

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Clinical outcomes do not correlate with anticancer drug prices: a cross-sectional study in Italy

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033728
Article Type:	Research
Date Submitted by the Author:	19-Aug-2019
Complete List of Authors:	Trotta, Francesco; Department of Epidemiology of the Regional Health Service Lazio, Mayer, Flavia; Istituto Superiore di Sanita Barone-Adesi, Francesco; Universita degli Studi del Piemonte Orientale Amedeo Avogadro, Esposito, Immacolata; Research and Health Foundation Punreddy, Ranadhir; Universita degli Studi del Piemonte Orientale Amedeo Avogadro Da Cas, Roberto; Italian National Institute of Health, National Centre for Epidemiology Traversa, Giuseppe; Italian National Institute of Health, National Centre for Epidemiology Perrone, Francesco; Istituto Nazionale Tumori IRCCS Fondazione Pascale Martini, Nello; Research and Health Foundation, Gyawali, Bishal ; Harvard Medical School Addis, Antonio; Department of Epidemiology of the Regional Health Service Lazio, ;
Keywords:	Drug Costs, Antineoplastic Agents/therapeutic use, Treatment Outcome, Antineoplastic Agents
	·

SCHOLARONE[™] Manuscripts

Title: Clinical outcomes do not correlate with anticancer drug prices: a cross-sectional study in

Italy

Authors: Francesco Trotta¹, Flavia Mayer², Francesco Barone-Adesi³, Immacolata Esposito⁴,

Ranadhir Punreddy³, Roberto Da Cas², Giuseppe Traversa², Francesco Perrone⁵, Nello Martini⁴, Bishal Gyawali^{6,7}, Antonio Addis ¹.

Affiliation:

- 1. Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
- 2. Italian National Institute of Health, Rome, Italy
- 3. University of Eastern Piedmont, Novara, Italy
- 4. Research and Health Foundation, Rome, Italy
- 5. National Cancer Institute, G. Pascale Foundation IRCCS, Naples, Italy
- 6. Program on Regulation, Therapeutics and Law, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
- 7. Department of Oncology, and Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada

Corresponding Author:

Antonio Addis Department of Epidemiology Lazio Regional Health Service, Rome, Italy Via Cristoforo Colombo 112/Pal.A 00143 Roma/ Rome Italy Tel: +39 06.99722-139 Fax: +39 06.99722111 ORCID 0000-0003-0962-9959 agmaddis@gmail.com

This research received no specific grant from any funding agency in the public, commercial or notfor-profit sectors

contributorship statement

FT, NM and AA conceptualized the study; FT, AA, NM, FM, FBA, GT, and RDC designed the study; FBA, RP, IE and NM were in charge of data extraction and quality control; FM, RDC, and FT performed the data analysis; FT, RDC, FM, GT, BG and AA drafted the manuscript; all the authors contributed to the discussion and the interpretation of results, and reviewed the final version of the manuscript. All authors approved the final manuscript as submitted.

The authors have no conflicts of interest relevant to this article to disclose and all authors work for public Universities, Public Institutions or non-profit organizations

Running head. Anticancer drug prices and clinical outcomes in ItalyWord Count: 2950

Abstract:

 Objective To investigate whether the prices of new anticancer drugs correlated with their relative benefit despite negotiation.

Design Retrospective cross-sectional study correlating new anticancer drugs prices with clinical outcomes

Setting We did a retrospective cross-sectional study including all new anticancer drugs approved by the European Medicines Agency (2010-2016) and reimbursed in Italy.

Main Outcome(s) and Measure(s) Information on clinical outcomes - in terms of median Overall Survival (OS), median Progression Free Survival (PFS) and Objective Response Rate (ORR) - were extracted from pivotal trials as reported in the European Public Assessment Reports available on the EMA website. Cost of a full course treatment was estimated on negotiated official and discounted prices. Regression coefficients β , their levels of significance p and the coefficients of determination R² were estimated adjusting by tumour type.

Results Overall, 30 new anticancer drugs (with 35 indications) were available for analysis. There was no correlation between the improvement in median OS (in weeks) and negotiated price (R^2 = 0.067, n = 16 drugs for 17 indications). When the clinical outcomes were expressed as improvements in median PFS or ORR, 25 drugs (29 indications) were available for analysis, and again, there was no correlation with prices (R^2 = 0.004 and 0.006, respectively).

Conclusions and Relevance: Our results suggest that the prices of anticancer drugs in Italy do not reflect their therapeutic benefit. Drug price negotiations, which is mandatory by law in Italy, do not

BMJ Open

seem to ensure that prices correlate with clinical benefits provided by cancer drugs. These results call for further efforts to establish the standard determinants of drug prices available at the time of negotiation. These findings need to be confirmed in other countries where price negotiations are in place.

Strengths and limitations of this study,

- This study is the first attempt to evaluate whether there were better correlations between cancer drug prices and clinical outcomes in a setting where central price negotiations are mandatory for every new medicine.
- This understanding is important for cancer policy decisions.
- In our analysis, the relationship between the clinical outcome and cost of anticancer drugs was ascertained by a simple linear regression model.
- Clinical outcome, which was the dependent variable, was expressed as absolute or percent differences in outcomes between treatment and control groups.
- The main limitations of our study concern data completeness on clinical outcome and price. We used, as an estimate of benefit, data from pivotal trials retrieved from EPARs.

Background

High costs of cancer drugs and resulting financial toxicity to cancer patients are now a wellrecognized problem in cancer policy throughout the world [1-8]. Various solutions are being proposed to address this problem, of which price negotiations with pharmaceutical companies is proposed as an important strategy especially in the USA [9-11]. Because the Medicare is not allowed to negotiate prices with companies, despite being mandated to cover for every U.S. Food and Drug Administration (FDA) approved drug, various experts have argued that this is the reason for high drug prices in the USA. Indeed, cancer drug prices far exceed the costs of their development and such negotiations might help to lower the prices of cancer drugs as evidenced by lower cost of cancer drugs in other developed countries compared with the USA.

However, little is known about if such negotiations would lead to better correlation between cancer drug prices and the benefits they provide. Studies have shown that drug prices do not correlate with clinical benefits for cancer drugs approved by the FDA, even though such studies have not taken central price negotiations into account [12,13]. Countries such as the United Kingdom and Italy negotiate prices and hence, the correlations might be different.

In Italy, drug price negotiation based on cost-effectiveness evaluation has been mandatory since 2001 for all medicines reimbursed by the National Health Service (NHS) [14,15]. We analysed the correlation between the prices of cancer drugs in Italy with their clinical outcomes to test the hypothesis that central price negotiations leads to better alignment of prices and benefits.

Methods:

Identification of the study sample

All new drugs approved by the EMA via a centralized procedure between January 2010 and June 2016 for the treatment of either solid or haematologic cancers were initially identified. Generics, biosimilars, interferons and granulocyte-colony stimulating factors (G-CSFs) were excluded. Only anticancer drugs with pivotal trials based on overall survival (OS), progression-free survival (PFS) or objective response rate (ORR) and with prices that were officially negotiated in Italy by 31st December 2016 were included in the cohort for analyses.

Data extraction

Information on the clinical outcomes (in terms of median OS, median PFS, ORR) was extracted by two co-investigators (FBA and RP) from pivotal trials that compared new treatments with controls as reported in the European Public Assessment Reports - EPARs (summary table of the main study, Section 2.5.2) publicly available on the EMA website (www.ema.europa.eu). Survival times were expressed in weeks, and the reported OS and PFS were transformed when necessary. Information on therapeutic indication and tumour type were also retrieved.

Drug prices

The cost of a full course or 1-year treatment was estimated by two co-investigators (NM and IE) on the basis of the negotiated official ex-factory price (in euros) of drug packages, as published in the Official Gazette of the Italian Republic (www.gazzettaufficiale.it) and taking into account the posology as reported in the Summary of Product Characteristics (SPC). To compare prices of drugs with different schedules, in the text we refer to drug prices as the cost of a full course or a 1-year treatment. A further estimate took into account additional compulsory rebates [16] or extra-discounts that were agreed with pharmaceutical companies; this information is confidential to the public but is released to procurement stations within the Italian NHS (e.g., regions, hospitals, and local health units).

Statistical analysis

The following variables were extracted and analysed descriptively: year of approval, therapeutic indication, type of treatment and control groups, outcome data, official and confidential costs per treatment (1 year or a full course) and regulatory information (conditional/under exceptional circumstances approval, or orphan drug status).

The relationship between the clinical outcomes and cost of anticancer drugs was ascertained by a simple linear regression model. Clinical outcome, which was the dependent variable, was expressed as absolute or percent differences in outcomes between treatment and control groups. Regression coefficients β , their levels of significance p and the coefficients of determination R² were reported for each model.

We also performed several sensitivity analyses to test the robustness of the results. Specifically, we performed multiple linear regression with tumour type as the independent variable to take into account potential differences due to tumour characteristics. Moreover, we also repeated the analysis after excluding negative outcome differences (in two cases, one of the outcomes was inferior in the group receiving the new drug than in the comparison group) and actively controlled trials (considering only placebo-controlled trials). Subgroup analysis by tumour type was also attempted as exploratory analysis when a minimum number of two anticancer drugs within the same tumour type setting were observed. All statistical analyses were performed using STATA (Statacorp, version 14.0)

Patient and public involvement

Patients have not been involved in the development of the research question or the design of this study. However, results of this analysis will be disseminated throughout public conferences, with statements summarizing our results, and with an open access to the published report posted in our institutional websites

for beer teries only

Results

From 2010 to mid-2016, 45 new anticancer drugs for 56 different oncology indications were approved via centralized procedures by the EMA. For 40 new anticancer drugs (47 indications), the basis for the approval was a pivotal trial adopting OS, PFS or ORR as a primary outcome; the price negotiation was completed by December 2016 for only 30 new anticancer drugs 35 indications) and are included in our analysis (Table 1). Seven drugs received orphan drug status by the EMA and two (vandetanib and crizotinib) received conditional approval. Of the 35 oncology indications tested in 35 different pivotal trials which were all controlled clinical trials, the commonest indications were melanoma (7 out of 35), followed by haematological cancer (6 out of 35) and non-small cell lung cancer (4 out of 35). In 15 such trials (43%), placebo was used as the control arm. Of the 35 indications, data on OS, PFS and ORR were available for 17, 29 and 29 indications respectively. Each drug-indication pair contributed to one or more of these analyses, depending on which outcomes were reported in the EPAR.

In the treatment groups, the median improvement in the OS and PFS were 11.4 weeks (IQR 8.8-17.2; min 13.2; max 23.5) and 12.8 weeks (IQR 6.4-17; min -7.48; max 58.8), respectively; median ORR improvement in the treatment group was 21.8% (IQR 10-34.6; min -3; max 63.3). The reported ranges have negative minimum values since in two cases - nivolumab for NSCLC and regorafenib for gastrointestinal stromal tumours - the experimental treatment had a negative effect on one of the outcomes compared to the control group(in terms of PFS for nivolumab and ORR for regorafenib). The median negotiated price for a 1-year treatment was 72,392 euros (IQR 53,819-85,800; min 4,942; max 142,785), which was further discounted by 25% (on average) after applying confidential rebates. For all anticancer drugs but ipilimumab the price was calculated as 1-year treatment since the posology reported in the Summary of Product Characteristics (SPC) reported that the treatment should

Page 9 of 36

BMJ Open

continue as long as clinical benefit is observed or until unacceptable toxicity occurs. In the case of ipilimumab the price was calculated as a course of 4 doses as reported in the SPC.

The official (ex-factory) price of new anticancer drugs and absolute clinical outcomes showed no correlation (Figure 1a-c). The relationship between the improvement in median OS (in weeks) and negotiated price was estimated for 16 drugs (17 indications), and no correlation was observed (R^2 = 0.067). When clinical outcomes were expressed as absolute advantage in median PFS or ORR, 25 drugs (29 indications) were available for analysis, and in these cases, no correlation was observed (R^2 = 0.004 and 0.006, respectively).

Repeating the analyses and taking into account the additional confidential rebates, which are compulsory for hospital procurement, no improvement in the benefit/price relationships was highlighted (Figure 2a-c). These findings also remained unchanged when the analyses were repeated with adjustments for tumour type (Supplementary Table 1) or when clinical outcome was expressed as a percentage of improvement instead of as an absolute difference (Supplementary Figure 1a-c). Sensitivity analyses that excluded negative improvements in outcomes over a control group (Supplementary Figure 2) and considered only data from placebo controlled trials (Supplementary Figure 3a,b) confirmed the main analysis. The exploratory subgroup analyses by tumour type did not identify specific positive correlation patterns depending on tumour setting (Supplementary Figure 4 a,b).

Discussion

This study is the first attempt to evaluate whether there were better correlations between cancer drug prices and clinical outcomes in a setting where central price negotiations are mandatory for every new medicine. Our study gave unexpected results to the research question, highlighting no relationships between cost of cancer drugs and benefits. Moreover, all pre-specified sensitivity and subgroup analyses confirmed the main findings. This finding will have important policy implications both for countries like USA where price negotiations are absent and for other countries like Italy where price negotiations do exist.

In our study, the correlation between drug costs and clinical outcomes was even lower than the ones previously noted in the US context [12,13], showing that negotiations did not tilt the relationship between drug prices and benefit positively. Thus, higher drug pricing remains despite the Italian legislative environment, where approval based on cost-effectiveness analysis and price negotiations have been mandatory by law since 2001 [14,15]. This finding may cast doubts on the role of the negotiation itself. However, it is important to understand that countries like Italy who do negotiate drug prices do such negotiations only for binary decisions of approval or no-approval, and do not negotiate prices in relation to the benefits. This understanding is important for cancer policy decisions.

Indeed, there is no legal policy in any country to negotiate prices differently for drugs approved on the basis of surrogate endpoints versus survival outcomes or drugs that improve survival in days versus those that improve survival in months or drugs with immature benefit risk profiles [17-21]. Although steps in the right direction, in lack of such policy, the value frameworks proposed by organizations such as ASCO, ESMO or NCCN have become little more than intellectual exercises [22-25].

BMJ Open

Another reason price negotiations did not achieve better price-value correlations is that because of the global market of drugs, each single country - although large – only represents a small portion of the consumer market. Thus, companies "wield the stick", setting the maximum price that the market will bear [26]. In addition, in Italy, no threshold for incremental cost-effectiveness ratio (ICER) has been determined; thus, no limit is in place to be used as a decision rule in resource allocation at the time of negotiation/reimbursement decisions. The lack of such kind of cut-off might have contributed to the negative results in our study. However, we recognize that even when a threshold for ICER is well established, such as in the UK [27], continuous exceptions have been allowed in the case of anticancer drugs. For example, an ad hoc fund established in 2010 (i.e., the Cancer Drug Fund,) was recently dismissed by the Parliament because it did not deliver meaningful value to patients or society [28].

In the EU context (where newer anticancer drugs are approved by EMA without considering the added-value or cost-effectiveness), the complexity further increases because once a marketing authorization is granted, it may become difficult to manage the reimbursement issue at a national level [29]. Moreover, it is also difficult for payers (NHS/insurance) to defend the thesis against the public opinion that an anticancer drug cannot be reimbursed because it is too expensive [29, 30]. Indeed, as our study shows, the confidential discounts following negotiations between a member state and a company do not ameliorate the correlation between treatment costs and benefits even though they reduce absolute drug prices.

Another factor that negatively influences the contractual power of negotiation is non-transparent information on drug prices across countries. Difficulties in retrieving full information on prices have been already recognized in a recent survey comparing prices of anticancer drugs in 16 EU countries,

Australia and New Zealand [31]. Vogler et al. found that price information is scarce and not disclosed due to confidential discounts or MEAs, calling for higher transparency. The authors state that it is in the interest of policy makers to remove clauses limiting disclosure on price information because they risk overpaying when setting prices through external price referencing. This concern might be relevant in the Italian context since the negotiation procedure for reimbursement takes into account the price in other EU countries as well as the price of similar products within the same pharmacotherapeutic group [32].

We believe that two partly independent approaches could be adopted by policy makers to achieve a better balance between cancer drug prices and benefits. First, price negotiations should be more strictly based on the level of evidence as well as the magnitudes of benefit. An ICER measure (such as QALY) should represent a threshold for reimbursement, thus setting a starting point for price negotiation and adjusting the ICER threshold based on the magnitude of the relative benefit reached. If the information on the relative value is not available at the time of approval, comparisons can be performed using indirect techniques, whereas after entering the market, payers should play a major role in supporting the evidence generating process.

The second approach that could attain lower prices would require an increased transparency on the costs of drug development process, including the relative contributions from academia and public sector to the development of a drug [33-37]. For instance, research conducted to evaluate efforts of drug development processes highlighted that about half of the most transformative drugs approved by the FDA had substantial contributions to their development by academic researchers supported by government funding [33,34]; in addition, it has been estimated that the cost of late clinical development takes a limited part of the whole process [35]. It is probably the right time to appropriately acknowledge the contributions of publicly funded research during drug price negotiation with companies. Often, comparative effectiveness research is funded by public

BMJ Open

institutions to test different treatments in real practice on robust outcomes with longer follow up or special populations [36,37]. The findings of these studies should be linked to a continuous price renegotiation over the life cycle of a product.

Other approaches identified as possible solutions to keep the health system sustainable address the general governance of the system, i.e., when the price is already set. In fact, a price-volume approach [38] or indication-based pricing [39,40] have been modelled, each presenting pros and cons. Moreover, given that different oncology settings appear to be oligopolistic, thus refraining from price competition, another possible solution comes from national/regional tenders among therapeutic categories when more alternatives are available [41].

The main limitations of our study concern data completeness on clinical outcome and price. We used, as an estimate of benefit, data from pivotal trials retrieved from EPARs. Moreover, we are not aware if further (more robust) data became available at a later stage when the price was negotiated at the national level. In fact, in Italy, the Health Technology Assessment reports used for cost effective analysis at the time of reimbursement decisions are not publicly available. Regarding the price estimate, we estimated the treatment costs for 1-year treatment or for the total course in the case of ipilimumab where the treatment course lasts less than 1 year. However, the exclusion of ipilimumab would not alter the main findings. Another important limitation is that we have not considered quality of life outcomes are not routinely collected or published, and that the tools used to measure quality of life are varied to have a uniform metric for comparison [42]. Although we have included surrogate measures such as PFS or ORR as clinical outcomes in our analysis because they were considered as the basis for approval by the regulatory agency, these surrogate measures do not always correlate with true clinical benefits in terms of improved survival or improved quality of life [42,43].

Moreover, additional savings were calculated "a posteriori" from the Managed Entry Agreements in place in Italy (whose information is not publicly available) and were not considered in the analyses. Another factor that might have impacted the price estimation is the rebate obtained at the regional/local level following drug tenders. However, this information was not available for the analyses and would have been not generalizable at the national level. Our study is a retrospective cross-sectional correlation study that aimed at evaluating whether central price negotiation (mandatory by law in Italy) leads to better alignment of prices and the benefits known at the time of drug approval. This means that our analysis is not aimed at comparing costs and outcomes within drug classes, as a typical cost effective study, and we never intended to assess the add values of the approved drugs in the context of all other drugs sharing the same indication. The "population"/cohort approach that we adopted has the intrinsic limitation of including drugs approved for different indications based on different clinical data packages. The consequent heterogeneity stemming from this approach was resolved adjusting the correlation analyses by tumour type or conducting several sub-analyses. Following this approach, we found results consistent with primary findings thus confirming the robustness of methods and results.

Conclusion

Our results suggest that price negotiations for approval decisions alone may not bring balance between prices and benefits of anticancer drugs. Other strategies, such as value based price negotiations, price negotiations strictly based on strength of evidence and price transparencies may be necessary to better achieve the drug prices and benefits balance. These results need to be confirmed in other countries where a national price negotiation exists.

