), WHR (AUC = 0.684; 95% CI: 0.643-0.726) and TG (AUC = 0.663; 95% CI: 0.620–0.706) in females; however, WC (AUC = 0.734 95% CI: 0.700–0.769) performed better than BMI (AUC = 0.707, 95% CI: 0.672-0.742), WHR (AUC = 0.688; 95% CI: 0.650-0.725), LAP (AUC = 0.677; 95% CI: 0.640-0.713) and TG (AUC = 0.607; 95% CI: 0.568-0.646) on males. The best cut-off values of LAP to predict hypertension were 63.892 in males and 30.860 in females.

25 Interaction effects between LAP and family history of hypertension

The interaction effects between LAP and family history of hypertension were presented in Table 6. Significant interaction effects between LAP and family history of hypertension were observed in males. The results of RERI (1.652; 95% CI: 0.267–3.037) and AP (0.516; 95% CI: 0.238–0.794) indicated a significant interaction

2

1

BMJ Open

2	
3	
4	
_	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
2 I 2 2	
22	
23	
24	
25	
26	
20	
27	
28	
20 21 22 23 24 25 26 27 28 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	

59 60 effect of family history of hypertension and LAP on hypertension, but the result of SI (3.998; 95% CI: 0.897–17.820) did not.

However, no statistically significant interaction effects were found between LAP
and family history of hypertension in females, which was indicated by all the three
indicators. RERI was - 0.673 (95% CI: -2.566–1.220); AP was -0.328 (95% CI:
-1.451–0.795); and SI was 0.610 (95% CI: 0.125–2.979).

7 Discussion

8 With the rapid development of the economy and sedentary lifestyle, elevated blood 9 pressure has become a common and serious public health issue.³¹ The prevalence of prehypertension and hypertension significantly increased.³² Elevated blood pressure is 10 caused by diverse factors, among which obesity is closely related to hypertension.³³ 11 The prevalence of obesity increased by 13% in urban areas and by 85% in rural areas 12 in China, thus more attention should be paid to this issue.¹⁷ Extensive studies found 13 that obesity, especially visceral adipose tissue, could strongly increase the blood 14 pressure.33 15

The mechanisms underlying the interaction between obesity and hypertension are complicated. The mechanisms of obesity-induced hypertension include sodium retention, insulin resistance, activation of renin-angiotensin-aldosterone, altered vascular function, and secretion of relevant adipokines.³⁴ Besides, the mechanisms of blood pressure increase can be activated by visceral fat.³⁵

Substantial evidence has shown that the harm of the fat accumulation is greater 21 than the total amount of fat.^{36, 37} However, traditional obesity indexes, such as BMI, 22 WC, and WHR, have limitations of distinguishing differences between subcutaneous 23 24 fat and visceral fat. Therefore, a new obesity index that can predict visceral fat easily and effectively is urgently needed. After Kahn first has shown that LAP performs 25 better than BMI for recognizing the cardiovascular risk, domestic and foreign scholars 26 pay increasing attention to LAP. LAP, a combination of WC and TG, is an accessible 27 and inexpensive way to assess visceral fat.13 It is a well-known fact that TG reflects 28

BMJ Open

the degree of visceral fat accumulation and WC strongly associates with hypertension.¹² Notably, hypertriglyceridemic waist (HTGW) is also calculated based on the combination of TG and WC. However, LAP, as a continuous indicator, is superior to reflect visceral fat than HTGW,³⁸ a discontinuous indicator.²¹ Therefore, LAP is used as a visceral obesity indicator in this study.

LAP is based on the hypothesis of minimum waist circumference includes the rachis, abdominal viscera and muscle.¹³ Therefore, the differences between the actual WC and the minimum WC can represent abdominal adipose tissue.¹³ Notably, LAP in almost all studies is calculated by data obtained based on the third National Health and Nutrition Examination Survey in the United States.¹³ Because of differences in race, dietary habits, or lifestyle, individuals from different countries should have different visceral adipose tissues. It is shown that there are considerable differences in visceral adipose tissues between Chinese individuals and Europeans or Americans.³⁹ Therefore, LAP is calculated in our study using a modified formula so that it could apply to the individuals dwelling in Southern China.

As expected, a significant association is found between LAP and hypertension in the present study. Our findings are consistent with those in studies by Zhong et al.¹⁷ Song et al.³⁷ and Shen et al.²² all of which have demonstrated that LAP is an effective and reliable diagnostic indicator of hypertension. Participants with significantly higher LAP have higher risks of prehypertension and hypertension than those with lower LAP. Multinomial logistic regression analysis reveals that after adjusting for other factors, the risks of prehypertension and hypertension in the group with the highest LAP level are 2.10 and 3.15 times higher in females, respectively, than those in the group with the lowest LAP.

Wang et al.found LAP is a better index to predict the risk of hypertension.⁴⁰ However, Gao et al found that the performance of LAP is superior to that of BMI in male Mongolians;²³ these findings may be due to the apparently lower prevalence of high TG in female Mongolians than in male Mongolians (13.20% vs 23.10%, P <0.05), and the facts might disturb the association between LAP and hypertension in Page 13 of 37

BMJ Open

female Mongolians. Several studies finds the superiority of LAP over BMI for detection of hypertension and prehypertension in both genders.^{21, 37, 40} However, in the present study, we also found that LAP perform better than BMI in female. According to Kahn,⁴¹ the annual LAP changes are reduced at older age in male. Advancing age is associated with a progressive increase in systolic BP levels and with development and progression of arterial hypertension because of a number of factors, including atherosclerotic changes, large artery stiffening, altered renal function, and arterial baroreflex impairmen,⁴² That is to say, increase in blood pressure is thought to be an unavoidable consequence of aging. Thus, the superiority of LAP for predicting hypertension in male may be disturbed by the larger-scale proportion of elder man (23.7%) in our study. In our study, LAP performs better in predicting the hypertension risk than TG in both sex. However, due to low predictive value of TG in southern China, LAP which combines of TG and WC is slightly inferior to WC.