3
4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
26
20
37
38
39
40
41
42
43
44
- 1 E
45
46
47
48
49
50
51
52
52
52
54 55
55
56
57
58
59
60

References:

1)	Quintiles IMS Institute. Outlook for Global Medicines through 2021. December 2016. 1-54.
	http://www.imshealth.com/en/thought-leadership/quintilesims-
	institute/reports/outlook_for_global_medicines_through_2021

- Ghinea N, Lipworth W, Kerridge I. Propaganda or the cost of innovation? Challenging the high price of new drugs. BMJ. 352: i1284, 2016 doi: 10.1136/bmj.i1284.
- European Commission Press release. Antitrust: Commission opens formal investigation into Aspen Pharma's pricing practices for cancer medicines. Brussels, 15 May 2017. <u>http://europa.eu/rapid/press-release_IP-17-1323_en.htm</u>
- Gordon N, Stemmer SM, Greenberg D, et al. Trajectories of Injectable Cancer Drug Costs After Launch in the United States. J Clin Oncol.; 36: 319-325, 2018.
- Narang AK, Nicholas LH. Out-of-Pocket Spending and Financial Burden Among Medicare Beneficiaries With Cancer. JAMA Oncol.3:757-765, 2017.
- Shankaran V, Ramsey S. Addressing the Financial Burden of Cancer Treatment: From Copay to Can't Pay. JAMA Oncol.; 1 :273-4, 2015.
- Liz Szabo. Cancer patients skipping medicines or delaying treatment due to high drug prices. STAT 15 March, 2017. <u>https://www.statnews.com/2017/03/15/cancer-patients-drug-prices/</u>
- de Souza JA, Conti RM. Mitigating Financial Toxicity Among US Patients With Cancer. JAMA Oncol. 3: 765-766, 2017.
- Kesselheim AS, Avorn J, Sarpatwari A. The High Cost of Prescription Drugs in the United States: Origins and Prospects for Reform. JAMA.; 316: 858-71, 2016.
- Hwang TJ, Kesselheim AS, Sarpatwari A. Value-Based Pricing and State Reform of Prescription Drug Costs. JAMA. 318: 609-610, 2017

11) Fralick M, Avorn J, Kesselheim AS. The Price of Crossing the Border for Medications. N
Engl J Med.; 377: 311-313, 2017
12) Mailankody S, Prasad V. Five Years of Cancer Drug Approvals: Innovation, Efficacy, and
Costs. JAMA Oncol. 1: 539-40, 2015 Erratum in: JAMA Oncol. 1:544, 2015.
13) Vivot A, Jacot J, Zeitoun JD, et al. Clinical benefit, price and approval characteristics of
FDA-approved new drugs for treating advanced solid cancer, 2000-2015. Ann Oncol.
28:1111-1116, 2017.
14) Comitato Interministeriale per la Programmazione Economica. Individuazione dei criteri per
la contrattazione del prezzo dei farmaci (Deliberazione n.3/2001). Official Gazette of the
Italian Republic. N. 73 del 28-03-2001.
http://www.gazzettaufficiale.it/eli/id/2001/03/28/001A3188/sg
15) Italian Parliament. Legge 24 novembre 2003, n. 326. Conversione in legge, con
modificazioni, del decreto-legge 30 settembre 2003, n. 269, recante disposizioni urgenti per
favorire lo sviluppo e per la correzione dell'andamento dei conti pubblici. Official Gazette of
the Italian Republic. N. 274; 25 November 2003.
http://www.parlamento.it/parlam/leggi/033261.htm
16) Italian Parliament . Legge 27 December 2006, n. 296. Art. 1 comma 796, lettera g).
Disposizioni per la formazione del bilancio annuale e pluriennale dello Stato (finanziaria
2007). Official Gazette of the Italian Republic. N. 299; 27 December 2006, Suppl ord. n.
244.
17) Apolone G, Joppi R, Bertele' V, et al. Ten years of marketing approvals of anticancer drugs
in Europe: regulatory policy and guidance documents need to find a balance between
different pressures. Br J Cancer. 93: 504-9, 2005.

18) Bertele	V, Banzi R, Capasso F, et al. Haematological anticancer drugs in Europe: any added
value a	t the time of approval? Eur J Clin Pharmacol.; 63: 713-9, 2007.
19) Trotta	F, Apolone G, Garattini S, et al. Stopping a trial early in oncology: for patients or for
industr	y? Ann Oncol. 19: 1347-53, 2008. doi: 10.1093/annonc/mdn042. Epub 2008 Feb 27
20) Kim C	, Prasad V. Cancer Drugs Approved on the Basis of a Surrogate End Point and
Subseq	juent Overall Survival: An Analysis of 5 Years of US Food and Drug Administration
Approv	vals. JAMA Intern Med.175: 1992-4, 2015.
21) Banzi I	R, Gerardi C, Bertele' V, et al. Approvals of drugs with uncertain benefit-risk profiles
in Euro	ope. Eur J Intern Med. 26: 572-84, 2015.
22) Salas-V	Vega S, Iliopoulos O, Mossialos E. Assessment of Overall Survival, Quality of Life,
and Sa	fety Benefits Associated with New Cancer Medicines. JAMA Oncol. 3:382-390,
2017.	
23) Wise P	'H. Cancer drugs, survival, and ethics. BMJ; 355: i5792, 2016
https://	doi.org/10.1136/bmj.i5792 (Published 09 November 2016)
24) Del Pa	ggio JC, Sullivan R, Schrag D, et al. Delivery of meaningful cancer care: a
retrosp	ective cohort study assessing cost and benefit with the ASCO and ESMO
framew	vorks. Lancet Oncol.18: 887-894, 2017.
25) Sobrer	o A1, Bruzzi P. Incremental advance or seismic shift? The need to raise the bar of
efficac	y for drug approval. J Clin Oncol. 27:5868-73, 2009.
26) Ramse	y SD, Lyman GH, Bangs R. Addressing Skyrocketing Cancer Drug Prices Comes
with T	rade-offs: Pick Your Poison. JAMA Oncol. 2: 425-6, 2016
27) Dillon	A. Carrying NICE over the threshold. NICE. 19 February 2015.
https://	www.nice.org.uk/news/blog/carrying-nice-over-the-threshold

- 28) Aggarwal A, Fojo T, Chamberlain C, et al. Do patient access schemes for high-cost cancer drugs deliver value to society? -lessons from the NHS Cancer Drugs Fund. Ann Oncol. 2017.
- 29) Cohen D. Cancer drugs: high price, uncertain value. BMJ. Oct 4; 359: j4543, 2017.
- 30) Prasad V. Do cancer drugs improve survival or quality of life? BMJ. Oct 4; 359: j4528,2017
- 31) Vogler S, Vitry A, Babar ZU. Cancer drugs in 16 European countries, Australia, and New Zealand: a cross-country price comparison study. Lancet Oncol.17: 39-47, 2016
- 32) Folino-Gallo P, Montilla S, Bruzzone M, et al. Pricing and reimbursement of pharmaceuticals in Italy. Eur J Health Econ.; 9:305-10, 2008.
- 33) Stevens AJ, Jensen JJ, Wyller K, et al. The role of public-sector research in the discovery of drugs and vaccines. N Engl J Med. 364: 535-41, 2011.
- 34) Kesselheim AS, Tan YT, Avorn J. The roles of academia, rare diseases, and repurposing in the development of the most transformative drugs. Health Aff (Millwood).; 34: 286-93, 2015.
- 35) Martin L, Hutchens M, Hawkins C, et al. How much do clinical trials cost? Nat Rev Drug Discov.; 16: 381-382.,2017.
- 36) Italian Medicines Agency (AIFA) Research & Development Working Group. Feasibility and challenges of independent research on drugs: the Italian medicines agency (AIFA) experience. Eur J Clin Invest. 40: 69-86, 2010.
- 37) Traversa G, Masiero L, Sagliocca L, et al. Italian program for independent research on drugs: 10-year follow-up of funded studies in the area of rare diseases. Orphanet J Rare Dis. 11: 36, 2016.

2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

38) Messori A. Application of the Price-Volume Approach in Cases of Innovative Drugs Where Value-Based Pricing is Inadequate: Description of Real Experiences in Italy. Clin Drug Investig. 36: 599-603, 2016.

- 39) Bach PB. Indication-specific pricing for cancer drugs. JAMA. 312:1629-30. 2014.
- 40) Chandra A, Garthwaite C. The Economics of Indication-Based Drug Pricing. N Engl J Med. 377:103-106. 2017.
- 41) Kantarjian H, Rajkumar SV. Why are cancer drugs so expensive in the United States, and what are the solutions? Mayo Clin Proc. 90:500-4. 2015.
- 42) Hwang TJ, Gyawali B. Association between progression-free survival and patients' quality of life in cancer clinical trials. Int J Cancer. 2019;144:1746-1751. doi: 10.1002/ijc.31957.
- 43) Prasad V, Kim C, Burotto M, Vandross A. The Strength of Association Between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses. JAMA Intern Med. 2015; 175:1389-98. doi: 10.1001/jamainternmed.2015.2829.

tor per terien on

BMJ Open

Medicine Name	Active Substance	Clinical setting	Treatment group	Control group	PFS TRT (median in weeks)	PFS CRT (median in weeks)	OS TRT (median in weeks)	OS CRT (median in weeks)	ORR TRT (%)	ORR CRT (%)	Year First Auth.	Official negot. price (€)	Disc. price (€)
Teysuno	tegafur / gimeracil / oteracil	advanced gastric cancer in combination with cisplatin.	teysuno 25 mg/m + cisplatin 75 mg/m2	5-fluorouracil 1000 mg/m2 /24 + cisplatin 100 mg/m2			34.4	31.6			2011	4942	3479
Jevtana	cabazitaxel	hormone-refractory metastatic prostate cancer .	cabazitaxel + prednisone	mitoxantrone + prednisone	11.2	5.6	60.4	50.8	14.4	4.4	2011	52983	38254
Yervoy	ipilimumab	advanced (unresectable or metastatic) melanoma	ipilimumab + placebo	peptide vaccine glycoprotein 100 (gp100)	11.04	11.04	39.8	25.8	5.7	1.5	2011	71400	45107
Votubia	everolimus	Renal angiomyolipoma associated with tuberous sclerosis complex (TSC)	everolimus	placebo		45.48			41.8	0	2011	66521	41424
Votubia	everolimus	Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC)	everolimus	placebo					34.6	0		53216	33139
Halaven	eribulin	locally advanced or metastatic breast cancer	eribulin 1.23 mg/m2 (equivalent to 1.4 mg/m2 eribulin mesylate)	treatment of physician's choice	16.14	9.71	57.57	45.86	12.2	4.7	2011	32300	28130
Zytiga	abiraterone acetate	metastatic castration-resistant prostate cancer	abiraterone acetate	placebo	22.4	14.4	68.9	48.7	29.1	5.5	2011	46842	33397
Dacogen	decitabine	newly diagnosed de novo or secondary acute myeloid leukaemia (AML)	decitabine	patient's choice	14.8	8.4	30.8	20			2012	54366	34346
Caprelsa	vandetanib	aggressive and symptomatic medullary thyroid cancer (MTC) unresectable locally advanced or metastatic disease.	vandetanib	placebo	122	77.2	7		45	13	2012	67405	53533
Zelboraf	vemurafenib	BRAF-V600-mutation-positive unresectable or metastatic melanoma.	vemurafenib	dacarbazine	21.28	6.44	52.8	39.6	48.4	5.5	2012	119929	108236
Xalkori	crizotinib	anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung cancer (NSCLC).	crizotinib	pemetrexed or docetaxel	30.8	12			65.3	19.5	2012	79538	57427

Table 1. Characteristics of the 30 anticancer drugs included in the analysis.

Xalkori	crizotinib	first-line treatment of adults with anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung cancer (NSCLC).	crizotinib	chemotherapy	43.6	28			74.4	45		79538	57427
Inlyta	axitinib	advanced renal-cell carcinoma (RCC)	axitinib	sorafenib	26.8	18.8			19.4	9.4	2012	57632	39295
Perjeta	pertuzumab	HER2-positive metastatic or locally recurrent unresectable breast cancer	pertuzumab + trastuzumab + docetaxel	placebo + trastuzumab + docetaxel	74	49.6			80.2	69.3	2013	51643	46608
Kadcyla	trastuzumab emtansine	HER2-positive, unresectable locally advanced or metastatic breast cancer	trastuzumab emtansine (tdm1)	lapatinib + capecitabine (lap+cap)	38.4	25.6	123.9	100.4			2013	87215	75877
Giotrif	afatinib	locally advanced or metastatic non- small cell lung cancer (NSCLC) with activating EGFR mutation(s);	afatinib (film- coated tablets)	pemetrexed (lyophilised powder) + cisplatin (solution for infusion)	44.56	27.6			56.1	22.6	2013	29528	21853
Stivarga	regorafenib	metastatic colorectal cancer (CRC)	regorafenib + best supportive care	placebo + best supportive care	8.4	7.4	28	21.6	1	0.4	2013	85800	77434
Stivarga	regorafenib	unresectable or metastatic gastrointestinal stromal tumors (GIST)	regorafenib + best supportive care	placebo + best supportive care	21	4			1.5	4.5		85800	77434
Tafinlar	dabrafenib	unresectable or metastatic melanoma with a BRAF V600 mutation.	dabrafenib	dacarbazine	27.6	10.8	72.8	62.4	59	24	2013	107935	87670
Zaltrap	aflibercept	metastatic colorectal cancer (MCRC)	aflibercept+folfiri	placebo+folfiri	27.6	18.7	54	48.4	19.8	11.1	2013	30576	27591
Xtandi	enzalutamide	metastatic castration resistant prostate cancer	enzalutamide (mdv3100)	placebo	33.2	11.6	74.4	54.4			2013	49184	31960
Imnovid	pomalidomid e	relapsed and refractory multiple myeloma	pom+ld-dex	hd-dex	15.7	8		34			2013	127985	101646
Lynparza*	olaparib	platinum-sensitive relapsed BRCA- mutated (germline and/or somatic) high grade serous epithelial ovarian, fallopian tube, or primary peritoneal cancer	olaparib	placebo	33.6	19.2	119.2	111.2			2014	70517	52142
Cyramza	ramucirumab	advanced gastric cancer or gastro- oesophageal junction adenocarcinoma with disease progression	ramucirumab+ paclitaxel	placebo+paclitaxel	17.6	11.6	38.4	29.6	27.9	16.1	2014	87360	78842
Mekinist	trametinib	unresectable or metastatic melanoma with a BRAF V600 mutation.	trametinb	chemotherapy (dtic or paclitaxel)	19.6	6	62.4	45.2	19	5	2014	62398	28157

BMJ Open

Imbruvica	ibrutinib	chronic lymphocytic leukaemia (CLL)	ibrutinib	chlorambucil		75.6			82.4	35.3		73805	51663
Zydelig	idelalisib	chronic lymphocytic leukaemia (CLL)	idelalisib + rituximab	placebo + rituximab		22			74.5	14.5	2014	48667	34067
Sylvant	siltuximab	multicentric Castlemans disease	siltuximab + best supportive care	placebo + best supportive care					37.7	3.8	2014	66104	29829
Keytruda	pembrolizum ab	advanced(unresectable or metastatic) melanoma	ipilimumab	pembrolizumab	22	11.2			33.7	11.9	2015	90400	81586
Opdivo	nivolumab	advanced (unresectable or metastatic) melanoma	nivolumab 3 mg/kg	dacarbazine	18.8	16.8			31.7	10.6	2015	81310	71181
Opdivo	nivolumab	locally advanced or metastatic non- small cell lung cancer (NSCLC)	nivolumab 3 mg/kg	docetaxel 75 mg/m2	9.32	16.8	48.8	37.4	19.2	12.4		81310	71181
Opdivo	nivolumab	advanced renal cell carcinoma	nivolumab 3 mg/kg	everolimus100mg	18.4	17.8	100	78.2	25.1	5.4		81310	in negotia tion
Lenvima	lenvatinib mesylate	progressive, locally advanced or metastatic, differentiated (papillary/follicular/Hrthle cell) thyroid carcinoma (DTC), refractory to radioactive iodine (RAI)	lenvatinib	placebo	73.2	14.4			64.8	1.5	2015	68433	58673
Cotellic	cobimetinib hemifumarat e	unresectable or metastatic melanoma with a BRAF V600 mutation	cobimetinib+vemu rafenib	placebo+vemurafenib	45.2	24			67.8	44.8	2015	75374	54420
Kyprolis	carfilzomib	multiple myeloma who have received at least one prior therapy.	carfilzomib + lenalidomide + dexamethasone	lenalidomide + dexamethasone (rd)	105.2	70.4			87.1	67.7	2015	75900	44525

Progression Free Survival (PFS); Overall Survival (OS); Treatment Group (TRT); Control Group (CTR); Objective Response Rate (ORR); Official Negotiated Prices (Official Negot.); Discounted Prices (Disc. Prices).

*: During the evaluation at the EMA, lymparza was found to be more effective in a subgroup of patients with a specific biomarker with the following outcome results: PFS lymparza: 44,8 w; PFS control: 17,2 w; OS lymparza: 139,6 w; OS control: 127,6.

For beer review only

Figure, tables, titles and legends

Figure 1. Correlation between anticancer drug prices (officially negotiated) and health benefits

Figure 1a. Official negotiated price (ex-factory) vs difference in median OS (16 drugs are included in the analysis: 15 with a single indication and one with two indications)

Figure 1b. Official negotiated price (ex-factory) vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

Figure 1c. Official negotiated price (ex-factory) vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Figure 2. Correlation between anticancer drug prices (discounted) and health benefits

Figure 2a. Discounted price with additional compulsory rebates vs difference in median OS (16 drugs related to a single indication are included in the analysis)

Figure 2b. Discounted price with additional compulsory rebates vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

Figure 2c. Discounted price with additional compulsory rebates vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication and four with two indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Table 1. Characteristics of the 30 anticancer drugs included in the analysis.

Legend:

Progression Free Survival (PFS); Overall Survival (OS); Treatment Group (TRT); Control Group (CTR); Objective Response Rate (ORR); Official Negotiated Prices (Official Negot.); Discounted Prices (Disc. Prices).

*: During the evaluation at the EMA, lymparza was found to be more effective in a subgroup of patients with a specific biomarker with the following outcome results: PFS lymparza: 44,8 w; PFS control: 17,2 w; OS lymparza: 139,6 w; OS control: 127,6.

Supplementary Table 1. Details of the statistical analysis conducted

Supplementary Figures 1-4. Correlations in the sensitivity analysis conducted

Supplementary Figure 1a. Official negotiated price (ex-factory) vs percentage improvement in median Overall Survival (OS) (16 drugs are included in the analysis: 15 with a single indication and one with two indications)

Supplementary Figure 1b. Official negotiated price (ex-factory) vs percentage improvement in median Progression Free Survival (PFS) (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

Supplementary Figure 1c. Official negotiated price (ex-factory) vs percentage improvement in proportion of Objective Response Rate (ORR) (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

Figure 2. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), excluding negative outcome data (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

Supplementary Figure 3a. Official negotiated price (ex-factory) vs median Overall Survival (OS), considering only data from placebo-controlled trials. (7drugs related to a single indication are included in the analysis)

Supplementary Figure 3b. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), considering only data from placebo-controlled trials. (11 drugs are included in the analysis: 10 with a single indication and one with 2 indications)

Supplementary Figure 4a. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication, two with two indications and one with three indication)

Supplementary Figure 4b. Discounted price with additional compulsory rebates vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication and three with 2 indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

1a. Official negotiated price (ex-factory) vs difference in median OS (16 drugs are included in the

10

1b. Official negotiated price (ex-factory) vs difference in median PFS (25 drugs are included in the

analysis: 22 with a single indication, two with two indications and one with three indication)

20

20 with a single indication, three with two indications and one with three indications)

ΔOS

30

35

 $\Delta \text{ ORR}$

Δ PFS

1c. Official negotiated price (ex-factory) vs proportion of ORR (24 drugs are included in the analysis:

40

45

15

y = 1256.7x + 50333

 $R^2 = 0.0672$

y = -113.52x + 73741

 $R^2 = 0.0042$

y = 92.845x + 67072

 $R^2 = 0.0058$

55

25

60

65

20

50

analysis: 15 with a single indication and one with two indications)

5

10

2.

5

15

€ 140.000

€ 120.000

€ 100.000

€ 80.000 € 60.000

€ 40.000

€ 20.000

€0

0

€ 140.000

€ 120.000

€ 100.000

€ 80.000

€ 60.000

€ 40.000

€ 20.000

€ 140.000

€ 120.000

€ 100.000

€ 80.000

€ 60.000

€ 40.000

€ 20.000

-5 € 0

€0

0

Drug Price - official

Drug Price -official

-10

Drug Price -official

60

BMJ Open

Correlation between anticancer drug prices (discounted) and health benefits

180x212mm (300 x 300 DPI)

Dependent variable	Independent variable 1	Independent variable 2	Number of drugs involved in the analysis	Type of linear regression	Intercept	Coefficient of the Independent variable 1	p value of the Independent variable 1	Correlation coefficient: r	Coefficient of Determination: R ²
Official negotiated price	ΔOS		17	simple	50332.71	1256.724	0.315	0.259	0.067
Discounted price	ΔOS		16	simple	44963.88	528.800	0.695	0.11	0.0113
Official negotiated price	ΔOS	tumor type	17	multiple	57765.99	2065.264	0.433		0.412
Discounted price	ΔOS	tumor type	16	multiple	55312.8	1391.947	0.614		0.257
Official negotiated price	% Δ OS		17	simple	56230.04	349.505	0.524	0.166	0.027
Discounted price	% Δ OS		16	simple	50127.28	42.986	0.937	0.022	0.0005
Official negotiated price	% Δ OS	tumor type	17	multiple	72407.98	292.048	0.766		0.362
Discounted price	% Δ OS	tumor type	16	multiple	68456.17	89.3936	0.930		0.2286
Official negotiated price	Δ PFS		29	simple	73741.11	-113.515	0.738	-0.065	0.004
Discounted price	Δ PFS		28	simple	58574.12	-137.018	0.687	-0.080	0.006
Official negotiated price	Δ PFS	tumor type	29	multiple	70454.93	-271.324	0.635		0.338
Discounted price	Δ PFS	tumor type	28	multiple	56293.38	-393.926	0.508		0.283
Official negotiated price	% Δ PFS		29	simple	68763.32	33.7994	0.427	0.153	0.024
Discounted price	% Δ PFS		28	simple	52823.84	36.2925	0.392	0.169	0.028
Official negotiated price	% Δ PFS	tumor type	29	multiple	66564.96	15.935	0.765		0.333
Discounted price	% Δ PFS	tumor type	28	multiple	51337.49	11.068	0.842		0.266
Official negotiated price	ΔORR		29	simple	67072.16	92.845	0.696	0.076	0.006
Discounted price	ΔORR		28	simple	53147.09	-14.550	0.953	-0.010	0.000
Official negotiated price	ΔORR	tumor type	29	multiple	62277.57	180.118	0.607		0.448
Discounted price	ΔORR	tumor type	28	multiple	42598.33	324.629	0.383		0.450
Official negotiated price	% Δ ORR		27	simple	69838.7	0.563	0.918	0.020	0.000
Discounted price	% Δ ORR		26	simple	53627.54	0.965	0.864	0.036	0.001
Official negotiated price	%ΔORR	tumor type	27	multiple	67262.18	1.719	0.814		0.436
Discounted price	%ΔORR	tumor type	26	multiple	51599.74	2.958	0.704		0.405

1b. Official negotiated price (ex-factory) vs percentage improvement in median Progression Free Survival (PFS) (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

1c. Official negotiated price (ex-factory) vs percentage improvement in proportion of Objective Response Rate (ORR) (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

180x222mm (300 x 300 DPI)

180x76mm (300 x 300 DPI)

180x146mm (300 x 300 DPI)

4b. Discounted price with additional compulsory rebates vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication and three with 2 indications)

180x188mm (300 x 300 DPI)

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.annals.org/, and Epidemiology at http://www.strobe-statement.org.

Section and Item	ltem No.	Recommendation	Reported on Page No.
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	
Introduction			
Background/Rationale	2	Explain the scientific background and rationale for the investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Methods			
Study Design	4	Present key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case 	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Section and Item	ltem No.	Recommendation	Reported o Page No.
------------------------	-------------	---	------------------------
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	-
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		Case-control study—If applicable, explain how matching of cases and controls was	
		addressed	
		Cross-sectional study—If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		Case-control study—Report numbers in each exposure category, or summary	L
		measures of exposure	
		Crass sactional study—Poport numbers of outcome events or summary massures	

Section and Item	Item	Recommendation	Reported on
Main Results	NO. 16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	Page No.
		were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other Analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			I
Key Results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other Information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	
*Give information sepa cohort and cross-sectio	rately for nal studie	cases and controls in case-control studies and, if applicable, for exposed and unexposes.	ed groups in
Once you have comple checklist as part of the	ted this c main ma	hecklist, please save a copy and upload it as part of your submission. DO NOT includ nuscript document. It must be uploaded as a separate file.	e this

BMJ Open

BMJ Open

Clinical outcomes do not correlate with anticancer drug prices: a cross-sectional study in Italy

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033728.R1
Article Type:	Original research
Date Submitted by the Author:	08-Oct-2019
Complete List of Authors:	Trotta, Francesco; Department of Epidemiology of the Regional Health Service Lazio, Mayer, Flavia; Istituto Superiore di Sanita Barone-Adesi, Francesco; Universita degli Studi del Piemonte Orientale Amedeo Avogadro, Esposito, Immacolata; Research and Health Foundation Punreddy, Ranadhir; Universita degli Studi del Piemonte Orientale Amedeo Avogadro Da Cas, Roberto; Italian National Institute of Health, National Centre for Epidemiology Traversa, Giuseppe; Italian National Institute of Health, National Centre for Epidemiology Perrone, Francesco; Istituto Nazionale Tumori IRCCS Fondazione Pascale Martini, Nello; Research and Health Foundation, Gyawali, Bishal ; Harvard Medical School Addis, Antonio; Department of Epidemiology of the Regional Health Service Lazio, ;
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Health economics, Health policy
Keywords:	Drug Costs, Antineoplastic Agents/therapeutic use, Treatment Outcome, Antineoplastic Agents

SCHOLARONE[™] Manuscripts

Title: Clinical outcomes do not correlate with anticancer drug prices: a cross-sectional study in

Italy

Authors: Francesco Trotta¹, Flavia Mayer², Francesco Barone-Adesi³, Immacolata Esposito⁴,

Ranadhir Punreddy³, Roberto Da Cas², Giuseppe Traversa², Francesco Perrone⁵, Nello Martini⁴, Bishal Gyawali^{6,7}, Antonio Addis ¹.

Affiliation:

- 1. Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
- 2. Italian National Institute of Health, Rome, Italy
- 3. University of Eastern Piedmont, Novara, Italy
- 4. Research and Health Foundation, Rome, Italy
- 5. National Cancer Institute, G. Pascale Foundation IRCCS, Naples, Italy
- 6. Program on Regulation, Therapeutics and Law, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
- 7. Department of Oncology, and Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada

Corresponding Author:

Antonio Addis Department of Epidemiology Lazio Regional Health Service, Rome, Italy Via Cristoforo Colombo 112/Pal.A 00143 Roma/ Rome Italy Tel: +39 06.99722-139 Fax: +39 06.99722111 ORCID 0000-0003-0962-9959 agmaddis@gmail.com

This research received no specific grant from any funding agency in the public, commercial or notfor-profit sectors

contributorship statement

FT, NM and AA conceptualized the study; FT, AA, NM, FM, FBA, GT, and RDC designed the study; FBA, RP, IE and NM were in charge of data extraction and quality control; FM, RDC, and FT performed the data analysis; FT, RDC, FM, GT, BG, FP and AA drafted the manuscript; all the authors contributed to the discussion and the interpretation of results, and reviewed the final version of the manuscript. All authors approved the final manuscript as submitted.

The authors have no conflicts of interest relevant to this article to disclose and all authors work for public Universities, Public Institutions or non-profit organizations

Running head. Anticancer drug prices and clinical outcomes in ItalyWord Count: 2950

Abstract:

Objective To investigate whether the prices of new anticancer drugs correlated with their relative benefit despite negotiation.

Design Retrospective cross-sectional study correlating new anticancer drugs prices with clinical outcomes.

Setting We did a retrospective cross-sectional study including all new anticancer drugs approved by the European Medicines Agency (2010-2016) and reimbursed in Italy.

Main Outcome(s) and Measure(s) Information on clinical outcomes - in terms of median Overall Survival (OS), median Progression Free Survival (PFS) and Objective Response Rate (ORR) - was extracted from pivotal trials as reported in the European Public Assessment Reports available on the EMA website. Cost of a full course treatment was estimated on negotiated official and discounted prices. Regression coefficients β , their levels of significance p and the coefficients of determination R² were estimated adjusting by tumour type.

Results Overall, 30 new anticancer drugs (with 35 indications) were available for analysis. There was no correlation between the improvement in median OS (in weeks) and negotiated price (R^2 = 0.067, n = 16 drugs for 17 indications). When the clinical outcomes were expressed as improvements in median PFS or ORR, 25 drugs (29 indications) were available for analysis, and again, there was no correlation with prices (R^2 = 0.004 and 0.006, respectively).

Conclusions and Relevance: Our results suggest that the prices of anticancer drugs in Italy do not reflect their therapeutic benefit. Drug price negotiations, which is mandatory by law in Italy, do not

BMJ Open

seem to ensure that prices correlate with clinical benefits provided by cancer drugs. These results call for further efforts to establish the standard determinants of drug prices available at the time of negotiation. These findings need to be confirmed in other countries where price negotiations are in place.

Strengths and limitations of this study,

- This study is the first attempt to evaluate whether there were better correlations between cancer drug prices and clinical outcomes in a setting where central price negotiations are mandatory for every new medicine.
- This understanding is important for cancer policy decisions.
- In our analysis, the relationship between the clinical outcome and cost of anticancer drugs was ascertained by a simple linear regression model.
- Clinical outcome, which was the dependent variable, was expressed as absolute or percent differences in outcomes between treatment and control groups.
- The main limitations of our study concern data completeness on clinical outcome and price. We used, as an estimate of benefit, data from pivotal trials retrieved from EPARs.

Background

High costs of cancer drugs and resulting financial toxicity to cancer patients are now a wellrecognized problem in cancer policy throughout the world [1-8]. Various solutions are being proposed to address this problem, of which price negotiations with pharmaceutical companies is proposed as an important strategy especially in the USA [9-11]. Because the Medicare is not allowed to negotiate prices with companies, despite being mandated to cover for every U.S. Food and Drug Administration (FDA) approved drug, various experts have argued that this is the reason for high drug prices in the USA. Indeed, cancer drug prices far exceed the costs of their development [12];such negotiations might help to lower the prices of cancer drugs as evidenced by lower cost of cancer drugs in other developed countries compared with the USA.

However, little is known about if such negotiations would lead to better correlation between cancer drug prices and the benefits they provide. Studies have shown that drug prices do not correlate with clinical benefits for cancer drugs approved by the FDA, even though such studies have not taken central price negotiations into account [13,14]. Countries such as the United Kingdom and Italy negotiate prices and hence, the correlations might be different.

In Italy, drug price negotiation based on cost-effectiveness evaluation has been mandatory since 2001 for all medicines reimbursed by the National Health Service (NHS) [15,16]. We analysed the correlation between the prices of cancer drugs in Italy with their clinical outcomes to test the hypothesis that central price negotiations leads to better alignment of prices and benefits.

Methods:

Identification of the study sample

All new drugs approved by the EMA via a centralized procedure between January 2010 and June 2016 for the treatment of either solid or haematologic cancers were initially identified. Generics, biosimilars, interferons and granulocyte-colony stimulating factors (G-CSFs) were excluded. Only anticancer drugs with pivotal trials based on overall survival (OS), progression-free survival (PFS) or objective response rate (ORR) and with prices that were officially negotiated in Italy by 31st December 2016 were included in the cohort for analyses.

Data extraction

Information on the clinical outcomes (in terms of median OS, median PFS, ORR) was extracted by two co-investigators (FBA and RP) from pivotal trials that compared new treatments with controls as reported in the European Public Assessment Reports - EPARs (summary table of the main study, Section 2.5.2) publicly available on the EMA website (www.ema.europa.eu). Survival times were expressed in weeks, and the reported OS and PFS were transformed when necessary. Information on therapeutic indication and tumour type were also retrieved.

Drug prices

The cost of a full course or 1-year treatment was estimated by two co-investigators (NM and IE) on the basis of the negotiated official ex-factory price (in euros) of drug packages, as published in the Official Gazette of the Italian Republic (<u>www.gazzettaufficiale.it</u>) and taking into account the posology as reported in the Summary of Product Characteristics (SPC). To compare prices of drugs with different schedules, in the text we refer to drug prices as the cost of a full course or a 1-year treatment. A further estimate took into account additional compulsory rebates [17] or extra-discounts that were agreed with pharmaceutical companies; this information is confidential to the public but is released to procurement stations within the Italian NHS (e.g., regions, hospitals, and local health units).

Statistical analysis

The following variables were extracted and analysed descriptively: year of approval, therapeutic indication, type of treatment and control groups, outcome data, official and confidential costs per treatment (1 year or a full course) and regulatory information (conditional/under exceptional circumstances approval, or orphan drug status).

The relationship between the clinical outcomes and cost of anticancer drugs was ascertained by a simple linear regression model. Clinical outcome, which was the dependent variable, was expressed as absolute or percent differences in outcomes between treatment and control groups. Regression coefficients β , their levels of significance p and the coefficients of determination R² were reported for each model.

We also performed several sensitivity analyses to test the robustness of the results. Specifically, we performed multiple linear regression with tumour type as the independent variable to take into account potential differences due to tumour characteristics. Moreover, we also repeated the analysis after excluding negative outcome differences (in two cases, one of the outcomes was inferior in the group receiving the new drug than in the comparison group) and actively controlled trials (considering only placebo-controlled trials). Subgroup analysis by tumour type was also attempted as exploratory analysis when a minimum number of two anticancer drugs within the same tumour type setting were observed. Outlier cases were not excluded from the analyses, but their impact was evaluated and reported when relevant as a separate analysis. All statistical analyses were performed using STATA (Statacorp, version 14.0)

Patient and public involvement

Patients have not been involved in the development of the research question or the design of this study. However, results of this analysis will be disseminated throughout public conferences, with statements summarizing our results, and with an open access to the published report posted in our ites institutional websites

Results

From 2010 to mid-2016, 45 new anticancer drugs for 56 different oncology indications were approved via centralized procedures by the EMA. For 40 new anticancer drugs (47 indications), the basis for the approval was a pivotal trial adopting OS, PFS or ORR as a primary outcome; the price negotiation was completed by December 2016 for only 30 new anticancer drugs (35 indications) which are included in our analysis (Table 1). Seven drugs received orphan drug status by the EMA and two (vandetanib and crizotinib) received conditional approval. Of the 35 oncology indications tested in 35 different pivotal trials which were all controlled clinical trials, the commonest indications were melanoma (7 out of 35), followed by haematological cancer (6 out of 35) and non-small cell lung cancer (4 out of 35). In 15 such trials (43%), placebo was used as the control arm. Of the 35 indications, data on OS, PFS and ORR were available for 17, 29 and 29 indications respectively. Each drug-indication pair contributed to one or more of these analyses, depending on which outcomes were reported in the EPAR.

In the treatment groups, the median improvement in the OS and PFS were 11.4 weeks (IQR 8.8-17.2; min 13.2; max 23.5) and 12.8 weeks (IQR 6.4-17; min -7.48; max 58.8), respectively; median ORR improvement in the treatment group was 21.8% (IQR 10-34.6; min -3; max 63.3). The reported ranges have negative minimum values since in two cases - nivolumab for NSCLC and regorafenib for gastrointestinal stromal tumours - the experimental treatment had a negative effect on one of the outcomes compared to the control group (in terms of PFS for nivolumab and ORR for regorafenib). The median negotiated price for a 1-year treatment was 72,392 euros (IQR 53,819-85,800; min 4,942; max 142,785), which was further discounted by 25% (on average) after applying confidential rebates. For all anticancer drugs but ipilimumab the price was calculated as 1-year treatment should

Page 9 of 37

BMJ Open

continue as long as clinical benefit is observed or until unacceptable toxicity occurs. In the case of ipilimumab the price was calculated as a course of 4 doses as reported in the SPC.

The official (ex-factory) price of new anticancer drugs and absolute clinical outcomes showed no correlation (Figure 1a-c). The relationship between the improvement in median OS (in weeks) and negotiated price was estimated for 16 drugs (17 indications), and no correlation was observed (R^2 = 0.067). When clinical outcomes were expressed as absolute advantage in median PFS or ORR, 25 drugs (29 indications) were available for analysis, and in these cases, no correlation was observed (R^2 = 0.004 and 0.006, respectively).

Repeating the analyses and taking into account the additional confidential rebates, which are compulsory for hospital procurement, no improvement in the benefit/price relationships was highlighted (Figure 2a-c). These findings also remained unchanged when the analyses were repeated with adjustments for tumour type (Supplementary Table 1) or when clinical outcome was expressed as a percentage of improvement instead of as an absolute difference (Supplementary Figure 1a-c). Sensitivity analyses that excluded negative improvements in outcomes over a control group (Supplementary Figure 2) and considered only data from placebo controlled trials (Supplementary Figure 3a,b) confirmed the main analysis. The exploratory subgroup analyses by tumour type did not identify specific positive correlation patterns depending on tumour setting (Supplementary Figure 4 a,b).

Discussion

This study is the first attempt to evaluate whether there were better correlations between cancer drug prices and clinical outcomes in a setting where central price negotiations are mandatory for every new medicine. Our study gave unexpected results to the research question, highlighting no relationships between cost of cancer drugs and benefits. Moreover, all pre-specified sensitivity and subgroup analyses confirmed the main findings. This finding will have important policy implications both for countries like USA where price negotiations are absent and for other countries like Italy where price negotiations do exist.

In our study, the correlation between drug costs and clinical outcomes was even lower than the ones previously noted in the US context [13,14], showing that negotiations did not tilt the relationship between drug prices and benefit positively. Thus, higher drug pricing remains despite the Italian legislative environment, where approval based on cost-effectiveness analysis and price negotiations have been mandatory by law since 2001 [15,16]. This finding may cast doubts on the role of the negotiation itself. However, it is important to understand that countries like Italy that negotiate drug prices do such negotiations only for binary decisions of approval or no-approval, no taking into account, during negotiation, of a clear correlation between prices and benefits. This understanding is important for cancer policy decisions.

Indeed, there is no legal policy in any country to negotiate prices differently for drugs approved on the basis of surrogate endpoints versus survival outcomes or drugs that improve survival in days versus those that improve survival in months or drugs with immature benefit risk profiles [18-22]. Although steps in the right direction, in lack of such policy, the value frameworks proposed by organizations such as ASCO, ESMO or NCCN have become little more than intellectual exercises [23-26].

BMJ Open

Another reason price negotiations did not achieve better price-value correlations is that because of the global market of drugs, each single country - although large – only represents a small portion of the consumer market. Thus, companies "wield the stick", setting the maximum price that the market will bear [27]. In addition, in Italy, no threshold for incremental cost-effectiveness ratio (ICER) has been determined; thus, no limit is in place to be used as a decision rule in resource allocation at the time of negotiation/reimbursement decisions. The lack of such kind of cut-off might have contributed to the negative results in our study. However, we recognize that even when a threshold for ICER is well established, such as in the UK [28], continuous exceptions have been allowed in the case of anticancer drugs. For example, an ad hoc fund established in 2010 (i.e., the Cancer Drug Fund,) was recently dismissed by the Parliament because it did not deliver meaningful value to patients or society [29].

In the EU context (where newer anticancer drugs are approved by EMA without considering the added-value or cost-effectiveness), the complexity further increases because once a marketing authorization is granted, it may become difficult to manage the reimbursement issue at a national level [30]. Moreover, it is also difficult for payers (NHS/insurance) to defend the thesis against the public opinion that an anticancer drug cannot be reimbursed because it is too expensive [30, 31]. Indeed, as our study shows, the confidential discounts following negotiations between a member state and a company do not ameliorate the correlation between treatment costs and benefits even though they reduce absolute drug prices.

Another factor that negatively influences the contractual power of negotiation is non-transparent information on drug prices across countries. Difficulties in retrieving full information on prices have been already recognized in a recent survey comparing prices of anticancer drugs in 16 EU countries,

BMJ Open

Australia and New Zealand [32]. Vogler et al. found that price information is scarce and not disclosed due to confidential discounts or MEAs, calling for higher transparency. The authors state that it is in the interest of policy makers to remove clauses limiting disclosure on price information because they risk overpaying when setting prices through external price referencing. This concern might be relevant in the Italian context since the negotiation procedure for reimbursement takes into account the price in other EU countries as well as the price of similar products within the same pharmacotherapeutic group [33].

We believe that two partly independent approaches could be adopted by policy makers to achieve a better balance between cancer drug prices and benefits. First, price negotiations should be more strictly based on the level of evidence as well as the magnitudes of benefit. An ICER measure (such as QALY) should represent a threshold for reimbursement, thus setting a starting point for price negotiation and adjusting the ICER threshold based on the magnitude of the relative benefit reached. If the information on the relative value is not available at the time of approval, comparisons can be performed using indirect techniques, whereas after entering the market, payers should play a major role in supporting the evidence generating process.

The second approach that could attain lower prices would require an increased transparency on the costs of drug development process, including the relative contributions from academia and public sector to the development of a drug [34-38]. For instance, research conducted to evaluate efforts of drug development processes highlighted that about half of the most transformative drugs approved by the FDA had substantial contributions to their development by academic researchers supported by government funding [34,35]; in addition, it has been estimated that the cost of late clinical development takes a limited part of the whole process [36]. It is probably the right time to appropriately acknowledge the contributions of publicly funded research during drug price negotiation with companies. Often, comparative effectiveness research is funded by public

BMJ Open

institutions to test different treatments in real practice on robust outcomes with longer follow up or special populations [37,38]. The findings of these studies should be linked to a continuous price renegotiation over the life cycle of a product.