In general, LAP, which applied to the Southern Chinese population, is a better indicator for predicting the hypertension risk in females in this study. In addition, large studies have demonstrated that family history of hypertension is a critical risk factor for hypertension, and individuals with family history of hypertension are 2-4 times more likely to develop hypertension than those without the family history of hypertension.⁴³ The interaction analysis in this study indicates the synergistic effect of LAP and family history on the hypertension risk in males, but no statistically significant differences in the interaction effect in females. These findings might be due to the fact there was no statistically significant difference between females and the family history of hypertension in our study ($\chi^2=6.847$, P=0.0355>0.05). In fact, cardiovascular events occur at a lower rate in females than in males.⁴⁴ In our study, the female participants who have both LAP and family history of hypertension are rarely observed and the prevalence rates of hypertension at a lower rate in females than in males no matter premenopausal status or menopausal status.⁴⁵ Our study suffers from a small sample size, especially in females. The fewer positive female observers which have higher LAP and family history of hypertension lead to no

BMJ Open

statistically significant differences in the interaction effect on the hypertension risk in females. The interaction in female is not statistically significant, but their synergistic effect is obvious. The synergistic effect between family history of hypertension and LAP on the hypertension risk is demonstrated in our study as well as in other studies.^{21, 40} Visceral obesity and family history of hypertension may result in increased blood pressure through some unknown mechanisms. However, further studies are needed to investigate the interaction effect between LAP and family history of hypertension on the hypertension risk.

To date, LAP is an inexpensive screening tool to identify visceral adipose tissue, and the method has high reproducibility. LAP, which is proposed by Kahn, is developed for the Western population. Thus this study explored the validity of LAP, which is calculated based on the Southern China population, and the interactive effects of LAP and family history of hypertension. The findings suggest LAP might perform better in predicting the hypertension risk than BMI, WHR and TG in Southern Chinese females. Furthermore, the interaction analysis in this study indicates the synergistic effect of LAP and family history on the hypertension risk. Although, the interaction in female is not statistically significant, their synergistic effect is obvious.

This study has some limitations. First of all, because this is a cross-sectional study, the present results are not sufficient to indicate causality. Secondly, the population of our study can partially represent the general population in the Southern China, but can not fully represent this region. Furthermore, this article lacks of adjustment for renal function, and other risk factors for hypertension (such as serum uric acid). Finally, because of the small sample size in this study, further studies with a larger sample size are needed to investigate whether the modified LAP applies to all the residents dwelling in Southern China.

27 CONCLUSION

 In conclusion, LAP significantly associates with the hypertension risk, and higher
LAP levels have relatively higher blood pressure. It has better performance than BMI,

BMJ Open

1	WHR, and TG on predicting hypertension risk of the Southern Chinese female
2	population. Moreover, LAP and family history of hypertension might synergistically
3	increase the risk of hypertension.
4	Acknowledgements
5	We gratefully acknowledge Dr. Pei-Xi Wang, Dr. Jin-Xiang Ma, Xin-Yu
6	Bao, Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and Meng-Jiao Cheng for their
7	excellent work in study coordination, data collection, and management.
8	Contributors
9	Jun-Xuan Huang, Pei-Xi Wang and Jin-Xiang Ma conceived and designed the study.
10	Jun-Xuan Huang, Xin-Yu Bao, Yi-Xian Xie, Xiao-Xia Zhang, Xin Peng, Yan Liu and
11	Meng-Jiao Cheng contributed to collection of the data, analyzed the data and
12	interpretation of the results. Jun-Xuan Huang wrote the draft manuscript. Jin-Xiang
13	Ma, Pei-Xi Wang and Jun-Xuan Huang finalized the manuscript with inputs from all
14	authors. All of the authors approved the final version submitted for publication.
15	Funding
16	This study was supported by Talent Introduction Fund of Guangzhou Medical
17	University (2009).
18	Competing interests
19	The authors declared that they had no conflict of interest.
20	Ethics statement
21	This study was approved by the Ethics Committee of Guangzhou Medical University.
22	Written informed consent was obtained from each study participant before
22	investigation.
24	Data sharing statement
25	Our data might not be shared directly, because it's our team work and the data
26	belongs
27	to our team. Thus consent should be attained from team members.
28	References
29	1. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension:

BMJ Open

1		analysis of worldwide data. <i>TheLancet</i> 2005;365(9455):217-223.
2		doi:10.1016/S0140-6736(05)17741-1
3	2.	Beaney T, Schutte AE, Tomaszewski M, et al. May Measurement Month 2017: an
4		analysis of blood pressure screening results worldwide. The Lancet Global
5		Health 2018;6(7):e736-e743. doi:10.1016/S2214-109X(18)30259-6
6	3.	Bundy JD, He J. Hypertension and Related Cardiovascular Disease Burden in
7		China. Ann Glob Health 2018;82(2):227-233. doi:10.1016/j.aogh.2016.02.002
8	4.	Macia E, Gueye L, Duboz P. Hypertension and Obesity in Dakar, Senegal. Plos
9		One 2016;11(9):e0161544. doi:10.1371/journal.pone.0161544
10	5.	Tang L, Zhang F, Tong N. The association of visceral adipose tissue and
11		subcutaneous adipose tissue with metabolic risk factors in a large population of
12		Chinese adults. Clin Endocrinol 2016;85(1):46-53. doi:10.1111/cen.13013
13	6.	Wandeler G, Paccaud F, Vollenweider P, et al. Strength of Family History in
14		Predicting Levels of Blood Pressure, Plasma Glucose and Cholesterol. Public
15		Health Genom 2010;13(3):143-154. doi:10.1159/000233228
16	7.	Liu M, He Y, Jiang B, et al. Association Between Family History and
17		Hypertension Among Chinese Elderly. Medicine 2015;94(48):e2226.
18		doi:10.1097/MD.00000000002226
19	8.	Al-Safi SA, Aboul-Enein FH, Aboul-Enein BH, et al. Influence of family history
20		and lifestyle on blood pressure and heart rate in young adults in Jordan. Public
21		Health 2006;120(11):1027-1032. doi:10.1016/j.puhe.2006.06.009
22	9.	Alhawari HH, Al-Shelleh S, Alhawari HH, et al. Blood Pressure and Its
23		Association with Gender, Body Mass Index, Smoking, and Family History
24		among University Students. Int J Hypertens 2018;2018:1-5.
25		doi:10.1155/2018/4186496
26	10	. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional
27		differences. Obes Rev 2010;11(1):11-18. doi:10.1111/j.1467-789X.2009.00623.x
28	11	. Chen W, Wilson JL, Khaksari M, et al. Abdominal fat analyzed by DEXA scan
29		reflects visceral body fat and improves the phenotype description and the
30		assessment of metabolic risk in mice. Am J Physiol-Endoc M

BMJ Open

		17
	1	2012;303(5):E635-E643. doi:10.1152/ajpendo.00078.2012
	2	12. Nurdiantami Y, Watanabe K, Tanaka E, et al. Association of general and central
	3	obesity with hypertension. Clin Nutr 2018;37(4):1259-1263.
C	4	doi:10.1016/j.clnu.2017.05.012
1 2	5	13. Kahn HS. The "lipid accumulation product" performs better than the body mass
3 4	6	index for recognizing cardiovascular risk: a population-based comparison. Bmc
2 3 4 5 6 7	7	Cardiovasc Disor 2005;5(1):26-26. doi:10.1186/1471-2261-5-26
7 3	8	14. Ray L, Ravichandran K, Nanda SK. Comparison of Lipid Accumulation Product
8 9 0 1	9	Index with Body Mass Index and Waist Circumference as a Predictor of
	10	Metabolic Syndrome in Indian Population. Metab Syndr Relat D
3 4	11	2018;16(5):240-245. doi:10.1089/met.2017.0119
2 3 4 5 6 7	12	15. Cicero A F G, Gitto S, Fogacci F, et al. Fatty liver index is associated to pulse
	13	wave velocity in healthy subjects: Data from the Brisighella Heart Study.
8 9 0 1	14	European Journal of Internal Medicine 2018:S0953620518301262.
	15	doi:10.1097/01.hjr.0000136566.89429.63
2 3 4	16	16. Lee JW, Lim NK, Park HY. The product of fasting plasma glucose and
5 5 7	17	triglycerides improves risk prediction of type 2 diabetes in middle-aged Koreans.
5 7 5	18	Bmc Endocr Disord 2018;18(1):33. doi:10.1186/s12902-018-0259-x
5 9	19	17. Zhong C, Xia W, Zhong X, et al. Lipid Accumulation Product and Hypertension
1	20	Related to Stroke: a 9.2-Year Prospective Study Among Mongolians in China. J
2 3	21	Atheroscler Thromb 2016;23(7):830-838. doi:10.5551/jat.33514
2 3 4 5 6 7	22	18. Cicero A F G, D"Addato S, Reggi A, et al. Gender Difference in Hepatic Steatosis
5 7	23	Index and Lipid Accumulation Product Ability to Predict Incident Metabolic
8 9 0 1	24	Syndrome in the Historical Cohort of the Brisighella Heart Study. Metabolic
) 1	25	Syndrome and Related Disorders 2013; 11(6):412-416.
2 3	26	19. Wakabayashi I. Associations of Blood Lipid-Related Indices with Blood Pressure
4 5	27	and Pulse Pressure in Middle-Aged Men. Metab Syndr Relat D 2015;13(1):22-28.
2 3 4 5 6 7 8 9	28	doi:10.1089/met.2014.0093
3 9	29	20. de Oliveira CC, Roriz AKC, Ramos LB, et al. Indicators of Adiposity Predictors
C	30	of Metabolic Syndrome in the Elderly. Ann Nutr Metab 2017;70(1):9-15.