Other approaches identified as possible solutions to keep the health system sustainable address the general governance of the system, i.e., when the price is already set. In fact, a price-volume approach [39] or indication-based pricing [40,41] have been modelled, each presenting pros and cons. Moreover, given that different oncology settings appear to be oligopolistic, thus refraining from price competition, another possible solution comes from national/regional tenders among therapeutic categories when more alternatives are available [42].

The main limitations of our study concern data completeness on clinical outcome and price. We used, as an estimate of benefit, data from pivotal trials retrieved from EPARs. Moreover, we are not aware if further (more robust) data became available at a later stage when the price was negotiated at the national level. In fact, in Italy, the Health Technology Assessment reports used for cost effective analysis at the time of reimbursement decisions are not publicly available. Regarding the price estimate, we estimated the treatment costs for 1-year treatment or for the total course in the case of ipilimumab where the treatment course lasts less than 1 year. However, the exclusion of ipilimumab would not alter the main findings. Another important limitation is that we have not considered quality of life outcomes are not routinely collected or published, and that the tools used to measure quality of life are varied to have a uniform metric for comparison [43]. Although we have included surrogate measures such as PFS or ORR as clinical outcomes in our analysis because they were considered as the basis for approval by the regulatory agency, these surrogate measures do not always correlate with true clinical benefits in terms of improved survival or improved quality of life [43,44].

BMJ Open

Moreover, additional savings were calculated "a posteriori" from the Managed Entry Agreements in place in Italy (whose information is not publicly available) and were not considered in the analyses. Another factor that might have impacted the price estimation is the rebate obtained at the regional/local level following drug tenders. However, this information was not available for the analyses and would have been not generalizable at the national level. Our study is a retrospective cross-sectional correlation study that aimed at evaluating whether central price negotiation (mandatory by law in Italy) leads to better alignment of prices and the benefits known at the time of drug approval. This means that our analysis is not aimed at comparing costs and outcomes within drug classes, as a typical cost effective study, and we never intended to assess the add values of the approved drugs in the context of all other drugs sharing the same indication. The "population"/cohort approach that we adopted has the intrinsic limitation of including drugs approved for different indications or different cancer types (with various incidence/prevalence) based on different clinical data packages. The consequent heterogeneity stemming from this approach was resolved adjusting the correlation analyses by tumour type or conducting several sub-analyses. Following this approach, we found results consistent with primary findings thus confirming the robustness of methods and results.

Conclusion

Our results suggest that price negotiations for approval decisions alone may not bring balance between prices and benefits of anticancer drugs. Other strategies, such as value based price negotiations, price negotiations strictly based on strength of evidence and price transparencies may be necessary to better achieve the drug prices and benefits balance. These results need to be confirmed in other countries where a national price negotiation exists.

Contributorship statement

FT, NM and AA conceptualized the study; FT, AA, NM, FM, FBA, GT, and RDC designed the study; FBA, RP, IE and NM were in charge of data extraction and quality control; FM, RDC, and FT performed the data analysis; FT, FM, AA, GT, BG, and RDC drafted the manuscript; All the authors contributed to the discussion and the interpretation of results, and reviewed the final version of the manuscript. All authors approved the final manuscript as submitted.

Competing interests

The authors have no competing of interest relevant to this article to disclose and all authors works for public Universities, Public Institutions or not for profit Organizations.

Funding

None.

Data Availability

All data presented in the analysis have been extracted by public documents (EPARs for each drug outcomes and clinical data; regional and national administrative official documents (i.e. Gazzetta Ufficiale for prices). Data are available upon reasonable request

References:

1)	Quintiles IMS Institute. Outlook for Global Medicines through 2021. December 2016. 1-54.
	http://www.imshealth.com/en/thought-leadership/quintilesims-
	institute/reports/outlook_for_global_medicines_through_2021

- 2) Ghinea N, Lipworth W, Kerridge I. Propaganda or the cost of innovation? Challenging the high price of new drugs. BMJ. 2016; 352: i1284, doi: 10.1136/bmj.i1284.
- European Commission Press release. Antitrust: Commission opens formal investigation into Aspen Pharma's pricing practices for cancer medicines. Brussels, 15 May 2017. <u>http://europa.eu/rapid/press-release_IP-17-1323_en.htm</u>
- Gordon N, Stemmer SM, Greenberg D, et al. Trajectories of Injectable Cancer Drug Costs After Launch in the United States. J Clin Oncol. 2018; 36: 319-325.
- Narang AK, Nicholas LH. Out-of-Pocket Spending and Financial Burden Among Medicare Beneficiaries With Cancer. JAMA Oncol. 2017; 3:757-765.
- Shankaran V, Ramsey S. Addressing the Financial Burden of Cancer Treatment: From Copay to Can't Pay. JAMA Oncol. 2015; 1:273-4.
- Liz Szabo. Cancer patients skipping medicines or delaying treatment due to high drug prices. STAT 15 March, 2017. <u>https://www.statnews.com/2017/03/15/cancer-patients-drug-prices/</u>
- de Souza JA, Conti RM. Mitigating Financial Toxicity Among US Patients With Cancer. JAMA Oncol. 2017; 3: 765-766.
- Kesselheim AS, Avorn J, Sarpatwari A. The High Cost of Prescription Drugs in the United States: Origins and Prospects for Reform. JAMA. 2016; 316: 858-71.
- Hwang TJ, Kesselheim AS, Sarpatwari A. Value-Based Pricing and State Reform of Prescription Drug Costs. JAMA. 2017; 318: 609-610,

11)	Fralick M, Avorn J, Kesselheim AS. The Price of Crossing the Border for Medications. N
	Engl J Med. 2017; 377: 311-313.
12)	Tay-Teo K1,Ilbawi A, Hill SR. Comparison of Sales Income and Research and
	Development Costs for FDA-Approved Cancer Drugs Sold by Originator Drug Companies.
	JAMA Netw Open. 2(1):e186875, 2019. doi: 10.1001/jamanetworkopen.2018.6875.
13)	Mailankody S, Prasad V. Five Years of Cancer Drug Approvals: Innovation, Efficacy, and
	Costs. JAMA Oncol. 2015; 1: 539-40, Erratum in: JAMA Oncol. 2015; 1: 544.
14)	Vivot A, Jacot J, Zeitoun JD, et al. Clinical benefit, price and approval characteristics of
	FDA-approved new drugs for treating advanced solid cancer, 2000-2015. Ann Oncol. 2017;
	28:1111-1116.
15)	Comitato Interministeriale per la Programmazione Economica. Individuazione dei criteri per
	la contrattazione del prezzo dei farmaci (Deliberazione n.3/2001). Official Gazette of the
	Italian Republic. N. 73 del 28-03-2001.
	http://www.gazzettaufficiale.it/eli/id/2001/03/28/001A3188/sg
16)	Italian Parliament. Legge 24 novembre 2003, n. 326. Conversione in legge, con
	modificazioni, del decreto-legge 30 settembre 2003, n. 269, recante disposizioni urgenti per
	favorire lo sviluppo e per la correzione dell'andamento dei conti pubblici. Official Gazette of
	the Italian Republic. N. 274; 25 November 2003.
	http://www.parlamento.it/parlam/leggi/033261.htm
17)	Italian Parliament . Legge 27 December 2006, n. 296. Art. 1 comma 796, lettera g).
	Disposizioni per la formazione del bilancio annuale e pluriennale dello Stato (finanziaria
	2007). Official Gazette of the Italian Republic. N. 299; 27 December 2006, Suppl ord. n.
	244

18) Apolone G, Joppi R, Bertelè V, et al. Ten years of marketing approvals of anticancer drugs
in Europe: regulatory policy and guidance documents need to find a balance between
different pressures. Br J Cancer. 2005; 93: 504-9.
19) Bertele' V, Banzi R, Capasso F, et al. Haematological anticancer drugs in Europe: any added
value at the time of approval? Eur J Clin Pharmacol. 2007; 63: 713-9.
20) Trotta F, Apolone G, Garattini S, et al. Stopping a trial early in oncology: for patients or for
industry? Ann Oncol. 2008; 19: 1347-53. doi: 10.1093/annonc/mdn042. Epub 2008 Feb 27
21) Kim C, Prasad V. Cancer Drugs Approved on the Basis of a Surrogate End Point and
Subsequent Overall Survival: An Analysis of 5 Years of US Food and Drug Administration
Approvals. JAMA Intern Med. 2015; 175: 1992-4.
22) Banzi R, Gerardi C, Bertele' V, et al. Approvals of drugs with uncertain benefit-risk profiles
in Europe. Eur J Intern Med. 2015; 26: 572-84.
23) Salas-Vega S, Iliopoulos O, Mossialos E. Assessment of Overall Survival, Quality of Life,
and Safety Benefits Associated with New Cancer Medicines. JAMA Oncol. 2017; 3:382-
390.
24) Wise PH. Cancer drugs, survival, and ethics. BMJ 2016; 355: i5792
https://doi.org/10.1136/bmj.i5792 (Published 09 November 2016)
25) Del Paggio JC, Sullivan R, Schrag D, et al. Delivery of meaningful cancer care: a
retrospective cohort study assessing cost and benefit with the ASCO and ESMO
frameworks. Lancet Oncol. 2017; 18: 887-894.
26) Sobrero A1, Bruzzi P. Incremental advance or seismic shift? The need to raise the bar of
efficacy for drug approval. J Clin Oncol. 2009; 27:5868-73.
27) Ramsey SD, Lyman GH, Bangs R. Addressing Skyrocketing Cancer Drug Prices Comes
with Trade-offs: Pick Your Poison. JAMA Oncol. 2016; 2: 425-6.

1	
2 3	28) Dillon A. Carrying NICE over the threshold. NICE. 19 February 2015.
4 5 6	https://www.nice.org.uk/news/blog/carrying-nice-over-the-threshold
7 8	29) Aggarwal A, Fojo T, Chamberlain C, et al. Do patient access schemes for high-cost cancer
9 10 11	drugs deliver value to society? -lessons from the NHS Cancer Drugs Fund. Ann Oncol.
12	2017; 28: 1738-1750. doi: 10.1093/annonc/mdx110
14 15	30) Cohen D. Cancer drugs: high price, uncertain value. BMJ. 2017; 359: j4543.
16 17	31) Prasad V Do cancer drugs improve survival or quality of life? BMJ 2017: 359: i4528
18 19	32) Vogler S. Vitry A. Babar ZU. Cancer drugs in 16 European countries. Australia, and New
20 21	52) Vogiel S, Vitry A, Babar ZO. Cancer drugs in 10 European countries, Australia, and New
22	Zealand: a cross-country price comparison study. Lancet Oncol. 2016; 17: 39-47,
23 24 25	33) Folino-Gallo P, Montilla S, Bruzzone M, et al. Pricing and reimbursement of
25 26 27	pharmaceuticals in Italy. Eur J Health Econ. 2008; 9:305-10.
28 29	34) Stevens AJ, Jensen JJ, Wyller K, et al. The role of public-sector research in the discovery of
30 31	drugs and vaccines. N Engl J Med. 2011; 364: 535-41.
32 33 34	35) Kesselheim AS, Tan YT, Avorn J. The roles of academia, rare diseases, and repurposing in
35 36	the development of the most transformative drugs. Health Aff (Millwood). 2015; 34: 286-
37 38	93.
39 40	36) Martin L Hutchens M Hawkins C et al How much do clinical trials cost? Nat Rey Drug
41	
42 43	Discov. 2017; 16: 381-382.
44 45	37) Italian Medicines Agency (AIFA) Research & Development Working Group. Feasibility
46 47	and challenges of independent research on drugs: the Italian medicines agency (AIFA)
48 49	experience. Eur J Clin Invest. 2010; 40: 69-86.
50 51	38) Traversa G. Masiero L. Sagliocca L. et al. Italian program for independent research on
52 53	
54 55	arugs: 10-year follow-up of funded studies in the area of rare diseases. Orphanet J Rare Dis.
56 57	2016; 11: 36.
58 59	10
	17

- 39) Messori A. Application of the Price-Volume Approach in Cases of Innovative Drugs Where Value-Based Pricing is Inadequate: Description of Real Experiences in Italy. Clin Drug Investig. 2016; 36: 599-603.
- 40) Bach PB. Indication-specific pricing for cancer drugs. JAMA. 2014; 312:1629-30.
- 41) Chandra A, Garthwaite C. The Economics of Indication-Based Drug Pricing. N Engl J Med.2017; 377:103-106..
- 42) Kantarjian H, Rajkumar SV. Why are cancer drugs so expensive in the United States, and what are the solutions? Mayo Clin Proc. 2015; 90:500-4..
- 43) Hwang TJ, Gyawali B. Association between progression-free survival and patients' quality of life in cancer clinical trials. Int J Cancer. 2019; 144:1746-1751. doi: 10.1002/ijc.31957.
- 44) Prasad V, Kim C, Burotto M, Vandross A. The Strength of Association Between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses. JAMA Intern Med. 2015; 175:1389-98. doi: 10.1001/jamainternmed.2015.2829.

Y. E. O. J.

to beet terren on on t

BMJ Open

Table 1. Characteristics of the 30 anticancer drugs included in the analysis.

Medicine Name	Active Substance	Clinical setting	Treatment group	Control group	PFS TRT (median in weeks)	PFS CRT (median in weeks)	OS TRT (median in weeks)	OS CRT (median in weeks)	ORR TRT (%)	ORR CRT (%)	Year First Auth.	Official negot. price (€)	Disc. price (€)
Teysuno	tegafur / gimeracil / oteracil	advanced gastric cancer in combination with cisplatin.	teysuno 25 mg/m + cisplatin 75 mg/m2	5-fluorouracil 1000 mg/m2 /24 + cisplatin 100 mg/m2			34.4	31.6			2011	4942	3479
Jevtana	cabazitaxel	hormone-refractory metastatic prostate cancer .	cabazitaxel + prednisone	mitoxantrone + prednisone	11.2	5.6	60.4	50.8	14.4	4.4	2011	52983	38254
Yervoy	ipilimumab	advanced (unresectable or metastatic) melanoma	ipilimumab + placebo	peptide vaccine glycoprotein 100 (gp100)	11.04	11.04	39.8	25.8	5.7	1.5	2011	71400	45107
Votubia	everolimus	Renal angiomyolipoma associated with tuberous sclerosis complex (TSC)	everolimus	placebo		45.48			41.8	0	2011	66521	41424
Votubia	everolimus	Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC)	everolimus	placebo					34.6	0		53216	33139
Halaven	eribulin	locally advanced or metastatic breast cancer	eribulin 1.23 mg/m2 (equivalent to 1.4 mg/m2 eribulin mesylate)	treatment of physician's choice	16.14	9.71	57.57	45.86	12.2	4.7	2011	32300	28130
Zytiga	abiraterone acetate	metastatic castration-resistant prostate cancer	abiraterone acetate	placebo	22.4	14.4	68.9	48.7	29.1	5.5	2011	46842	33397
Dacogen	decitabine	newly diagnosed de novo or secondary acute myeloid leukaemia (AML)	decitabine	patient's choice	14.8	8.4	30.8	20			2012	54366	34346
Caprelsa	vandetanib	aggressive and symptomatic medullary thyroid cancer (MTC) unresectable locally advanced or metastatic disease.	vandetanib	placebo	122	77.2	24		45	13	2012	67405	53533
Zelboraf	vemurafenib	BRAF-V600-mutation-positive unresectable or metastatic melanoma.	vemurafenib	dacarbazine	21.28	6.44	52.8	39.6	48.4	5.5	2012	119929	108236
Xalkori	crizotinib	anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung cancer (NSCLC).	crizotinib	pemetrexed or docetaxel	30.8	12			65.3	19.5	2012	79538	57427

Page	23	of	37
------	----	----	----

BMJ Open

2 3 4	Xalkori	crizotinib	first-line treatment of adults with anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung capper (NSCLC)	crizotinib	chemotherapy	43.6	28			74.4	45		79538	57427
5	Inlyta	axitinib	advanced renal-cell carcinoma (RCC)	axitinib	sorafenib	26.8	18.8			19.4	9.4	2012	57632	39295
/ 8 9	Perjeta	pertuzumab	HER2-positive metastatic or locally recurrent unresectable breast cancer	pertuzumab + trastuzumab + docetaxel	placebo + trastuzumab + docetaxel	74	49.6			80.2	69.3	2013	51643	46608
10 11 12	Kadcyla	trastuzumab emtansine	HER2-positive, unresectable locally advanced or metastatic breast cancer	trastuzumab emtansine (tdm1)	lapatinib + capecitabine (lap+cap)	38.4	25.6	123.9	100.4			2013	87215	75877
13 14 15	Giotrif	afatinib	locally advanced or metastatic non- small cell lung cancer (NSCLC) with activating EGFR mutation(s);	afatinib (film- coated tablets)	pemetrexed (lyophilised powder) + cisplatin (solution for infusion)	44.56	27.6			56.1	22.6	2013	29528	21853
6 7	Stivarga	regorafenib	metastatic colorectal cancer (CRC)	regorafenib + best supportive care	placebo + best supportive care	8.4	7.4	28	21.6	1	0.4	2013	85800	77434
18 19 20	Stivarga	regorafenib	unresectable or metastatic gastrointestinal stromal tumors (GIST)	regorafenib + best supportive care	placebo + best supportive care	21	4			1.5	4.5		85800	77434
21	Tafinlar	dabrafenib	unresectable or metastatic melanoma with a BRAF V600 mutation.	dabrafenib	dacarbazine	27.6	10.8	72.8	62.4	59	24	2013	107935	87670
22	Zaltrap	aflibercept	metastatic colorectal cancer (MCRC)	aflibercept+folfiri	placebo+folfiri	27.6	18.7	54	48.4	19.8	11.1	2013	30576	27591
24 25	Xtandi	enzalutamide	metastatic castration resistant prostate cancer	enzalutamide (mdv3100)	placebo	33.2	11.6	74.4	54.4			2013	49184	31960
:6 :7	Imnovid	pomalidomid e	relapsed and refractory multiple myeloma	pom+ld-dex	hd-dex	15.7	8	6	34			2013	127985	101646
28 29 30 31	Lynparza*	olaparib	platinum-sensitive relapsed BRCA- mutated (germline and/or somatic) high grade serous epithelial ovarian, fallopian tube, or primary peritoneal cancer	olaparib	placebo	33.6	19.2	119.2	111.2			2014	70517	52142
32 33 34	Cyramza	ramucirumab	advanced gastric cancer or gastro- oesophageal junction adenocarcinoma with disease progression	ramucirumab+ paclitaxel	placebo+paclitaxel	17.6	11.6	38.4	29.6	27.9	16.1	2014	87360	78842
35 36 27	Mekinist	trametinib	unresectable or metastatic melanoma with a BRAF V600 mutation.	trametinb	chemotherapy (dtic or paclitaxel)	19.6	6	62.4	45.2	19	5	2014	62398	28157

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Imbruvica	ibrutinib	chronic lymphocytic leukaemia (CLL)		chlorambucil		75.6			82.4	35.3		73805	51663
			ibrutinib										
Zydelig	idelalisib	chronic lymphocytic leukaemia (CLL)	idelalisib + rituximab	placebo + rituximab		22			74.5	14.5	2014	48667	34067
Sylvant	siltuximab	multicentric Castlemans disease	siltuximab + best supportive care	placebo + best supportive care					37.7	3.8	2014	66104	29829
Keytruda	pembrolizum ab	advanced(unresectable or metastatic) melanoma	ipilimumab	pembrolizumab	22	11.2			33.7	11.9	2015	90400	81586
Opdivo	nivolumab	advanced (unresectable or metastatic) melanoma	nivolumab 3 mg/kg	dacarbazine	18.8	16.8			31.7	10.6	2015	81310	71181
Opdivo	nivolumab	locally advanced or metastatic non- small cell lung cancer (NSCLC)	nivolumab 3 mg/kg	docetaxel 75 mg/m2	9.32	16.8	48.8	37.4	19.2	12.4		81310	71181
Opdivo	nivolumab	advanced renal cell carcinoma	nivolumab 3 mg/kg	everolimus100mg	18.4	17.8	100	78.2	25.1	5.4		81310	in negotia tion
Lenvima	lenvatinib mesylate	progressive, locally advanced or metastatic, differentiated (papillary/follicular/Hrthle cell) thyroid carcinoma (DTC), refractory to radioactive iodine (RAI)	lenvatinib	placebo	73.2	14.4			64.8	1.5	2015	68433	58673
Cotellic	cobimetinib hemifumarat e	unresectable or metastatic melanoma with a BRAF V600 mutation	cobimetinib+vemu rafenib	placebo+vemurafenib	45.2	24			67.8	44.8	2015	75374	54420
Kyprolis	carfilzomib	multiple myeloma who have received at least one prior therapy.	carfilzomib + lenalidomide + dexamethasone	lenalidomide + dexamethasone (rd)	105.2	70.4			87.1	67.7	2015	75900	44525

Progression Free Survival (PFS); Overall Survival (OS); Treatment Group (TRT); Control Group (CTR); Objective Response Rate (ORR); Official Negotiated Prices (Official Negot.); Discounted Prices (Disc. Prices).