BMJ Open

1	doi:10.1159/000455333
2	21. Song J, Chen X, Zhao Y, et al. Risk factors for prehypertension and their
3	interactive effect: a cross- sectional survey in China. Bmc Cardiovasc Disor
4	2018;18(1). doi:10.1186/s12872-018-0917-y
5	22. Shen YY, Chen JC, Li G, et al. Relationship of lipid accumulation product with
6	hypertension and diabetes among Beijing residents study. Zhonghua yu fang yi
7	xue za zhi [Chinese journal of preventive medicine] 2017;51(5):415.
8	23. Gao X, Wang G, Wang A, et al. Comparison of lipid accumulation product with
9	body mass index as an indicator of hypertension risk among Mongolians in
10	China. Obes Res Clin Pract 2013;7(4):e308-e314.
11	doi:10.1016/j.orcp.2012.02.002
12	24. Song F , Cho M S . Geography of Food Consumption Patterns between South and
13	North China. Foods 2017;6(5). doi:10.3390/foods6050034.
14	25. Huang Z, Wu X, Stamler J, et al. A north-south comparison of blood pressure
15	and factors related to blood pressure in the People's Republic of China: a report
16	from the PRC-USA Collaborative Study of Cardiovascular Epidemiology.
17	Journal of Hypertension 1994; 12(9):1103-12.
18	26. Wu Z , Yao C , Zhao D , et al. Cardiovascular disease risk factor levels and their
19	relations to CVD rates in Chinaresults of Sino-MONICA project. European
20	Journal of Cardiovascular Prevention & Rehabilitation 2004; 11(4):275-283.
21	27. Zhao L, Stamler J, Yan L L, et al. Blood Pressure Differences Between Northern
22	and Southern Chinese: Role of Dietary Factors The International Study on
23	Macronutrients and Blood Pressure. <i>Hypertension</i> 2004; 43(6):1332-1337.
24	28. Rosenberg DE, Bull FC, Marshall AL, Sallis JF, Bauman AE. Assessment of
25	sedentary behavior with the international physical activity questionnaire.
26	J Phys Act Health. 2008;5:S30-44.
27	29. Zhang M, Batu B, Tong W, et al. Prehypertension and Cardiovascular Risk Factor
28	Clustering Among Mongolian Population in Rural and Animal Husbandry Area,
29	Inner Mongolia, China. Circ J 2009;73(8):1437-1441.
30	doi:10.1253/circj.CJ-09-0101

Page 19 of 37

BMJ Open

1	30. Andersson T, Alfredsson L, Källberg H, et al. Calculating measures of biological
2	interaction. <i>Eur J Epidemiol</i> 2005;20(7):575-579.
3	doi:10.1007/s10654-005-7835-x
4	31. Lackland DT, Beilin LJ, Campbell NRC, et al. Global Implications of Blood
5	Pressure Thresholds and Targets. Hypertension 2018;71(6):985-987.
6	doi:10.1161/HYPERTENSIONAHA.118.11280
7	32. Wang Z, Zeng X, Chen Z, et al. Association of visceral and total body fat with
8	hypertension and prehypertension in a middle-aged Chinese population. J
9	Hypertens 2015;33(8):1555-62. doi:10.1097/HJH.00000000000000000
10	33. Stabouli S, Papakatsika S, Kotsis V. The role of obesity, salt and exercise on
11	blood pressure in children and adolescents. Expert Rev Cardiovasc Ther
12	2011;9(6):753-61. doi:10.1586/erc.11.63
13	34. Kotchen TA. Obesity-Related Hypertension: Epidemiology, Pathophysiology, and
14	Clinical Management. Am J Hypertens 2010;23(11):1170-1178.
15	doi:10.1038/ajh.2010.172
16	35. Boscaro M, Giacchetti G, Ronconi V. Visceral adipose tissue: emerging role of
17	gluco- and mineralocorticoid hormones in the setting of cardiometabolic
18	alterations: Adipose tissue and adrenal hormones. Ann Ny Acad Sci
19	2012;1264(1):87-102. doi:10.1111/j.1749-6632.2012.06597.x
20	36. Li Y, Bujo H, Takahashi K, et al. Visceral fat: higher responsiveness of fat mass
21	and gene expression to calorie restriction than subcutaneous fat. Exp Biol Med
22	(Maywood) 2003;228(10):1118-23.
23	37. Song J, Zhao Y, Nie S, et al. The effect of lipid accumulation product and its
24	interaction with other factors on hypertension risk in Chinese Han population: A
25	cross-sectional study. <i>Plos One</i> 2018;13(6):e0198105.
26	doi:10.1371/journal.pone.0198105
27	38. Janghorbani M, Aminorroaya A, Amini M. Comparison of Different Obesity
28	Indices for Predicting Incident Hypertension. High Blood Pressure &
29	Cardiovascular Prevention 2017;24(2):157-166. doi:10.1007/s40292-017-0186-3
30	39. Nazare J, Smith JD, Borel A, et al. Ethnic influences on the relations between

BMJ Open

1	abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic
2	risk profile: the International Study of Prediction of Intra-Abdominal Adiposity
3	and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. The
4	American Journal of Clinical Nutrition 2012;96(4):714-726.
5	doi:10.3945/ajcn.112.035758
6	40. Wang H, Chen Y, Sun G, et al. Validity of cardiometabolic index, lipid
7	accumulation product, and body adiposity index in predicting the risk of
8	hypertension in Chinese population. Postgraduate Medicine 2018;130(3):325-333.
9	doi:10.1080/00325481.2018.1444901
10	41. Kahn H S, Cheng Y J. Longitudinal changes in BMI and in an index estimating
11	excess lipids among white and black adults in the United States. Int J Obes 2008;
12	32(1):136-143.
13	42. Pinto E. Blood pressure and ageing. Postgrad Med J 2007; Feb;83(976):109-14.
14	doi: 10.1136/pgmj.2006.048371
15	43. TOZAWA M, OSHIRO S, ISEKI C, et al. Family History of Hypertension and
16	Blood Pressure in a Screened Cohort. Hypertens Res 2001;24(2):93-98.
17	doi:10.1291/hypres.24.93
18	44. Doumas M, Papademetriou V, Faselis C, et al. Gender Differences in
19	Hypertension: Myths and Reality. Curr Hypertens Rep 2013;15(4):321-330.
20	doi:10.1007/s11906-013-0359-y
21	45. Ramezani TF, Behboudi-Gandevani S, Ghanbarian A, et al. Effect of menopause
22	on cardiovascular disease and its risk factors: a 9-year follow-up study.
23	Climacteric. 2014 Apr;17(2):164-72. doi: 10.3109/13697137.2013.828197.
24	
25	The titles and legends of figure
26	Title
27	Fig.1 The ROC curve of different obesity indexes in predicting hypertension in males.
28	legend
29	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC:
30	waist circumference; TG: Triglyceride.

1	21
2	
3 4 1	
5	
6 2	Title
7 8 3	Fig.2 The ROC curve of different obesity indexes in predicting hypertension in
9 10 4	females.
11 12 5	legend
13 14 6	LAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC:
15 7 16	waist circumference; TG: Triglyceride.
17	
18	
19 20	
20	
22	
23	
24	
25	
26 27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38 39	
40	
41	
42	
43	
44	
45 46	
47	
48	
49	
50	
51 52	
53	
54	
55	
56	
57 58	
58 59	
60	

Variables	Normotension	Prehypertension	Hypertension	χ^2 / Z	<i>P</i> -value
	(N = 832)	(N = 789)	(N = 458)		
Sex (%)				135.625	< 0.001
Male	32.57	58.68	58.52		
Female	67.43	41.32	41.48		
Age (years)	36.42 ± 10.59	41.38 ± 12.71	48.93 ± 12.75	267.206	< 0.001
Marital status (%)				21.287	< 0.001
Currently not married	23.20	18.76	12.66		
Currently married	76.80	81.24	87.34		
Education level (%)				101.355	< 0.001
Elementary school and lower	15.87	21.55	36.46		
Secondary school	36.30	38.53	39.96		
Senior high school and higher	47.83	39.92	23.58		
Physical activity (%)				2.688	0.611

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Seldom or never	35.70	34.22	31.22		
Moderate	17.43	18.25	18.78		
High	46.87	47.53	50.00		
Smoker (%)				50.346	< 0.001
Non-smoker	82.25	71.61	67.90		
Smoker	16.18	26.87	28.61		
Former smoker	0.97	1.52	3.49		
Drinker (%)				30.865	< 0.001
Non-drinker	84.11	76.34	72.53		
Drinker	14.91	22.39	24.62		
Former drinker	0.98	1.27	2.85		
BMI				255.012	< 0.001
< 18.5	13.70	5.20	2.18		
18.5–23.9	68.51	54.88	41.70		
24–27.9	14.30	31.69	37.55		
For p	eer review only - http://	/bmjopen.bmj.con	n/site/about/guideline	es.xhtml	

≥28	3.49	8.24	18.56		
WC	75.61±8.19	81.61±9.04	87.02±9.95	411.441	< 0.001
WHR	0.85 ± 0.06	0.88 ± 0.07	0.91 ± 0.06	248.475	< 0.001
Fasting plasma glucose (mmol/L)	4.69 ± 0.82	4.98 ± 1.33	5.31 ± 1.86	90.399	< 0.001
Total cholesterol (mmol/L)	4.70 ± 0.96	4.98 ± 1.07	5.26 ± 1.15	88.325	< 0.001
Triglyceride (mmol/L)	1.26 ± 0.83	1.77 ± 1.77	2.15 ± 2.25	178.995	< 0.001
Systolic blood pressure (mmHg)	107.97 ± 7.80	125.45 ± 6.65	144.78 ± 18.55	1533.137	< 0.001
Diastolic blood pressure (mmHg)	69.49 ± 6.40	79.59 ± 5.99	91.49 ± 11.33	1206.505	< 0.001
Family history of hypertension (%)				18.391	0.005
Only father	11.42	11.03	11.14		
Only mother	12.02	15.08	17.25		
Both parents	5.41	4.82	8.95		
Neither	71.15	69.07	62.66		
LAP	29.14 ± 27.00	52.15 ± 63.50	75.87 ± 99.81	355.133	< 0.001

BMI: body mass index; WC: waist circumference; WHR: waist-hip rate; LAP: lipid accumulation product.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2 Basic characteristics of the participants