*: During the evaluation at the EMA, lymparza was found to be more effective in a subgroup of patients with a specific biomarker with the following outcome results: PFS lymparza: 44,8 w; PFS control: 17,2 w; OS lymparza: 139,6 w; OS control: 127,6.

BMJ Open

For peer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure, tables, titles and legends

Figure 1. Correlation between anticancer drug prices (officially negotiated) and health benefits

Figure 1a. Official negotiated price (ex-factory) vs difference in median OS (16 drugs are included in the analysis: 15 with a single indication and one with two indications)

Figure 1b. Official negotiated price (ex-factory) vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

Figure 1c. Official negotiated price (ex-factory) vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Figure 2. Correlation between anticancer drug prices (discounted) and health benefits

Figure 2a. Discounted price with additional compulsory rebates vs difference in median OS (16 drugs related to a single indication are included in the analysis)

Figure 2b. Discounted price with additional compulsory rebates vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

Figure 2c. Discounted price with additional compulsory rebates vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication and four with two indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Table 1. Characteristics of the 30 anticancer drugs included in the analysis.

Legend:

Progression Free Survival (PFS); Overall Survival (OS); Treatment Group (TRT); Control Group (CTR); Objective Response Rate (ORR); Official Negotiated Prices (Official Negot.); Discounted Prices (Disc. Prices).

*: During the evaluation at the EMA, lymparza was found to be more effective in a subgroup of patients with a specific biomarker with the following outcome results: PFS lymparza: 44,8 w; PFS control: 17,2 w; OS lymparza: 139,6 w; OS control: 127,6.

Supplementary Table 1. Details of the statistical analysis conducted

Supplementary Figures 1-4. Correlations in the sensitivity analysis conducted

Supplementary Figure 1a. Official negotiated price (ex-factory) vs percentage improvement in median Overall Survival (OS) (16 drugs are included in the analysis: 15 with a single indication and one with two indications)

Supplementary Figure 1b. Official negotiated price (ex-factory) vs percentage improvement in median Progression Free Survival (PFS) (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

.

Supplementary Figure 1c. Official negotiated price (ex-factory) vs percentage improvement in proportion of Objective Response Rate (ORR) (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

Figure 2. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), excluding negative outcome data (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

Supplementary Figure 3a. Official negotiated price (ex-factory) vs median Overall Survival (OS), considering only data from placebo-controlled trials. (7drugs related to a single indication are included in the analysis)

Supplementary Figure 3b. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), considering only data from placebo-controlled trials. (11 drugs are included in the analysis: 10 with a single indication and one with 2 indications)

Supplementary Figure 4a. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication, two with two indications and one with three indication)

Supplementary Figure 4b. Discounted price with additional compulsory rebates vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication and three with 2 indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

Figure 1. Correlation between anticancer drug prices (officially negotiated) and health benefits

180x219mm (300 x 300 DPI)

2b. Discounted price with additional compulsory rebates vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

2c. Discounted price with additional compulsory rebates vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication and four with two indications)

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

Figure 2. Correlation between anticancer drug prices (discounted) and health benefits

180x219mm (300 x 300 DPI)

Supplementary Table 1. Details of the statistical analysis conducted

Dependent variable	Independent variable 1	Independent variable 2	Number of drugs involved in the analysis	Type of linear regression	Intercept	Coefficient of the Independent variable 1	p value of the Independent variable 1	Correlation coefficient: r	Coefficient of Determination: R ²
Official negotiated price	ΔOS		17	simple	50332.71	1256.724	0.315	0.259	0.067
Discounted price	ΔOS		16	simple	44963.88	528.800	0.695	0.11	0.0113
Official negotiated price	ΔOS	tumor type	17	multiple	57765.99	2065.264	0.433		0.412
Discounted price	ΔOS	tumor type	16	multiple	55312.8	1391.947	0.614		0.257
Official negotiated price	% Δ OS		17	simple	56230.04	349.505	0.524	0.166	0.027
Discounted price	% Δ OS		16	simple	50127.28	42.986	0.937	0.022	0.0005
Official negotiated price	% Δ OS	tumor type	17	multiple	72407.98	292.048	0.766		0.362
Discounted price	% Δ OS	tumor type	16	multiple	68456.17	89.3936	0.930		0.2286
Official negotiated price	Δ PFS		29	simple	73741.11	-113.515	0.738	-0.065	0.004
Discounted price	Δ PFS		28	simple	58574.12	-137.018	0.687	-0.080	0.006
Official negotiated price	Δ PFS	tumor type	29	multiple	70454.93	-271.324	0.635		0.338
Discounted price	Δ PFS	tumor type	28	multiple	56293.38	-393.926	0.508		0.283
Official negotiated price	% Δ PFS		29	simple	68763.32	33.7994	0.427	0.153	0.024
Discounted price	% Δ PFS		28	simple	52823.84	36.2925	0.392	0.169	0.028
Official negotiated price	% Δ PFS	tumor type	29	multiple	66564.96	15.935	0.765		0.333
Discounted price	% Δ PFS	tumor type	28	multiple	51337.49	11.068	0.842		0.266
Official negotiated price	ΔORR		29	simple	67072.16	92.845	0.696	0.076	0.006
Discounted price	ΔORR		28	simple	53147.09	-14.550	0.953	-0.010	0.000
Official negotiated price	ΔORR	tumor type	29	multiple	62277.57	180.118	0.607		0.448
Discounted price	ΔORR	tumor type	28	multiple	42598.33	324.629	0.383		0.450
Official negotiated price	%ΔORR		27	simple	69838.7	0.563	0.918	0.020	0.000
Discounted price	%ΔORR		26	simple	53627.54	0.965	0.864	0.036	0.001
Official negotiated price	%ΔORR	tumor type	27	multiple	67262.18	1.719	0.814		0.436
Discounted price	%ΔORR	tumor type	26	multiple	51599.74	2.958	0.704		0.405

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

3b. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), considering only data from placebo-controlled trials. (11 drugs are included in the analysis: 10 with a single indication and one with 2 indications)

Progression Free Survival (PFS); Overall Survival (OS)
BMJ Open

4a. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication, two with two indications and one with three indication)

4b. Discounted price with additional compulsory rebates vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication and three with 2 indications)

Progression Free Survival (PFS)

BMJ Open

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

Section and Item		Recommendation					
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the					
		abstract					
		(b) Provide in the abstract an informative and balanced summary of what was					
		done and what was found					
Introduction							
Background/Rationale	2	Explain the scientific background and rationale for the investigation being					
		reported					
Objectives	3	State specific objectives, including any prespecified hypotheses					
Methods							
Study Design	4	Present key elements of study design early in the paper					
Setting	5	Describe the setting, locations, and relevant dates, including periods of					
_		recruitment, exposure, follow-up, and data collection					
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of					
		selection of participants. Describe methods of follow-up					
		Case-control study—Give the eligibility criteria, and the sources and methods of					
		case ascertainment and control selection. Give the rationale for the choice of					
		cases and controls					
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants					
		(b) Cohort study—For matched studies, give matching criteria and number of					
		exposed and unexposed					
		<i>Case-control study</i> —For matched studies, give matching criteria and the number					
		of controls per case					
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and					
		effect modifiers. Give diagnostic criteria, if applicable					

Section and Item	ltem No.	Recommendation	Reporte Page I
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was	
		addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results			1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		<i>Case-control study</i> —Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	

1 2	Section and Item	ltem No.	Recommendation	Reported on Page No.						
3	Main Results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates							
4			and their precision (eg, 95% confidence interval). Make clear which confounders							
5 6			were adjusted for and why they were included							
7 8			(b) Report category boundaries when continuous variables were categorized							
9			(c) If relevant, consider translating estimates of relative risk into absolute risk for a							
10 11			meaningful time period							
12 13	Other Analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and							
14			sensitivity analyses							
15 16 17	Discussion									
18 19	Key Results	18	Summarise key results with reference to study objectives							
20	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or							
21 22			imprecision. Discuss both direction and magnitude of any potential bias							
23	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,							
24 25			multiplicity of analyses, results from similar studies, and other relevant evidence							
26 27	Generalisability	21	Discuss the generalisability (external validity) of the study results							
28 29	Other Information									
30 21	Funding	22	Give the source of funding and the role of the funders for the present study and, if							
32			applicable, for the original study on which the present article is based							
33 34										
35	*Give information separation	ately for	cases and controls in case-control studies and, if applicable, for exposed and unexpose	ed groups in						
36 37	cohort and cross-section	al studie	is.							
38 30	Once you have complete	ed this c	hecklist, please save a copy and upload it as part of your submission. DO NOT include	e this						
40	checklist as part of the n	nain ma	nuscript document. It must be uploaded as a separate file.							
41										
42 43										

BMJ Open

BMJ Open

Clinical outcomes do not correlate with anticancer drug prices: a cross-sectional study in Italy

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033728.R2
Article Type:	Original research
Date Submitted by the Author:	28-Oct-2019
Complete List of Authors:	Trotta, Francesco; Department of Epidemiology of the Regional Health Service Lazio, Mayer, Flavia; Istituto Superiore di Sanita Barone-Adesi, Francesco; Universita degli Studi del Piemonte Orientale Amedeo Avogadro, Esposito, Immacolata; Research and Health Foundation Punreddy, Ranadhir; Universita degli Studi del Piemonte Orientale Amedeo Avogadro Da Cas, Roberto; Italian National Institute of Health, National Centre for Epidemiology Traversa, Giuseppe; Italian National Institute of Health, National Centre for Epidemiology Perrone, Francesco; Istituto Nazionale Tumori IRCCS Fondazione Pascale Martini, Nello; Research and Health Foundation, Gyawali, Bishal ; Harvard Medical School Addis, Antonio; Department of Epidemiology of the Regional Health Service Lazio, ;
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Health economics, Health policy
Keywords:	Drug Costs, Antineoplastic Agents/therapeutic use, Treatment Outcome, Antineoplastic Agents

SCHOLARONE[™] Manuscripts

Title: Clinical outcomes do not correlate with anticancer drug prices: a cross-sectional study in

Italy

Authors: Francesco Trotta¹, Flavia Mayer², Francesco Barone-Adesi³, Immacolata Esposito⁴,

Ranadhir Punreddy³, Roberto Da Cas², Giuseppe Traversa², Francesco Perrone⁵, Nello Martini⁴, Bishal Gyawali^{6,7}, Antonio Addis ¹.

Affiliation:

- 1. Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
- 2. Italian National Institute of Health, Rome, Italy
- 3. University of Eastern Piedmont, Novara, Italy
- 4. Research and Health Foundation, Rome, Italy
- 5. National Cancer Institute, G. Pascale Foundation IRCCS, Naples, Italy
- 6. Program on Regulation, Therapeutics and Law, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
- 7. Department of Oncology, and Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada

Corresponding Author:

Antonio Addis Department of Epidemiology Lazio Regional Health Service, Rome, Italy Via Cristoforo Colombo 112/Pal.A 00143 Roma/ Rome Italy Tel: +39 06.99722-139 Fax: +39 06.99722111 ORCID 0000-0003-0962-9959 agmaddis@gmail.com

This research received no specific grant from any funding agency in the public, commercial or notfor-profit sectors

contributorship statement

FT, NM and AA conceptualized the study; FT, AA, NM, FM, FBA, GT, and RDC designed the study; FBA, RP, IE and NM were in charge of data extraction and quality control; FM, RDC, and FT performed the data analysis; FT, RDC, FM, GT, BG, FP and AA drafted the manuscript; all the authors contributed to the discussion and the interpretation of results, and reviewed the final version of the manuscript. All authors approved the final manuscript as submitted.

The authors have no conflicts of interest relevant to this article to disclose and all authors work for public Universities, Public Institutions or non-profit organizations

Running head. Anticancer drug prices and clinical outcomes in ItalyWord Count: 2950

Abstract:

Objective To investigate whether the prices of new anticancer drugs correlated with their relative benefit despite negotiation.

Design Retrospective cross-sectional study correlating new anticancer drugs prices with clinical outcomes.

Setting We did a retrospective cross-sectional study including all new anticancer drugs approved by the European Medicines Agency (2010-2016) and reimbursed in Italy.

Main Outcome(s) and Measure(s) Information on clinical outcomes - in terms of median Overall Survival (OS), median Progression Free Survival (PFS) and Objective Response Rate (ORR) - was extracted from pivotal trials as reported in the European Public Assessment Reports available on the EMA website. Cost of a full course treatment was estimated on negotiated official and discounted prices. Regression coefficients β , their levels of significance p and the coefficients of determination R² were estimated adjusting by tumour type.

Results Overall, 30 new anticancer drugs (with 35 indications) were available for analysis. Where data on Overall Survival were available we observed no correlation between the improvement in median OS (in weeks) and negotiated price (R^2 = 0.067, n = 16 drugs for 17 indications). When the clinical outcomes were expressed as improvements in median PFS or ORR, 25 drugs (29 indications) were available for analysis, and again, there was no correlation with prices (R^2 = 0.004 and 0.006, respectively).

BMJ Open

Conclusions and Relevance: Our results suggest that the prices of anticancer drugs in Italy do not reflect their therapeutic benefit. Drug price negotiations, which is mandatory by law in Italy, do not seem to ensure that prices correlate with clinical benefits provided by cancer drugs. These results call for further efforts to establish the standard determinants of drug prices available at the time of negotiation. These findings need to be confirmed in other countries where price negotiations are in place. Moreover, further investigations may verify whether outcome data obtained after drug marketing would improve the correlation between prices and therapeutic benefit.

Strengths and limitations of this study,

- This study is the first attempt to evaluate whether there were better correlations between cancer drug prices and clinical outcomes in a setting where central price negotiations are mandatory for every new medicine.
- This understanding is important for cancer policy decisions.
- In our analysis, the relationship between the clinical outcome and cost of anticancer drugs was ascertained by a simple linear regression model.
- Clinical outcome, which was the dependent variable, was expressed as absolute or percent differences in outcomes between treatment and control groups.
- The main limitations of our study concern data completeness on clinical outcome and price. We used, as an estimate of benefit, data from pivotal trials retrieved from EPARs.

Background

High costs of cancer drugs and resulting financial toxicity to cancer patients are now a wellrecognized problem in cancer policy throughout the world [1-8]. Various solutions are being proposed to address this problem, of which price negotiations with pharmaceutical companies is proposed as an important strategy especially in the USA [9-11]. Because the Medicare is not allowed to negotiate prices with companies, despite being mandated to cover for every U.S. Food and Drug Administration (FDA) approved drug, various experts have argued that this is the reason for high drug prices in the USA. Indeed, cancer drug prices far exceed the costs of their development [12];such negotiations might help to lower the prices of cancer drugs as evidenced by lower cost of cancer drugs in other developed countries compared with the USA.

However, little is known about if such negotiations would lead to better correlation between cancer drug prices and the benefits they provide. Studies have shown that drug prices do not correlate with clinical benefits for cancer drugs approved by the FDA, even though such studies have not taken central price negotiations into account [13,14]. Countries such as the United Kingdom and Italy negotiate prices and hence, the correlations might be different.

In Italy, drug price negotiation based on cost-effectiveness evaluation has been mandatory since 2001 for all medicines reimbursed by the National Health Service (NHS) [15,16]. We analysed the correlation between the prices of cancer drugs in Italy with their clinical outcomes to test the hypothesis that central price negotiations leads to better alignment of prices and benefits.

Methods:

Identification of the study sample

All new drugs approved by the EMA via a centralized procedure between January 2010 and June 2016 for the treatment of either solid or haematologic cancers were initially identified. Generics, biosimilars, interferons and granulocyte-colony stimulating factors (G-CSFs) were excluded. Only anticancer drugs with pivotal trials based on overall survival (OS), progression-free survival (PFS) or objective response rate (ORR) and with prices that were officially negotiated in Italy by 31st December 2016 were included in the cohort for analyses.

Data extraction

Information on the clinical outcomes (in terms of median OS, median PFS, ORR) was extracted by two co-investigators (FBA and RP) from pivotal trials that compared new treatments with controls as reported in the European Public Assessment Reports - EPARs (summary table of the main study, Section 2.5.2) publicly available on the EMA website (www.ema.europa.eu). Survival times were expressed in weeks, and the reported OS and PFS were transformed when necessary. Information on therapeutic indication and tumour type were also retrieved.

Drug prices

The cost of a full course or 1-year treatment was estimated by two co-investigators (NM and IE) on the basis of the negotiated official ex-factory price (in euros) of drug packages, as published in the Official Gazette of the Italian Republic (<u>www.gazzettaufficiale.it</u>) and taking into account the posology as reported in the Summary of Product Characteristics (SPC). To compare prices of drugs with different schedules, in the text we refer to drug prices as the cost of a full course or a 1-year treatment. A further estimate took into account additional compulsory rebates [17] or extra-discounts that were agreed with pharmaceutical companies; this information is confidential to the public but is released to procurement stations within the Italian NHS (e.g., regions, hospitals, and local health units).

Statistical analysis

The following variables were extracted and analysed descriptively: year of approval, therapeutic indication, type of treatment and control groups, outcome data, official and confidential costs per treatment (1 year or a full course) and regulatory information (conditional/under exceptional circumstances approval, or orphan drug status).

The relationship between the clinical outcomes and cost of anticancer drugs was ascertained by a simple linear regression model. Clinical outcome, which was the dependent variable, was expressed as absolute or percent differences in outcomes between treatment and control groups. Regression coefficients β , their levels of significance p and the coefficients of determination R² were reported for each model.

We also performed several sensitivity analyses to test the robustness of the results. Specifically, we performed multiple linear regression with tumour type as the independent variable to take into account potential differences due to tumour characteristics. Moreover, we also repeated the analysis after excluding negative outcome differences (in two cases, one of the outcomes was inferior in the group receiving the new drug than in the comparison group) and actively controlled trials (considering only placebo-controlled trials). Subgroup analysis by tumour type was also attempted as exploratory analysis when a minimum number of two anticancer drugs within the same tumour type setting were observed. Outlier cases were not excluded from the analyses, but their impact was evaluated and reported when relevant as a separate analysis. All statistical analyses were performed using STATA (Statacorp, version 14.0)

Patient and public involvement

Patients have not been involved in the development of the research question or the design of this study. However, results of this analysis will be disseminated throughout public conferences, with statements summarizing our results, and with an open access to the published report posted in our ites institutional websites

Results

From 2010 to mid-2016, 45 new anticancer drugs for 56 different oncology indications were approved via centralized procedures by the EMA. For 40 new anticancer drugs (47 indications), the basis for the approval was a pivotal trial adopting OS, PFS or ORR as a primary outcome; the price negotiation was completed by December 2016 for only 30 new anticancer drugs (35 indications) which are included in our analysis (Table 1). Seven drugs received orphan drug status by the EMA and two (vandetanib and crizotinib) received conditional approval. Of the 35 oncology indications tested in 35 different pivotal trials which were all controlled clinical trials, the commonest indications were melanoma (7 out of 35), followed by haematological cancer (6 out of 35) and non-small cell lung cancer (4 out of 35). In 15 such trials (43%), placebo was used as the control arm. Of the 35 indications, data on OS, PFS and ORR were available for 17, 29 and 29 indications respectively. Each drug-indication pair contributed to one or more of these analyses, depending on which outcomes were reported in the EPAR.

In the treatment groups, the median improvement in the OS and PFS were 11.4 weeks (IQR 8.8-17.2; min 13.2; max 23.5) and 12.8 weeks (IQR 6.4-17; min -7.48; max 58.8), respectively; median ORR improvement in the treatment group was 21.8% (IQR 10-34.6; min -3; max 63.3). The reported ranges have negative minimum values since in two cases - nivolumab for NSCLC and regorafenib for gastrointestinal stromal tumours - the experimental treatment had a negative effect on one of the outcomes compared to the control group (in terms of PFS for nivolumab and ORR for regorafenib). The median negotiated price for a 1-year treatment was 72,392 euros (IQR 53,819-85,800; min 4,942; max 142,785), which was further discounted by 25% (on average) after applying confidential rebates. For all anticancer drugs but ipilimumab the price was calculated as 1-year treatment since the posology reported in the Summary of Product Characteristics (SPC) reported that the treatment should

Page 9 of 35

BMJ Open

continue as long as clinical benefit is observed or until unacceptable toxicity occurs. In the case of ipilimumab the price was calculated as a course of 4 doses as reported in the SPC.