	Male					Female				
Variables	Normotension (N = 271)	Prehypertension (N = 463)	Hypertension (N = 268)	χ^2 / Z	<i>P</i> -value	Normotension (N = 561)	Prehypertension (N = 326)	Hypertension (N = 190)	χ^2 / Z	<i>P</i> -value
Age (years)	36.57 ± 11.02	39.90 ± 12.37	47.15 ± 12.95	91.532	< 0.001	36.35 ± 10.39	43.48 ± 12.92	51.43 ± 12.11	201.378	< 0.001
Marital status (%)				26.019	< 0.001				7.928	0.019
Currently not married	31.37	22.46	13.06			19.25	13.50	12.11		
Currently married	68.63	77.54	86.94			80.75	86.50	87.89		
Education level (%)				24.179	< 0.001				116.258	< 0.001
Elementary school and lower	15.13	15.33	25.00			16.22	30.37	52.63		
Secondary school	37.64	40.39	45.15			35.65	35.89	32.63		
Senior high school and higher	47.23	44.28	29.85			48.13	33.74	14.74		
Physical activity (%)				0.807	0.668				2.979	0.226
insufficiently active	58.30	56.16	54.48			50.62	47.24	43.68		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

									2	26
sufficiently active	41.70	43.84	45.52			49.38	52.76	56.32		
Smoker (%)				7.037	0.132				5.893	0.122
Non-smoker	47.78	52.27	46.27			99.82	99.08	99.42		
Smoker	49.26	45.36	48.13			0.18	0.61	1.05		
Former smoker	2.96	2.38	5.60			0.00	0.31	0.53		
Drinker (%)				3.790	0.432				4.993	0.255
Non-drinker	60.74	61.47	57.30			95.62	97.53	94.15		
Drinker	36.67	36.36	38.20			4.20	2.47	5.32		
Former drinker	2.59	2.16	4.49			0.18	0.00	0.53		
BMI				148.700	< 0.001				99.205	< 0.001
< 18.5	16.61	4.54	1.49			12.30	6.13	3.16		
18.5–23.9	65.68	54.64	38.43			69.88	55.21	46.32		
24–27.9	14.39	33.26	39.18			14.26	29.45	35.26		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

193.623

3.57

74.82±8.24

< 0.001

9.20

79.72±9.46

15.26

84.63±10.20

154.819 < 0.001

3.32

77.26±7.85

7.56

82.95±8.49

20.90

88.71±9.43

 ≥ 28

WC

Page 26 of 37

BMJ Open

1 2 3										2	7
4 5 6	WHR	0.86±0.06	0.89±0.06	0.92±0.06	126.195	< 0.001	0.84±0.07	0.86±0.07	0.89±0.06	183.524	< 0.001
7 8 9	Fasting plasma glucose (mmol/L)	4.76 ± 1.08	4.98 ± 1.38	5.30 ± 1.94	24.275	< 0.001	4.65 ± 0.66	4.99 ± 1.26	5.31 ± 1.75	71.169	< 0.001
10 11 12 13	Total cholesterol (mmol/L)	4.73 ± 1.00	4.98 ± 1.06	5.17 ± 1.25	20.500	< 0.001	4.69 ± 0.94	4.98 ± 1.08	5.39 ± 0.98	73.075	< 0.001
14 15	Triglyceride (mmol/L)	1.54 ± 1.08	1.93 ± 1.94	2.38 ± 2.68	40.974	< 0.001	1.12 ± 0.64	1.54 ± 1.47	1.82 ± 1.40	90.583	< 0.001
16 17 18 19	Systolic blood pressure (mmHg)	110.52 ± 6.13	125.60 ± 6.54	145.64 ± 17.04	706.430	< 0.001	106.73 ± 8.21	125.23 ± 6.81	143.57±20.48	755.356	< 0.001
20 21 22	Diastolic blood pressure (mmHg)	70.82 ± 5.79	80.27 ± 5.75	93.11 ± 10.66	592.747	< 0.001	68.84 ± 6.59	78.63 ± 6.19	89.20 ± 11.87	553.348	< 0.001
23 24 25 26	Family history of hypertension (%)				16.427	0.012				6.847	0.335
27 28	Only father	10.70	11.23	13.81			11.76	10.74	7.37		
29 30 31	Only mother	11.44	17.28	18.28			12.30	11.96	15.79		
32 33	Both parents	6.27	4.75	9.70			4.99	4.91	7.89		
34 35 36	Neither	71.59	66.74	58.21			70.94	72.39	68.95		
30 37 38	LAP	38.69 ± 34.85	58.43 ± 65.52	87.83 ± 120.94	113.508	< 0.001	24.52 ± 20.75	43.24 ± 59.48	58.98 ± 54.19	159.320	< 0.001
39 40 41 42 43 44 45 46			For peer re	eview only - http://	bmjopen.bn	nj.com/site/	about/guidelines.>	khtml			

BMJ Open

Table 3 (Comparison of blood pressure among four	quartiles of LAP					
	Variables	Q1	Q2	Q3	Q4	- Z	<i>P</i> -value
	Male		(9)				
	Systolic blood pressure (mmHg)	119.33 ± 13.72	125.61 ± 14.86	129.23 ± 16.38	133.36 ± 17.85	106.793	< 0.001
	Diastolic blood pressure (mmHg)	75.84 ± 9.89	80.55 ± 9.84	82.56 ± 10.74	85.64 ± 11.36	106.285	< 0.001
	Female						
	Systolic blood pressure (mmHg)	110.45 ± 13.91	114.95 ± 15.07	119.66 ± 15.91	130.25 ± 19.78	184.926	< 0.001
	Diastolic blood pressure (mmHg)	71.05 ± 9.45	73.29 ± 9.60	76.21 ± 9.96	81.04 ± 11.70	134.730	< 0.001

Table 4 Multinomial logistic regression analysis of LAP associated with hypertension status Qu _____ Ma Fei