The official (ex-factory) price of new anticancer drugs and absolute clinical outcomes showed no correlation (Figure 1a-c). The relationship between the improvement in median OS (in weeks) and negotiated price was estimated for 16 drugs (17 indications), and no correlation was observed (R^{2} = 0.067). When clinical outcomes were expressed as absolute advantage in median PFS or ORR, 25 drugs (29 indications) were available for analysis, and in these cases, no correlation was observed (R^{2} = 0.004 and 0.006, respectively).

Repeating the analyses and taking into account the additional confidential rebates, which are compulsory for hospital procurement, no improvement in the benefit/price relationships was highlighted (Figure 2a-c). These findings also remained unchanged when the analyses were repeated with adjustments for tumour type (Supplementary Table 1) or when clinical outcome was expressed as a percentage of improvement instead of as an absolute difference (Supplementary Figure 1a-c). Sensitivity analyses that excluded negative improvements in outcomes over a control group (Supplementary Figure 2) and considered only data from placebo controlled trials (Supplementary Figure 3a,b) confirmed the main analysis. The exploratory subgroup analyses by tumour type did not identify specific positive correlation patterns depending on tumour setting (Supplementary Figure 4 a,b).

Discussion

This study is the first attempt to evaluate whether there were better correlations between cancer drug prices and clinical outcomes in a setting where central price negotiations are mandatory for every new medicine. Our study gave unexpected results to the research question, highlighting no relationships between cost of cancer drugs and benefits. Moreover, all pre-specified sensitivity and subgroup analyses confirmed the main findings. This finding will have important policy implications both for countries like USA where price negotiations are absent and for other countries like Italy where price negotiations do exist.

In our study, the correlation between drug costs and clinical outcomes was even lower than the ones previously noted in the US context [13,14], showing that negotiations did not tilt the relationship between drug prices and benefit positively. Thus, higher drug pricing remains despite the Italian legislative environment, where approval based on cost-effectiveness analysis and price negotiations have been mandatory by law since 2001 [15,16]. This finding may cast doubts on the role of the negotiation itself. However, it is important to understand that countries like Italy that negotiate drug prices do such negotiations only for binary decisions of approval or no-approval, not taking into account, during negotiation, a clear correlation between prices and benefits. This understanding is important for cancer policy decisions.

Indeed, there is no legal policy in any country to negotiate prices differently for drugs approved on the basis of surrogate endpoints versus survival outcomes, or drugs that improve survival in days, versus those that improve survival in months or drugs with immature benefit risk profiles [18-22]. Although steps in the right direction, in lack of such policy, the value frameworks proposed by organizations such as ASCO, ESMO or NCCN have become little more than intellectual exercises [23-26].

BMJ Open

Another reason price negotiations did not achieve better price-value correlations is that because of the global market of drugs, each single country - although large – only represents a small portion of the consumer market. Thus, companies "wield the stick", setting the maximum price that the market will bear [27]. In addition, in Italy, no threshold for incremental cost-effectiveness ratio (ICER) has been determined; thus, no limit is in place to be used as a decision rule in resource allocation at the time of negotiation/reimbursement decisions. The lack of such kind of cut-off might have contributed to the negative results in our study. However, we recognize that even when a threshold for ICER is well established, such as in the UK [28], continuous exceptions have been allowed in the case of anticancer drugs. For example, an ad hoc fund established in 2010 (i.e., the Cancer Drug Fund) was recently dismissed by the Parliament because it did not deliver meaningful value to patients or society [29].

In the EU context (where newer anticancer drugs are approved by EMA without considering the added-value or cost-effectiveness), the complexity further increases because once a marketing authorization is granted, it may become difficult to manage the reimbursement issue at a national level [30]. Moreover, it is also difficult for payers (NHS/insurance) to defend the thesis against the public opinion that an anticancer drug cannot be reimbursed because it is too expensive [30, 31]. Indeed, as our study shows, the confidential discounts following negotiations between a member state and a company do not ameliorate the correlation between treatment costs and benefits even though they reduce absolute drug prices.

Another factor that negatively influences the contractual power of negotiation is non-transparent information on drug prices across countries. Difficulties in retrieving full information on prices have been already recognized in a recent survey comparing prices of anticancer drugs in 16 EU countries,

BMJ Open

Australia and New Zealand [32]. Vogler et al. found that price information is scarce and not disclosed due to confidential discounts or MEAs, calling for higher transparency. The authors state that it is in the interest of policy makers to remove clauses limiting disclosure on price information because they risk overpaying when setting prices through external price referencing. This concern might be relevant in the Italian context since the negotiation procedure for reimbursement takes into account the price in other EU countries as well as the price of similar products within the same pharmacotherapeutic group [33].

We believe that two partly independent approaches could be adopted by policy makers to achieve a better balance between cancer drug prices and benefits. First, price negotiations should be more strictly based on the level of evidence as well as the magnitudes of benefit. An ICER measure (such as QALY) should represent a threshold for reimbursement, thus setting a starting point for price negotiation and adjusting the ICER threshold based on the magnitude of the relative benefit reached. If the information on the relative value is not available at the time of approval, comparisons can be performed using indirect techniques, whereas after entering the market, payers should play a major role in supporting the evidence generating process.

The second approach that could attain lower prices would require an increased transparency on the costs of drug development process, including the relative contributions from academia and public sector to the development of a drug [34-38]. For instance, research conducted to evaluate efforts of drug development processes highlighted that about half of the most transformative drugs approved by the FDA had substantial contributions to their development by academic researchers supported by government funding [34,35]; in addition, it has been estimated that the cost of late clinical development takes a limited part of the whole process [36]. It is probably the right time to appropriately acknowledge the contributions of publicly funded research during drug price negotiation with companies. Often, comparative effectiveness research is funded by public

BMJ Open

institutions to test different treatments in real practice on robust outcomes with longer follow up or special populations [37,38]. The findings of these studies should be linked to a continuous price renegotiation over the life cycle of a product.

Other approaches identified as possible solutions to keep the health system sustainable address the general governance of the system, i.e., when the price is already set. In fact, a price-volume approach [39] or indication-based pricing [40,41] have been modelled, each presenting pros and cons. Moreover, given that different oncology settings appear to be oligopolistic, thus refraining from price competition, another possible solution comes from national/regional tenders among therapeutic categories when more alternatives are available [42].

The main limitations of our study concern data completeness on clinical outcome and price. We used, as an estimate of benefit, data from pivotal trials retrieved from EPARs. Moreover, we are not aware if further (more robust) data became available at a later stage when the price was negotiated at the national level. Thus, we cannot exclude that the correlation between drug prices and therapeutic benefit might improve taking into account data acquired after the marketing of anticancer drugs.

Another important limitation is that we have not considered quality of life outcomes as another metric of clinical benefit. Furthermore, a recent study has shown that quality of life outcomes are not routinely collected or published, and that the tools used to measure quality of life are varied to have a uniform metric for comparison [43]. Although we have included surrogate measures such as PFS or ORR as clinical outcomes in our analysis because they were considered as the basis for approval by the regulatory agency, these surrogate measures do not always correlate with true clinical benefits in terms of improved survival or improved quality of life [43,44]. Regarding the price estimate, we estimated the treatment costs for 1-year treatment or for the total course in the case of ipilimumab

where the treatment course lasts less than 1 year. However, the exclusion of ipilimumab would not alter the main findings.

Another factor that might have impacted the price estimation is the rebate obtained at the regional/local level following drug tenders. This information was not available for the analyses and would have been not generalizable at the national level. Moreover, additional savings were expected "a posteriori" from the Managed Entry Agreements in place in Italy (whose information is not publicly available) and were not considered in the analyses.

Our study is a retrospective cross-sectional correlation study that aimed at evaluating whether central price negotiation (mandatory by law in Italy) leads to better alignment of prices and the benefits known at the time of drug approval. This means that our analysis is not aimed at comparing costs and outcomes within drug classes, as a typical cost effective study, and we never intended to assess the added values of the approved drugs in the context of all other drugs sharing the same indication. The "population"/cohort approach that we adopted has the intrinsic limitation of including drugs approved for different indications or different cancer types (with various incidence/prevalence) based on different clinical data packages. The consequent heterogeneity stemming from this approach was resolved adjusting the correlation analyses by tumour type or conducting several sub-analyses. Following this approach, we found results consistent with primary findings thus confirming the robustness of methods and results.

Conclusion

Our results suggest that price negotiations for approval decisions alone may not bring balance between prices and benefits of anticancer drugs. Based on the limited outcome data available at the time of reimbursement decisions (OS; PFS; ORR), prices of anticancer drugs do not reflect their therapeutic benefit. Other strategies, such as value based price negotiations, price negotiations strictly

based on strength of evidence and price transparencies may be necessary to better achieve the drug prices and benefits balance. These results need to be confirmed in other countries where a national price negotiation exists.

FT, NM and AA conceptualized the study; FT, AA, NM, FM, FBA, GT, and RDC designed the study; FBA, RP, IE and NM were in charge of data extraction and quality control; FM, RDC, and FT performed the data analysis; FT, RDC, FM, GT, BG, FP and AA drafted the manuscript; all the authors contributed to the discussion and the interpretation of results, and reviewed the final version of the manuscript. All authors approved the final manuscript as submitted.

Competing interests

The authors have no competing of interest relevant to this article to disclose and all authors works for public Universities, Public Institutions or not for profit Organizations. ot iv.

Funding

None.

Data Availability

All data presented in the analysis have been extracted by public documents (EPARs for each drug outcomes and clinical data; regional and national administrative official documents (i.e. Gazzetta Ufficiale for prices). Data are available upon reasonable request

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
29
30
31
21
32
33
34
35
36
37
38
39
40
41
42
43
ΔΛ
-+-+ 1 E
40 40
46
47
48
49
50
51
52
53
54
55
56
57
57
20
59
60

References:

1)	Quintiles IMS Institute. Outlook for Global Medicines through 2021. December 2016. 1-54.
	http://www.imshealth.com/en/thought-leadership/quintilesims-
	institute/reports/outlook_for_global_medicines_through_2021

- 2) Ghinea N, Lipworth W, Kerridge I. Propaganda or the cost of innovation? Challenging the high price of new drugs. BMJ. 2016; 352: i1284, doi: 10.1136/bmj.i1284.
- European Commission Press release. Antitrust: Commission opens formal investigation into Aspen Pharma's pricing practices for cancer medicines. Brussels, 15 May 2017. <u>http://europa.eu/rapid/press-release_IP-17-1323_en.htm</u>
- 4) Gordon N, Stemmer SM, Greenberg D, et al. Trajectories of Injectable Cancer Drug Costs After Launch in the United States. J Clin Oncol. 2018; 36: 319-325.
- Narang AK, Nicholas LH. Out-of-Pocket Spending and Financial Burden Among Medicare Beneficiaries With Cancer. JAMA Oncol. 2017; 3:757-765.
- Shankaran V, Ramsey S. Addressing the Financial Burden of Cancer Treatment: From Copay to Can't Pay. JAMA Oncol. 2015; 1:273-4.
- Liz Szabo. Cancer patients skipping medicines or delaying treatment due to high drug prices. STAT 15 March, 2017. <u>https://www.statnews.com/2017/03/15/cancer-patients-drug-prices/</u>
- de Souza JA, Conti RM. Mitigating Financial Toxicity Among US Patients With Cancer. JAMA Oncol. 2017; 3: 765-766.
- Kesselheim AS, Avorn J, Sarpatwari A. The High Cost of Prescription Drugs in the United States: Origins and Prospects for Reform. JAMA. 2016; 316: 858-71.
- Hwang TJ, Kesselheim AS, Sarpatwari A. Value-Based Pricing and State Reform of Prescription Drug Costs. JAMA. 2017; 318: 609-610,

- 11) Fralick M, Avorn J, Kesselheim AS. The Price of Crossing the Border for Medications. NEngl J Med. 2017; 377: 311-313.
 - 12) Tay-Teo K1,Ilbawi A, Hill SR. Comparison of Sales Income and Research and Development Costs for FDA-Approved Cancer Drugs Sold by Originator Drug Companies. JAMA Netw Open. 2(1):e186875, 2019. doi: 10.1001/jamanetworkopen.2018.6875.
- 13) Mailankody S, Prasad V. Five Years of Cancer Drug Approvals: Innovation, Efficacy, and Costs. JAMA Oncol. 2015; 1: 539-40, Erratum in: JAMA Oncol. 2015; 1: 544.
- 14) Vivot A, Jacot J, Zeitoun JD, et al. Clinical benefit, price and approval characteristics of FDA-approved new drugs for treating advanced solid cancer, 2000-2015. Ann Oncol. 2017; 28:1111-1116.
- 15) Comitato Interministeriale per la Programmazione Economica. Individuazione dei criteri per la contrattazione del prezzo dei farmaci (Deliberazione n.3/2001). Official Gazette of the Italian Republic. N. 73 del 28-03-2001.

http://www.gazzettaufficiale.it/eli/id/2001/03/28/001A3188/sg

16) Italian Parliament. Legge 24 novembre 2003, n. 326. Conversione in legge, con modificazioni, del decreto-legge 30 settembre 2003, n. 269, recante disposizioni urgenti per favorire lo sviluppo e per la correzione dell'andamento dei conti pubblici. Official Gazette of the Italian Republic. N. 274; 25 November 2003.
http://www.parlamento.it/parlam/leggi/033261.htm

17) Italian Parliament . Legge 27 December 2006, n. 296. Art. 1 comma 796, lettera g).
Disposizioni per la formazione del bilancio annuale e pluriennale dello Stato (finanziaria 2007). Official Gazette of the Italian Republic. N. 299; 27 December 2006, Suppl ord. n. 244.

BMJ Open

18) Apolone G, Joppi R, Bertelè V, et al. Ten years of marketing approvals of anticancer drugs
in Europe: regulatory policy and guidance documents need to find a balance between
different pressures. Br J Cancer. 2005; 93: 504-9.
19) Bertele' V, Banzi R, Capasso F, et al. Haematological anticancer drugs in Europe: any added
value at the time of approval? Eur J Clin Pharmacol. 2007; 63: 713-9.
20) Trotta F, Apolone G, Garattini S, et al. Stopping a trial early in oncology: for patients or for
industry? Ann Oncol. 2008; 19: 1347-53. doi: 10.1093/annonc/mdn042. Epub 2008 Feb 27
21) Kim C, Prasad V. Cancer Drugs Approved on the Basis of a Surrogate End Point and
Subsequent Overall Survival: An Analysis of 5 Years of US Food and Drug Administration
Approvals. JAMA Intern Med. 2015; 175: 1992-4.
22) Banzi R, Gerardi C, Bertele' V, et al. Approvals of drugs with uncertain benefit-risk profiles
in Europe. Eur J Intern Med. 2015; 26: 572-84.
23) Salas-Vega S, Iliopoulos O, Mossialos E. Assessment of Overall Survival, Quality of Life,
and Safety Benefits Associated with New Cancer Medicines. JAMA Oncol. 2017; 3:382-
390.
24) Wise PH. Cancer drugs, survival, and ethics. BMJ 2016; 355: i5792
https://doi.org/10.1136/bmj.i5792 (Published 09 November 2016)
25) Del Paggio JC, Sullivan R, Schrag D, et al. Delivery of meaningful cancer care: a
retrospective cohort study assessing cost and benefit with the ASCO and ESMO
frameworks. Lancet Oncol. 2017; 18: 887-894.
26) Sobrero A1, Bruzzi P. Incremental advance or seismic shift? The need to raise the bar of
efficacy for drug approval. J Clin Oncol. 2009; 27:5868-73.
27) Ramsey SD, Lyman GH, Bangs R. Addressing Skyrocketing Cancer Drug Prices Comes
with Trade-offs: Pick Your Poison. JAMA Oncol. 2016; 2: 425-6.

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
21
∠ı วว
22
23
24
25
26
27
28
29
30
31
27
32 33
33
34
35
36
37
38
39
40
41
<u>⊿</u> 2
+∠ ∕\?
43
44
45
46
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59
60

28) Dillon A. Carrying NICE over the threshold. NICE. 19 February 2015. https://www.nice.org.uk/news/blog/carrying-nice-over-the-threshold

29) Aggarwal A, Fojo T, Chamberlain C, et al. Do patient access schemes for high-cost cancer drugs deliver value to society? -lessons from the NHS Cancer Drugs Fund. Ann Oncol.

2017; 28: 1738–1750. doi: 10.1093/annonc/mdx110

- 30) Cohen D. Cancer drugs: high price, uncertain value. BMJ. 2017; 359: j4543.
- 31) Prasad V. Do cancer drugs improve survival or quality of life? BMJ. 2017; 359: j4528
- 32) Vogler S, Vitry A, Babar ZU. Cancer drugs in 16 European countries, Australia, and New Zealand: a cross-country price comparison study. Lancet Oncol. 2016; 17: 39-47,
- 33) Folino-Gallo P, Montilla S, Bruzzone M, et al. Pricing and reimbursement of pharmaceuticals in Italy. Eur J Health Econ. 2008; 9:305-10.
- 34) Stevens AJ, Jensen JJ, Wyller K, et al. The role of public-sector research in the discovery of drugs and vaccines. N Engl J Med. 2011; 364: 535-41.
- 35) Kesselheim AS, Tan YT, Avorn J. The roles of academia, rare diseases, and repurposing in the development of the most transformative drugs. Health Aff (Millwood). 2015; 34: 286-93.
- 36) Martin L, Hutchens M, Hawkins C, et al. How much do clinical trials cost? Nat Rev Drug Discov. 2017; 16: 381-382.
- 37) Italian Medicines Agency (AIFA) Research & Development Working Group. Feasibility and challenges of independent research on drugs: the Italian medicines agency (AIFA) experience. Eur J Clin Invest. 2010; 40: 69-86.
- 38) Traversa G, Masiero L, Sagliocca L, et al. Italian program for independent research on drugs: 10-year follow-up of funded studies in the area of rare diseases. Orphanet J Rare Dis. 2016; 11: 36.

1	
2 3	30) Messori A Application of the Price-Volume Approach in Cases of Innovative Drugs Where
4	5) Wesson A. Application of the Thee-Volume Apploach in Cases of hinovative Drugs where
5 6	Value-Based Pricing is Inadequate: Description of Real Experiences in Italy. Clin Drug
7 8	Investig. 2016; 36: 599-603.
9 10 11	40) Bach PB. Indication-specific pricing for cancer drugs. JAMA. 2014; 312:1629-30.
12 13	41) Chandra A, Garthwaite C. The Economics of Indication-Based Drug Pricing. N Engl J Med.
14 15	2017; 377:103-106
16 17 18	42) Kantarjian H, Rajkumar SV. Why are cancer drugs so expensive in the United States, and
19 20	what are the solutions? Mayo Clin Proc. 2015; 90:500-4
21 22	43) Hwang TJ, Gyawali B. Association between progression-free survival and patients' quality
23 24 25	of life in cancer clinical trials. Int J Cancer. 2019; 144:1746-1751. doi: 10.1002/ijc.31957.
26 27	44) Prasad V, Kim C, Burotto M, Vandross A. The Strength of Association Between Surrogate
28 29	End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses.
30 31 32	JAMA Intern Med. 2015; 175:1389-98. doi: 10.1001/jamainternmed.2015.2829.
33	
34 25	
35 36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47	
48 70	
49 50	
51	
52	
53	
54	
55	
56	
57	

for perteries only

BMJ Open

Medicine Name	Active Substance	Clinical setting	Treatment group	Control group	PFS TRT (median in weeks)	PFS CRT (median in weeks)	OS TRT (median in weeks)	OS CRT (median in weeks)	ORR TRT (%)	ORR CRT (%)	Year First Auth.	Official negot. price (€)	Disc. price (€)
Teysuno	tegafur / gimeracil / oteracil	advanced gastric cancer in combination with cisplatin.	teysuno 25 mg/m + cisplatin 75 mg/m2	5-fluorouracil 1000 mg/m2 /24 + cisplatin 100 mg/m2			34.4	31.6			2011	4942	3479
Jevtana	cabazitaxel	hormone-refractory metastatic prostate cancer .	cabazitaxel + prednisone	mitoxantrone + prednisone	11.2	5.6	60.4	50.8	14.4	4.4	2011	52983	38254
Yervoy	ipilimumab	advanced (unresectable or metastatic) melanoma	ipilimumab + placebo	peptide vaccine glycoprotein 100 (gp100)	11.04	11.04	39.8	25.8	5.7	1.5	2011	71400	45107
Votubia	everolimus	Renal angiomyolipoma associated with tuberous sclerosis complex (TSC)	everolimus	placebo		45.48			41.8	0	2011	66521	41424
Votubia	everolimus	Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC)	everolimus	placebo					34.6	0		53216	33139
Halaven	eribulin	locally advanced or metastatic breast cancer	eribulin 1.23 mg/m2 (equivalent to 1.4 mg/m2 eribulin mesylate)	treatment of physician's choice	16.14	9.71	57.57	45.86	12.2	4.7	2011	32300	28130
Zytiga	abiraterone acetate	metastatic castration-resistant prostate cancer	abiraterone acetate	placebo	22.4	14.4	68.9	48.7	29.1	5.5	2011	46842	33397
Dacogen	decitabine	newly diagnosed de novo or secondary acute myeloid leukaemia (AML)	decitabine	patient's choice	14.8	8.4	30.8	20			2012	54366	34346
Caprelsa	vandetanib	aggressive and symptomatic medullary thyroid cancer (MTC) unresectable locally advanced or metastatic disease.	vandetanib	placebo	122	77.2	7		45	13	2012	67405	53533
Zelboraf	vemurafenib	BRAF-V600-mutation-positive unresectable or metastatic melanoma.	vemurafenib	dacarbazine	21.28	6.44	52.8	39.6	48.4	5.5	2012	119929	108236
Xalkori	crizotinib	anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung cancer (NSCLC).	crizotinib	pemetrexed or docetaxel	30.8	12			65.3	19.5	2012	79538	57427

Table 1. Characteristics of the 30 anticancer drugs included in the analysis.