	OR ^a (95% CI)		OR ^b (95% CI)		OR ^c (95% CI)	
Juartiles of LAP	prehypertension	hypertension	prehypertension	hypertension	prehypertension	hypertension
<i>M</i> ale						
Q1	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)
Q2	2.98***	4.70***	2.22***	2.38**	1.73*	1.61
	(1.88, 4.72)	(2.34, 9.45)	(1.48, 3.34)	(1.36, 4.16)	(1.12, 2.67)	(0.89, 2.94)
Q3	4.48***	8.26***	2.68***	3.90***	1.66*	1.75
	(2.85, 7.03)	(4.21, 16.21)	(1.74, 4.12)	(2.24, 6.82)	(1.03, 2.68)	(0.94, 3.26)
Q4	4.65***	17.82***	3.14***	9.02***	1.67	2.79***
	(2.93, 7.36)	(9.21, 34.46)	(1.95, 5.07)	(5.11, 15.93)	(0.96, 2.92)	(1.43, 5.44)
emale						
Q1	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)	1 (reference)
Q2	1.75**	2.19**	1.046	1.19	0.91	1.015
	(1.22, 2.51)	(1.27, 3.77)	(0.69,1.58)	(0.62,2.29)	(0.59,1.41)	(0.51,2.03)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Q3	3	b.35***	6.50***	1.68**	1.87	1.31	1.19
		2.27, 4.93)	(3.83, 11.02)	(1.11,2.52)	(0.99,3.4	(0.84,2.05)	(0.60,2.38)
Q4	5	5.99***	20.06***	3.26***	6.32***	2.10**	3.15***
	(3.74, 9.59)	(11.37, 35.38)	(2.09,5.10)	(3.42,11	.65) (1.26,3.51)	(1.56,6.39)
OR=Odds ratio; CI=co	onfidence interv	val; ***, P < 0.0)01; **, <i>P</i> < 0.01; *, <i>P</i>	P < 0.05.			
^a , unadjusted.							
^a , unadjusted. ^b , adjusted for age, sex	, marital status	, educational le	evel				
^b , adjusted for age, sex				asma glucose, fa	mily history of h	hypertension, and all th	e factors in b.
^b , adjusted for age, sex	l activity, smok	er, drinker, BN	MI, WHR, fasting pla	asma glucose, fa Specificity (%)	mily history of h Youden Index	hypertension, and all th AUC(95% CI)	e factors in b. P-value
^b , adjusted for age, sex ^c , adjusted for physica	l activity, smok	er, drinker, BM ifferent obesit <u></u> Cut-off	MI, WHR, fasting pla y indexes Sensitivity	Specificity	Youden		
^b , adjusted for age, sex ^c , adjusted for physica	l activity, smok pertension by d Variables	er, drinker, BM ifferent obesit <u></u> Cut-off	MI, WHR, fasting pla y indexes Sensitivity	Specificity	Youden		
^b , adjusted for age, sex ^c , adjusted for physica	l activity, smok pertension by d Variables Male	er, drinker, BM ifferent obesity Cut-off value	MI, WHR, fasting pla y indexes Sensitivity (%)	Specificity (%)	Youden Index	AUC(95% CI)	<i>P</i> -value

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	1
•	
~	•

	WC TG		85.05	65.67	72.60	0.383	0.734 (0.700, 0.769)	< 0.001
	Fema		1.91	46.27	70.14	0.164	0.607 (0.568, 0.646)	< 0.001
	BM		21.767	81.58	50.73	0.323	0.698 (0.658, 0.737)	< 0.001
	WH	IR	0.860	74.21	55.24	0.294	0.684 (0.643, 0.726)	< 0.001
	LA	Р	30.860	68.95	67.42	0.363	0.721 (0.680, 0.761)	< 0.001
	WC		79.90	72.11	64.94	0.370	0.725 (0.686, 0.766)	< 0.001
		wais		63.68 AP: lipid accun	64.49 nulation product;	0.282 WC: waist c	0.663 (0.620, 0.706) ircumference; TG: Tr	< 0.001 iglyceride; AUC: area unde
OR=Odds rat		wais wais	t-hip rate; L. al.	AP: lipid accun	nulation product;		,	
OR=Odds rat	mass index; WHR tio; CI=confidence	wais wais	t-hip rate; L. al. AP and family	AP: lipid accun	nulation product;		ircumference; TG: Tr	
OR=Odds rat	mass index; WHR tio; CI=confidence raction effects betw	: wais interva	t-hip rate; L. al. AP and family	AP: lipid accun	nulation product;	WC: waist c	ircumference; TG: Tr	
OR=Odds rat Table 6 Inter Variables	mass index; WHR tio; CI=confidence raction effects betw	: wais interva	t-hip rate; L. al. AP and family	AP: lipid accun	nulation product;	WC: waist c	ircumference; TG: Tr	
OR=Odds rat Table 6 Inter Variables Male	mass index; WHR tio; CI=confidence raction effects betw Variables	: wais interva	t-hip rate; L. al. AP and family	AP: lipid accun	nulation product;	WC: waist c	ircumference; TG: Tr	
OR=Odds rat Table 6 Inter Variables Male	mass index; WHR tio; CI=confidence raction effects betw Variables	: wais interva	t-hip rate; L. al. AP and family	AP: lipid accun	nulation product;	WC: waist c	ircumference; TG: Tr	