BMJ Open

Xalkori	crizotinib	first-line treatment of adults with anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung cancer (NSCLC).	crizotinib	chemotherapy	43.6	28			74.4	45		79538	57427
Inlyta	axitinib	advanced renal-cell carcinoma (RCC)	axitinib	sorafenib	26.8	18.8			19.4	9.4	2012	57632	39295
Perjeta	pertuzumab	HER2-positive metastatic or locally recurrent unresectable breast cancer	pertuzumab + trastuzumab + docetaxel	placebo + trastuzumab + docetaxel	74	49.6			80.2	69.3	2013	51643	46608
Kadcyla	trastuzumab emtansine	HER2-positive, unresectable locally advanced or metastatic breast cancer	trastuzumab emtansine (tdm1)	lapatinib + capecitabine (lap+cap)	38.4	25.6	123.9	100.4			2013	87215	75877
Giotrif	afatinib	locally advanced or metastatic non- small cell lung cancer (NSCLC) with activating EGFR mutation(s);	afatinib (film- coated tablets)	pemetrexed (lyophilised powder) + cisplatin (solution for infusion)	44.56	27.6			56.1	22.6	2013	29528	21853
Stivarga	regorafenib	metastatic colorectal cancer (CRC)	regorafenib + best supportive care	placebo + best supportive care	8.4	7.4	28	21.6	1	0.4	2013	85800	77434
Stivarga	regorafenib	unresectable or metastatic gastrointestinal stromal tumors (GIST)	regorafenib + best supportive care	placebo + best supportive care	21	4			1.5	4.5		85800	77434
Tafinlar	dabrafenib	unresectable or metastatic melanoma with a BRAF V600 mutation.	dabrafenib	dacarbazine	27.6	10.8	72.8	62.4	59	24	2013	107935	87670
Zaltrap	aflibercept	metastatic colorectal cancer (MCRC)	aflibercept+folfiri	placebo+folfiri	27.6	18.7	54	48.4	19.8	11.1	2013	30576	27591
Xtandi	enzalutamide	metastatic castration resistant prostate cancer	enzalutamide (mdv3100)	placebo	33.2	11.6	74.4	54.4			2013	49184	31960
Imnovid	pomalidomid e	relapsed and refractory multiple myeloma	pom+ld-dex	hd-dex	15.7	8		34			2013	127985	101646
Lynparza*	olaparib	platinum-sensitive relapsed BRCA- mutated (germline and/or somatic) high grade serous epithelial ovarian, fallopian tube, or primary peritoneal cancer	olaparib	placebo	33.6	19.2	119.2	111.2			2014	70517	52142
Cyramza	ramucirumab	advanced gastric cancer or gastro- oesophageal junction adenocarcinoma with disease progression	ramucirumab+ paclitaxel	placebo+paclitaxel	17.6	11.6	38.4	29.6	27.9	16.1	2014	87360	78842
Mekinist	trametinib	unresectable or metastatic melanoma with a BRAF V600 mutation.	trametinb	chemotherapy (dtic or paclitaxel)	19.6	6	62.4	45.2	19	5	2014	62398	28157

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Imbruvica	ibrutinib	chronic lymphocytic leukaemia (CLL)	ibrutinib	chlorambucil		75.6			82.4	35.3		73805	51663
Zydelig	idelalisib	chronic lymphocytic leukaemia (CLL)	idelalisib + rituximab	placebo + rituximab		22			74.5	14.5	2014	48667	34067
Sylvant	siltuximab	multicentric Castlemans disease	siltuximab + best supportive care	placebo + best supportive care					37.7	3.8	2014	66104	29829
Keytruda	pembrolizum ab	advanced(unresectable or metastatic) melanoma	ipilimumab	pembrolizumab	22	11.2			33.7	11.9	2015	90400	81586
Opdivo	nivolumab	advanced (unresectable or metastatic) melanoma	nivolumab 3 mg/kg	dacarbazine	18.8	16.8			31.7	10.6	2015	81310	71181
Opdivo	nivolumab	locally advanced or metastatic non- small cell lung cancer (NSCLC)	nivolumab 3 mg/kg	docetaxel 75 mg/m2	9.32	16.8	48.8	37.4	19.2	12.4		81310	71181
Opdivo	nivolumab	advanced renal cell carcinoma	nivolumab 3 mg/kg	everolimus100mg	18.4	17.8	100	78.2	25.1	5.4		81310	in negotia tion
Lenvima	lenvatinib mesylate	progressive, locally advanced or metastatic, differentiated (papillary/follicular/Hrthle cell) thyroid carcinoma (DTC), refractory to radioactive iodine (RAI)	lenvatinib	placebo	73.2	14.4			64.8	1.5	2015	68433	58673
Cotellic	cobimetinib hemifumarat e	unresectable or metastatic melanoma with a BRAF V600 mutation	cobimetinib+vemu rafenib	placebo+vemurafenib	45.2	24			67.8	44.8	2015	75374	54420
Kyprolis	carfilzomib	multiple myeloma who have received at least one prior therapy.	carfilzomib + lenalidomide + dexamethasone	lenalidomide + dexamethasone (rd)	105.2	70.4			87.1	67.7	2015	75900	44525

Discounted Prices (Disc. Prices).

*: During the evaluation at the EMA, lymparza was found to be more effective in a subgroup of patients with a specific biomarker with the following outcome results: PFS lymparza: 44,8 w; PFS control: 17,2 w; OS lymparza: 139,6 w; OS control: 127,6.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

For peer review only

Figure, tables, titles and legends

Figure 1. Correlation between anticancer drug prices (officially negotiated) and health benefits

Figure 1a. Official negotiated price (ex-factory) vs difference in median OS (16 drugs are included in the analysis: 15 with a single indication and one with two indications)

Figure 1b. Official negotiated price (ex-factory) vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

Figure 1c. Official negotiated price (ex-factory) vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Figure 2. Correlation between anticancer drug prices (discounted) and health benefits

Figure 2a. Discounted price with additional compulsory rebates vs difference in median OS (16 drugs related to a single indication are included in the analysis)

Figure 2b. Discounted price with additional compulsory rebates vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

Figure 2c. Discounted price with additional compulsory rebates vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication and four with two indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Table 1. Characteristics of the 30 anticancer drugs included in the analysis.

Legend:

Progression Free Survival (PFS); Overall Survival (OS); Treatment Group (TRT); Control Group (CTR); Objective Response Rate (ORR); Official Negotiated Prices (Official Negot.); Discounted Prices (Disc. Prices).

*: During the evaluation at the EMA, lymparza was found to be more effective in a subgroup of patients with a specific biomarker with the following outcome results: PFS lymparza: 44,8 w; PFS control: 17,2 w; OS lymparza: 139,6 w; OS control: 127,6.

Supplementary Table 1. Details of the statistical analysis conducted

Supplementary Figures 1-4. Correlations in the sensitivity analysis conducted

Supplementary Figure 1a. Official negotiated price (ex-factory) vs percentage improvement in median Overall Survival (OS) (16 drugs are included in the analysis: 15 with a single indication and one with two indications)

Supplementary Figure 1b. Official negotiated price (ex-factory) vs percentage improvement in median Progression Free Survival (PFS) (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

Supplementary Figure 1c. Official negotiated price (ex-factory) vs percentage improvement in proportion of Objective Response Rate (ORR) (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

Figure 2. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), excluding negative outcome data (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

Supplementary Figure 3a. Official negotiated price (ex-factory) vs median Overall Survival (OS), considering only data from placebo-controlled trials. (7drugs related to a single indication are included in the analysis)

Supplementary Figure 3b. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), considering only data from placebo-controlled trials. (11 drugs are included in the analysis: 10 with a single indication and one with 2 indications)

Supplementary Figure 4a. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication, two with two indications and one with three indication)

Supplementary Figure 4b. Discounted price with additional compulsory rebates vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication and three with 2 indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Figure 1. Correlation between anticancer drug prices (officially negotiated) and health benefits

180x219mm (300 x 300 DPI)

BMJ Open

2b. Discounted price with additional compulsory rebates vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

2c. Discounted price with additional compulsory rebates vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication and four with two indications)

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

Figure 2. Correlation between anticancer drug prices (discounted) and health benefits

180x219mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	

Supplementary Table 1. Details of the statistical analysis conducted

Dependent variable	Independent variable 1	Independent variable 2	Number of drugs involved in the analysis	Type of linear regression	Intercept	Coefficient of the Independent variable 1	p value of the Independent variable 1	Correlation coefficient: r	Coefficient of Determination: R ²
Official negotiated price	ΔOS		17	simple	50332.71	1256.724	0.315	0.259	0.067
Discounted price	ΔOS		16	simple	44963.88	528.800	0.695	0.11	0.0113
Official negotiated price	ΔOS	tumor type	17	multiple	57765.99	2065.264	0.433		0.412
Discounted price	ΔOS	tumor type	16	multiple	55312.8	1391.947	0.614		0.257
Official negotiated price	% Δ OS		17	simple	56230.04	349.505	0.524	0.166	0.027
Discounted price	% Δ OS		16	simple	50127.28	42.986	0.937	0.022	0.0005
Official negotiated price	% Δ OS	tumor type	17	multiple	72407.98	292.048	0.766		0.362
Discounted price	% Δ OS	tumor type	16	multiple	68456.17	89.3936	0.930		0.2286
Official negotiated price	Δ PFS		29	simple	73741.11	-113.515	0.738	-0.065	0.004
Discounted price	Δ PFS		28	simple	58574.12	-137.018	0.687	-0.080	0.006
Official negotiated price	Δ PFS	tumor type	29	multiple	70454.93	-271.324	0.635		0.338
Discounted price	Δ PFS	tumor type	28	multiple	56293.38	-393.926	0.508		0.283
Official negotiated price	% Δ PFS		29	simple	68763.32	33.7994	0.427	0.153	0.024
Discounted price	% Δ PFS		28	simple	52823.84	36.2925	0.392	0.169	0.028
Official negotiated price	% Δ PFS	tumor type	29	multiple	66564.96	15.935	0.765		0.333
Discounted price	% Δ PFS	tumor type	28	multiple	51337.49	11.068	0.842		0.266
Official negotiated price	ΔORR		29	simple	67072.16	92.845	0.696	0.076	0.006
Discounted price	ΔORR		28	simple	53147.09	-14.550	0.953	-0.010	0.000
Official negotiated price	ΔORR	tumor type	29	multiple	62277.57	180.118	0.607		0.448
Discounted price	ΔORR	tumor type	28	multiple	42598.33	324.629	0.383		0.450
Official negotiated price	%ΔORR		27	simple	69838.7	0.563	0.918	0.020	0.000
Discounted price	%ΔORR		26	simple	53627.54	0.965	0.864	0.036	0.001
Official negotiated price	%ΔORR	tumor type	27	multiple	67262.18	1.719	0.814		0.436
Discounted price	%ΔORR	tumor type	26	multiple	51599.74	2.958	0.704		0.405

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

3b. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), considering only data from placebo-controlled trials. (11 drugs are included in the analysis: 10 with a single indication and one with 2 indications)

Progression Free Survival (PFS); Overall Survival (OS)

4a. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication, two with two indications and one with three indication)

4b. Discounted price with additional compulsory rebates vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication and three with 2 indications)

Progression Free Survival (PFS)

BMJ Open

BMJ Open

Anticancer drug prices and clinical outcomes: a crosssectional study in Italy

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-033728.R3
Article Type:	Original research
Date Submitted by the Author:	10-Nov-2019
Complete List of Authors:	Trotta, Francesco; Department of Epidemiology of the Regional Health Service Lazio, Mayer, Flavia; Istituto Superiore di Sanita Barone-Adesi, Francesco; Universita degli Studi del Piemonte Orientale Amedeo Avogadro, Esposito, Immacolata; Research and Health Foundation Punreddy, Ranadhir; Universita degli Studi del Piemonte Orientale Amedeo Avogadro Da Cas, Roberto; Italian National Institute of Health, National Centre for Epidemiology Traversa, Giuseppe; Italian National Institute of Health, National Centre for Epidemiology Perrone, Francesco; Istituto Nazionale Tumori IRCCS Fondazione Pascale Martini, Nello; Research and Health Foundation, Gyawali, Bishal ; Harvard Medical School Addis, Antonio; Department of Epidemiology of the Regional Health Service Lazio, ;
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Health economics, Health policy
Keywords:	Drug Costs, Antineoplastic Agents/therapeutic use, Treatment Outcome, Antineoplastic Agents

SCHOLARONE[™] Manuscripts

Article type: Original article

Title: Anticancer drug prices and clinical outcomes: a cross-sectional study in Italy

Authors: Francesco Trotta¹, Flavia Mayer², Francesco Barone-Adesi³, Immacolata Esposito⁴,

Ranadhir Punreddy³, Roberto Da Cas², Giuseppe Traversa², Francesco Perrone⁵, Nello Martini⁴,

Bishal Gyawali^{6,7}, Antonio Addis¹.

Affiliation:

- 1. Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
- 2. Italian National Institute of Health, Rome, Italy
- 3. University of Eastern Piedmont, Novara, Italy
- 4. Research and Health Foundation, Rome, Italy
- 5. National Cancer Institute, G. Pascale Foundation IRCCS, Naples, Italy
- 6. Program on Regulation, Therapeutics and Law, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
- 7. Department of Oncology, and Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada

Corresponding Author:

Antonio Addis Department of Epidemiology Lazio Regional Health Service, Rome, Italy Via Cristoforo Colombo 112/Pal.A 00143 Roma/ Rome Italy Tel: +39 06.99722-139 Fax: +39 06.99722111 ORCID 0000-0003-0962-9959 agmaddis@gmail.com

This research received no specific grant from any funding agency in the public, commercial or notfor-profit sectors

contributorship statement

FT, NM and AA conceptualized the study; FT, AA, NM, FM, FBA, GT, and RDC designed the study; FBA, RP, IE and NM were in charge of data extraction and quality control; FM, RDC, and FT performed the data analysis; FT, RDC, FM, GT, BG, FP and AA drafted the manuscript; all the authors contributed to the discussion and the interpretation of results, and reviewed the final version of the manuscript. All authors approved the final manuscript as submitted.

The authors have no conflicts of interest relevant to this article to disclose and all authors work for public Universities, Public Institutions or non-profit organizations

Running head. Anticancer drug prices and clinical outcomes in ItalyWord Count: 2950

Abstract:

Objective To investigate whether the prices of new anticancer drugs correlated with their relative benefit despite negotiation.

Design Retrospective cross-sectional study correlating new anticancer drugs prices with clinical outcomes.

Setting We did a retrospective cross-sectional study including all new anticancer drugs approved by the European Medicines Agency (2010-2016) and reimbursed in Italy.

Main Outcome(s) and Measure(s) Information on clinical outcomes - in terms of median Overall Survival (OS), median Progression Free Survival (PFS) and Objective Response Rate (ORR) - was extracted from pivotal trials as reported in the European Public Assessment Reports available on the EMA website. Cost of a full course treatment was estimated on negotiated official and discounted prices. Regression coefficients β , their levels of significance p and the coefficients of determination R² were estimated adjusting by tumour type.

Results Overall, 30 new anticancer drugs (with 35 indications) were available for analysis. Where data on Overall Survival were available we observed no correlation between the improvement in median OS (in weeks) and negotiated price (R^2 = 0.067, n = 16 drugs for 17 indications). When the clinical outcomes were expressed as improvements in median PFS or ORR, 25 drugs (29 indications) were available for analysis, and again, there was no correlation with prices (R^2 = 0.004 and 0.006, respectively).

BMJ Open

Conclusions and Relevance: Our results suggest that the prices of anticancer drugs in Italy do not reflect their therapeutic benefit. Drug price negotiations, which is mandatory by law in Italy, do not seem to ensure that prices correlate with clinical benefits provided by cancer drugs. These results call for further efforts to establish the standard determinants of drug prices available at the time of negotiation. These findings need to be confirmed in other countries where price negotiations are in place. Moreover, further investigations may verify whether outcome data obtained after drug marketing would improve the correlation between prices and therapeutic benefit.

Strengths and limitations of this study,

- This study is the first attempt to evaluate whether there were better correlations between cancer drug prices and clinical outcomes in a setting where central price negotiations are mandatory for every new medicine.
- This understanding is important for cancer policy decisions.
- In our analysis, the relationship between the clinical outcome and cost of anticancer drugs was ascertained by a simple linear regression model.
- Clinical outcome, which was the dependent variable, was expressed as absolute or percent differences in outcomes between treatment and control groups.
- The main limitations of our study concern data completeness on clinical outcome and price. We used, as an estimate of benefit, data from pivotal trials retrieved from EPARs.

Background

High costs of cancer drugs and resulting financial toxicity to cancer patients are now a wellrecognized problem in cancer policy throughout the world [1-8]. Various solutions are being proposed to address this problem, of which price negotiations with pharmaceutical companies is proposed as an important strategy especially in the USA [9-11]. Because the Medicare is not allowed to negotiate prices with companies, despite being mandated to cover for every U.S. Food and Drug Administration (FDA) approved drug, various experts have argued that this is the reason for high drug prices in the USA. Indeed, cancer drug prices far exceed the costs of their development [12];such negotiations might help to lower the prices of cancer drugs as evidenced by lower cost of cancer drugs in other developed countries compared with the USA.

However, little is known about if such negotiations would lead to better correlation between cancer drug prices and the benefits they provide. Studies have shown that drug prices do not correlate with clinical benefits for cancer drugs approved by the FDA, even though such studies have not taken central price negotiations into account [13,14]. Countries such as the United Kingdom and Italy negotiate prices and hence, the correlations might be different.

In Italy, drug price negotiation based on cost-effectiveness evaluation has been mandatory since 2001 for all medicines reimbursed by the National Health Service (NHS) [15,16]. We analysed the correlation between the prices of cancer drugs in Italy with their clinical outcomes to test the hypothesis that central price negotiations leads to better alignment of prices and benefits.

Methods:

Identification of the study sample

All new drugs approved by the EMA via a centralized procedure between January 2010 and June 2016 for the treatment of either solid or haematologic cancers were initially identified. Generics, biosimilars, interferons and granulocyte-colony stimulating factors (G-CSFs) were excluded. Only anticancer drugs with pivotal trials based on overall survival (OS), progression-free survival (PFS) or objective response rate (ORR) and with prices that were officially negotiated in Italy by 31st December 2016 were included in the cohort for analyses.

Data extraction

Information on the clinical outcomes (in terms of median OS, median PFS, ORR) was extracted by two co-investigators (FBA and RP) from pivotal trials that compared new treatments with controls as reported in the European Public Assessment Reports - EPARs (summary table of the main study, Section 2.5.2) publicly available on the EMA website (www.ema.europa.eu). Survival times were expressed in weeks, and the reported OS and PFS were transformed when necessary. Information on therapeutic indication and tumour type were also retrieved.

Drug prices

The cost of a full course or 1-year treatment was estimated by two co-investigators (NM and IE) on the basis of the negotiated official ex-factory price (in euros) of drug packages, as published in the Official Gazette of the Italian Republic (<u>www.gazzettaufficiale.it</u>) and taking into account the posology as reported in the Summary of Product Characteristics (SPC). To compare prices of drugs with different schedules, in the text we refer to drug prices as the cost of a full course or a 1-year treatment. A further estimate took into account additional compulsory rebates [17] or extra-discounts that were agreed with pharmaceutical companies; this information is confidential to the public but is released to procurement stations within the Italian NHS (e.g., regions, hospitals, and local health units).