-	-	486	1 (reference)	RERI = 1.652 (0.267, 3.037)
-	+	215	1.189 (0.772, 1.832)	$AP = 0.516 (0.238, 0.794)^*$
+	-	173	1.362 (0.875, 2.121)	SI = 3.998 (0.897, 17.820)
+	+	128	3.203*** (2.002, 5.124)	
Female				
LAP ^a	Family history ^b			
-	-	657	1 (reference)	RERI = -0.673 (-2.566, 1.22
-	+	276	1.995** (1.284, 3.099)	AP = -0.328 (-1.451, 0.795)
+		108	1.729*(1.023, 2.922)	SI = 0.610 (0.125, 2.979)
-	-	100		

LAP: lipid accumulation production; RERI: relative excess risk of interaction ; AP: attributable proportion due to interaction; SI: synergy index; OR=Odds ratio; CI=confidence interval; ***, P < 0.001; **, P < 0.01; *, P < 0.05.

^a, grouped by the cut-off values in Table 4.

 ^b, family history of hypertension was defined as one parent or both parents having hypertension.

^c, adjusted for age, marital status, educational level, physical activity, smoker, drinker, BMI, and WHR.

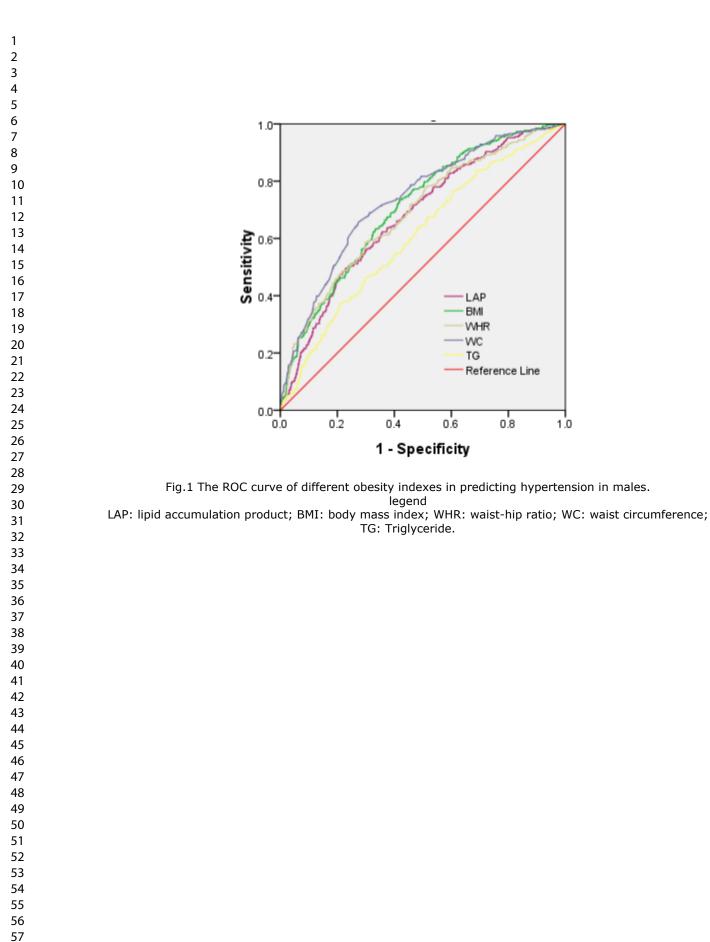
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

60

LAP BMI

WHR

WC


ΤG

0.6

Reference Line

0.8

1.0

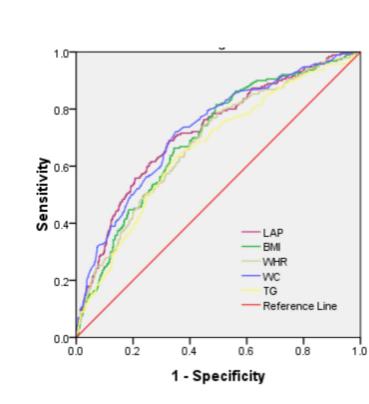


Fig.2 The ROC curve of different obesity indexes in predicting hypertension in females.legendLAP: lipid accumulation product; BMI: body mass index; WHR: waist-hip ratio; WC: waist circumference; TG: Triglyceride.

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2
Introduction	1		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods	1	Q1	
Study design	4	Present key elements of study design early in the paper	Page 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Page 5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 6-7
Bias	9	Describe any efforts to address potential sources of bias	Page 3

Study size	10	Explain how the study size was arrived at	Page 6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 7-8
		(b) Describe any methods used to examine subgroups and interactions	Page 7-8
		(c) Explain how missing data were addressed	Page 5
		(d) If applicable, describe analytical methods taking account of sampling strategy	Page 5
		(e) Describe any sensitivity analyses	Not applicable
Results		Cr.	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Page 8-9; Table 1; Table 2
		(b) Give reasons for non-participation at each stage	Not application
		(c) Consider use of a flow diagram	Not application
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Page 8-9; Table 1; Table 2
		(b) Indicate number of participants with missing data for each variable of interest	Not application
Outcome data	15*	Report numbers of outcome events or summary measures	Page 8-9; Table 1
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Page 9-10; Table 4; Table 6
		(b) Report category boundaries when continuous variables were categorized	Page 6-8; Table 1; Table 2; Table 3 ;

			Table 6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not application
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Page 10-11; Table
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 12-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Page 14
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Page 12-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Page 14-15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.