Statistical analysis

The following variables were extracted and analysed descriptively: year of approval, therapeutic indication, type of treatment and control groups, outcome data, official and confidential costs per treatment (1 year or a full course) and regulatory information (conditional/under exceptional circumstances approval, or orphan drug status).

The relationship between the clinical outcomes and cost of anticancer drugs was ascertained by a simple linear regression model. Clinical outcome, which was the dependent variable, was expressed as absolute or percent differences in outcomes between treatment and control groups. Regression coefficients β , their levels of significance p and the coefficients of determination R² were reported for each model.

We also performed several sensitivity analyses to test the robustness of the results. Specifically, we performed multiple linear regression with tumour type as the independent variable to take into account potential differences due to tumour characteristics. Moreover, we also repeated the analysis after excluding negative outcome differences (in two cases, one of the outcomes was inferior in the group receiving the new drug than in the comparison group) and actively controlled trials (considering only placebo-controlled trials). Subgroup analysis by tumour type was also attempted as exploratory analysis when a minimum number of two anticancer drugs within the same tumour type setting were observed. Outlier cases were not excluded from the analyses, but their impact was evaluated and reported when relevant as a separate analysis. All statistical analyses were performed using STATA (Statacorp, version 14.0)

Patient and public involvement

Patients have not been involved in the development of the research question or the design of this study. However, results of this analysis will be disseminated throughout public conferences, with statements summarizing our results, and with an open access to the published report posted in our institutional websites

3
4
5
6
7
, o
0
9
10
11
12
13
14
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
27
20
29
30
31
32
33
31
24
35
36
37
38
39
40
40 41
41
42
43
44
45
46
47
77 10
4ð
49
50
51
52
53
57
54 57
55
56
57

58 59

Results

From 2010 to mid-2016, 45 new anticancer drugs for 56 different oncology indications were approved via centralized procedures by the EMA. For 40 new anticancer drugs (47 indications), the basis for the approval was a pivotal trial adopting OS, PFS or ORR as a primary outcome; the price negotiation was completed by December 2016 for only 30 new anticancer drugs (35 indications) which are included in our analysis (Table 1). Seven drugs received orphan drug status by the EMA and two (vandetanib and crizotinib) received conditional approval. Of the 35 oncology indications tested in 35 different pivotal trials which were all controlled clinical trials, the commonest indications were melanoma (7 out of 35), followed by haematological cancer (6 out of 35) and non-small cell lung cancer (4 out of 35). In 15 such trials (43%), placebo was used as the control arm. Of the 35 indications, data on OS, PFS and ORR were available for 17, 29 and 29 indications respectively. Each drug-indication pair contributed to one or more of these analyses, depending on which outcomes were reported in the EPAR.

In the treatment groups, the median improvement in the OS and PFS were 11.4 weeks (IQR 8.8-17.2; min 13.2; max 23.5) and 12.8 weeks (IQR 6.4-17; min -7.48; max 58.8), respectively; median ORR improvement in the treatment group was 21.8% (IQR 10-34.6; min -3; max 63.3). The reported ranges have negative minimum values since in two cases - nivolumab for NSCLC and regorafenib for gastrointestinal stromal tumours - the experimental treatment had a negative effect on one of the outcomes compared to the control group (in terms of PFS for nivolumab and ORR for regorafenib). The median negotiated price for a 1-year treatment was 72,392 euros (IQR 53,819-85,800; min 4,942; max 142,785), which was further discounted by 25% (on average) after applying confidential rebates. For all anticancer drugs but ipilimumab the price was calculated as 1-year treatment since the posology reported in the Summary of Product Characteristics (SPC) reported that the treatment should

Page 9 of 38

BMJ Open

continue as long as clinical benefit is observed or until unacceptable toxicity occurs. In the case of ipilimumab the price was calculated as a course of 4 doses as reported in the SPC.

The official (ex-factory) price of new anticancer drugs and absolute clinical outcomes showed no correlation (Figure 1a-c). The relationship between the improvement in median OS (in weeks) and negotiated price was estimated for 16 drugs (17 indications), and no correlation was observed (R^{2} = 0.067). When clinical outcomes were expressed as absolute advantage in median PFS or ORR, 25 drugs (29 indications) were available for analysis, and in these cases, no correlation was observed (R^{2} = 0.004 and 0.006, respectively).

Repeating the analyses and taking into account the additional confidential rebates, which are compulsory for hospital procurement, no improvement in the benefit/price relationships was highlighted (Figure 2a-c). These findings also remained unchanged when the analyses were repeated with adjustments for tumour type (Supplementary Table 1) or when clinical outcome was expressed as a percentage of improvement instead of as an absolute difference (Supplementary Figure 1a-c). Sensitivity analyses that excluded negative improvements in outcomes over a control group (Supplementary Figure 2) and considered only data from placebo controlled trials (Supplementary Figure 3a,b) confirmed the main analysis. The exploratory subgroup analyses by tumour type did not identify specific positive correlation patterns depending on tumour setting (Supplementary Figure 4

a,b).

Discussion

This study is the first attempt to evaluate whether there were better correlations between cancer drug prices and clinical outcomes in a setting where central price negotiations are mandatory for every new medicine. Our study gave unexpected results to the research question, highlighting no relationships between cost of cancer drugs and benefits. Moreover, all pre-specified sensitivity and subgroup analyses confirmed the main findings. This finding will have important policy implications both for countries like USA where price negotiations are absent and for other countries like Italy where price negotiations do exist.

In our study, the correlation between drug costs and clinical outcomes was even lower than the ones previously noted in the US context [13,14], showing that negotiations did not tilt the relationship between drug prices and benefit positively. Thus, higher drug pricing remains despite the Italian legislative environment, where approval based on cost-effectiveness analysis and price negotiations have been mandatory by law since 2001 [15,16]. This finding may cast doubts on the role of the negotiation itself. However, it is important to understand that countries like Italy that negotiate drug prices do such negotiations only for binary decisions of approval or no-approval, not taking into account, during negotiation, a clear correlation between prices and benefits. This understanding is important for cancer policy decisions.

Indeed, there is no legal policy in any country to negotiate prices differently for drugs approved on the basis of surrogate endpoints versus survival outcomes, or drugs that improve survival in days, versus those that improve survival in months or drugs with immature benefit risk profiles [18-22]. Although steps in the right direction, in lack of such policy, the value frameworks proposed by organizations such as ASCO, ESMO or NCCN have become little more than intellectual exercises [23-26].

BMJ Open

Another reason price negotiations did not achieve better price-value correlations is that because of the global market of drugs, each single country - although large – only represents a small portion of the consumer market. Thus, companies "wield the stick", setting the maximum price that the market will bear [27]. In addition, in Italy, no threshold for incremental cost-effectiveness ratio (ICER) has been determined; thus, no limit is in place to be used as a decision rule in resource allocation at the time of negotiation/reimbursement decisions. The lack of such kind of cut-off might have contributed to the negative results in our study. However, we recognize that even when a threshold for ICER is well established, such as in the UK [28], continuous exceptions have been allowed in the case of anticancer drugs. For example, an ad hoc fund established in 2010 (i.e., the Cancer Drug Fund) was recently dismissed by the Parliament because it did not deliver meaningful value to patients or society [29].

In the EU context (where newer anticancer drugs are approved by EMA without considering the added-value or cost-effectiveness), the complexity further increases because once a marketing authorization is granted, it may become difficult to manage the reimbursement issue at a national level [30]. Moreover, it is also difficult for payers (NHS/insurance) to defend the thesis against the public opinion that an anticancer drug cannot be reimbursed because it is too expensive [30, 31]. Indeed, as our study shows, the confidential discounts following negotiations between a member state and a company do not ameliorate the correlation between treatment costs and benefits even though they reduce absolute drug prices.

Another factor that negatively influences the contractual power of negotiation is non-transparent information on drug prices across countries. Difficulties in retrieving full information on prices have been already recognized in a recent survey comparing prices of anticancer drugs in 16 EU countries,

BMJ Open

Australia and New Zealand [32]. Vogler et al. found that price information is scarce and not disclosed due to confidential discounts or MEAs, calling for higher transparency. The authors state that it is in the interest of policy makers to remove clauses limiting disclosure on price information because they risk overpaying when setting prices through external price referencing. This concern might be relevant in the Italian context since the negotiation procedure for reimbursement takes into account the price in other EU countries as well as the price of similar products within the same pharmacotherapeutic group [33].

We believe that two partly independent approaches could be adopted by policy makers to achieve a better balance between cancer drug prices and benefits. First, price negotiations should be more strictly based on the level of evidence as well as the magnitudes of benefit. An ICER measure (such as QALY) should represent a threshold for reimbursement, thus setting a starting point for price negotiation and adjusting the ICER threshold based on the magnitude of the relative benefit reached. If the information on the relative value is not available at the time of approval, comparisons can be performed using indirect techniques, whereas after entering the market, payers should play a major role in supporting the evidence generating process.

The second approach that could attain lower prices would require an increased transparency on the costs of drug development process, including the relative contributions from academia and public sector to the development of a drug [34-38]. For instance, research conducted to evaluate efforts of drug development processes highlighted that about half of the most transformative drugs approved by the FDA had substantial contributions to their development by academic researchers supported by government funding [34,35]; in addition, it has been estimated that the cost of late clinical development takes a limited part of the whole process [36]. It is probably the right time to appropriately acknowledge the contributions of publicly funded research during drug price negotiation with companies. Often, comparative effectiveness research is funded by public

BMJ Open

institutions to test different treatments in real practice on robust outcomes with longer follow up or special populations [37,38]. The findings of these studies should be linked to a continuous price renegotiation over the life cycle of a product.

Other approaches identified as possible solutions to keep the health system sustainable address the general governance of the system, i.e., when the price is already set. In fact, a price-volume approach [39] or indication-based pricing [40,41] have been modelled, each presenting pros and cons. Moreover, given that different oncology settings appear to be oligopolistic, thus refraining from price competition, another possible solution comes from national/regional tenders among therapeutic categories when more alternatives are available [42].

The main limitations of our study concern data completeness on clinical outcome and price. We used, as an estimate of benefit, data from pivotal trials retrieved from EPARs. Moreover, we are not aware if further (more robust) data became available at a later stage when the price was negotiated at the national level. Thus, we cannot exclude that the correlation between drug prices and therapeutic benefit might improve taking into account data acquired after the marketing of anticancer drugs.

Another important limitation is that we have not considered quality of life outcomes as another metric of clinical benefit. Furthermore, a recent study has shown that quality of life outcomes are not routinely collected or published, and that the tools used to measure quality of life are varied to have a uniform metric for comparison [43]. Although we have included surrogate measures such as PFS or ORR as clinical outcomes in our analysis because they were considered as the basis for approval by the regulatory agency, these surrogate measures do not always correlate with true clinical benefits in terms of improved survival or improved quality of life [43,44]. Regarding the price estimate, we estimated the treatment costs for 1-year treatment or for the total course in the case of ipilimumab

where the treatment course lasts less than 1 year. However, the exclusion of ipilimumab would not alter the main findings.

Another factor that might have impacted the price estimation is the rebate obtained at the regional/local level following drug tenders. This information was not available for the analyses and would have been not generalizable at the national level. Moreover, additional savings were expected "a posteriori" from the Managed Entry Agreements in place in Italy (whose information is not publicly available) and were not considered in the analyses.

Our study is a retrospective cross-sectional correlation study that aimed at evaluating whether central price negotiation (mandatory by law in Italy) leads to better alignment of prices and the benefits known at the time of drug approval. This means that our analysis is not aimed at comparing costs and outcomes within drug classes, as a typical cost effective study, and we never intended to assess the added values of the approved drugs in the context of all other drugs sharing the same indication. The "population"/cohort approach that we adopted has the intrinsic limitation of including drugs approved for different indications or different cancer types (with various incidence/prevalence) based on different clinical data packages. The consequent heterogeneity stemming from this approach was resolved adjusting the correlation analyses by tumour type or conducting several sub-analyses. Following this approach, we found results consistent with primary findings thus confirming the robustness of methods and results.

Conclusion

Our results suggest that price negotiations for approval decisions alone may not bring balance between prices and benefits of anticancer drugs. Based on the limited outcome data available at the time of reimbursement decisions (OS; PFS; ORR), prices of anticancer drugs do not reflect their therapeutic benefit. Other strategies, such as value based price negotiations, price negotiations strictly

based on strength of evidence and price transparencies may be necessary to better achieve the drug prices and benefits balance. These results need to be confirmed in other countries where a national price negotiation exists.

<text>

Contributorship statement

FT, NM and AA conceptualized the study; FT, AA, NM, FM, FBA, GT, and RDC designed the study; FBA, RP, IE and NM were in charge of data extraction and quality control; FM, RDC, and FT performed the data analysis; FT, RDC, FM, GT, BG, FP and AA drafted the manuscript; all the authors contributed to the discussion and the interpretation of results, and reviewed the final version of the manuscript. All authors approved the final manuscript as submitted.

Competing interests

The authors have no competing of interest relevant to this article to disclose and all authors works for public Universities, Public Institutions or not for profit Organizations. ot iv.

Funding

None.

Data Availability

All data presented in the analysis have been extracted by public documents (EPARs for each drug outcomes and clinical data; regional and national administrative official documents (i.e. Gazzetta Ufficiale for prices). Data are available upon reasonable request

3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
50 27
3/
38
39
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
53
54
55
55
20
5/
58
59
60

References:

1)	Quintiles IMS Institute. Outlook for Global Medicines through 2021. December 2016. 1-54.
	http://www.imshealth.com/en/thought-leadership/quintilesims-
	institute/reports/outlook_for_global_medicines_through_2021

- 2) Ghinea N, Lipworth W, Kerridge I. Propaganda or the cost of innovation? Challenging the high price of new drugs. BMJ. 2016; 352: i1284, doi: 10.1136/bmj.i1284.
- European Commission Press release. Antitrust: Commission opens formal investigation into Aspen Pharma's pricing practices for cancer medicines. Brussels, 15 May 2017. <u>http://europa.eu/rapid/press-release_IP-17-1323_en.htm</u>
- 4) Gordon N, Stemmer SM, Greenberg D, et al. Trajectories of Injectable Cancer Drug Costs After Launch in the United States. J Clin Oncol. 2018; 36: 319-325.
- Narang AK, Nicholas LH. Out-of-Pocket Spending and Financial Burden Among Medicare Beneficiaries With Cancer. JAMA Oncol. 2017; 3:757-765.
- Shankaran V, Ramsey S. Addressing the Financial Burden of Cancer Treatment: From Copay to Can't Pay. JAMA Oncol. 2015; 1:273-4.
- Liz Szabo. Cancer patients skipping medicines or delaying treatment due to high drug prices. STAT 15 March, 2017. <u>https://www.statnews.com/2017/03/15/cancer-patients-drug-prices/</u>
- de Souza JA, Conti RM. Mitigating Financial Toxicity Among US Patients With Cancer. JAMA Oncol. 2017; 3: 765-766.
- Kesselheim AS, Avorn J, Sarpatwari A. The High Cost of Prescription Drugs in the United States: Origins and Prospects for Reform. JAMA. 2016; 316: 858-71.
- Hwang TJ, Kesselheim AS, Sarpatwari A. Value-Based Pricing and State Reform of Prescription Drug Costs. JAMA. 2017; 318: 609-610,

- 11) Fralick M, Avorn J, Kesselheim AS. The Price of Crossing the Border for Medications. NEngl J Med. 2017; 377: 311-313.
 - 12) Tay-Teo K1,Ilbawi A, Hill SR. Comparison of Sales Income and Research and Development Costs for FDA-Approved Cancer Drugs Sold by Originator Drug Companies. JAMA Netw Open. 2(1):e186875, 2019. doi: 10.1001/jamanetworkopen.2018.6875.
- 13) Mailankody S, Prasad V. Five Years of Cancer Drug Approvals: Innovation, Efficacy, and Costs. JAMA Oncol. 2015; 1: 539-40, Erratum in: JAMA Oncol. 2015; 1: 544.
- 14) Vivot A, Jacot J, Zeitoun JD, et al. Clinical benefit, price and approval characteristics of FDA-approved new drugs for treating advanced solid cancer, 2000-2015. Ann Oncol. 2017; 28:1111-1116.
- 15) Comitato Interministeriale per la Programmazione Economica. Individuazione dei criteri per la contrattazione del prezzo dei farmaci (Deliberazione n.3/2001). Official Gazette of the Italian Republic. N. 73 del 28-03-2001.

http://www.gazzettaufficiale.it/eli/id/2001/03/28/001A3188/sg

16) Italian Parliament. Legge 24 novembre 2003, n. 326. Conversione in legge, con modificazioni, del decreto-legge 30 settembre 2003, n. 269, recante disposizioni urgenti per favorire lo sviluppo e per la correzione dell'andamento dei conti pubblici. Official Gazette of the Italian Republic. N. 274; 25 November 2003.
http://www.parlamento.it/parlam/leggi/033261.htm

17) Italian Parliament . Legge 27 December 2006, n. 296. Art. 1 comma 796, lettera g).
Disposizioni per la formazione del bilancio annuale e pluriennale dello Stato (finanziaria 2007). Official Gazette of the Italian Republic. N. 299; 27 December 2006, Suppl ord. n. 244.

BMJ Open

18) Apolone G, Joppi R, Bertelè V, et al. Ten years of marketing approvals of anticancer drugs
in Europe: regulatory policy and guidance documents need to find a balance between
different pressures. Br J Cancer. 2005; 93: 504-9.
19) Bertele' V, Banzi R, Capasso F, et al. Haematological anticancer drugs in Europe: any added
value at the time of approval? Eur J Clin Pharmacol. 2007; 63: 713-9.
20) Trotta F, Apolone G, Garattini S, et al. Stopping a trial early in oncology: for patients or for
industry? Ann Oncol. 2008; 19: 1347-53. doi: 10.1093/annonc/mdn042. Epub 2008 Feb 27
21) Kim C, Prasad V. Cancer Drugs Approved on the Basis of a Surrogate End Point and
Subsequent Overall Survival: An Analysis of 5 Years of US Food and Drug Administration
Approvals. JAMA Intern Med. 2015; 175: 1992-4.
22) Banzi R, Gerardi C, Bertele' V, et al. Approvals of drugs with uncertain benefit-risk profiles
in Europe. Eur J Intern Med. 2015; 26: 572-84.
23) Salas-Vega S, Iliopoulos O, Mossialos E. Assessment of Overall Survival, Quality of Life,
and Safety Benefits Associated with New Cancer Medicines. JAMA Oncol. 2017; 3:382-
390.
24) Wise PH. Cancer drugs, survival, and ethics. BMJ 2016; 355: i5792
https://doi.org/10.1136/bmj.i5792 (Published 09 November 2016)
25) Del Paggio JC, Sullivan R, Schrag D, et al. Delivery of meaningful cancer care: a
retrospective cohort study assessing cost and benefit with the ASCO and ESMO
frameworks. Lancet Oncol. 2017; 18: 887-894.
26) Sobrero A1, Bruzzi P. Incremental advance or seismic shift? The need to raise the bar of
efficacy for drug approval. J Clin Oncol. 2009; 27:5868-73.
27) Ramsey SD, Lyman GH, Bangs R. Addressing Skyrocketing Cancer Drug Prices Comes
with Trade-offs: Pick Your Poison. JAMA Oncol. 2016; 2: 425-6.

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
21
∠ı วว
22
23
24
25
26
27
28
29
30
31
27
32 33
33
34
35
36
37
38
39
40
41
<u>⊿</u> 2
+∠ ∕\?
43
44
45
46
47
48
49
50
51
52
52
55
54 55
55
56
57
58
59
60

28) Dillon A. Carrying NICE over the threshold. NICE. 19 February 2015. https://www.nice.org.uk/news/blog/carrying-nice-over-the-threshold

29) Aggarwal A, Fojo T, Chamberlain C, et al. Do patient access schemes for high-cost cancer drugs deliver value to society? -lessons from the NHS Cancer Drugs Fund. Ann Oncol.

2017; 28: 1738–1750. doi: 10.1093/annonc/mdx110

- 30) Cohen D. Cancer drugs: high price, uncertain value. BMJ. 2017; 359: j4543.
- 31) Prasad V. Do cancer drugs improve survival or quality of life? BMJ. 2017; 359: j4528
- 32) Vogler S, Vitry A, Babar ZU. Cancer drugs in 16 European countries, Australia, and New Zealand: a cross-country price comparison study. Lancet Oncol. 2016; 17: 39-47,
- 33) Folino-Gallo P, Montilla S, Bruzzone M, et al. Pricing and reimbursement of pharmaceuticals in Italy. Eur J Health Econ. 2008; 9:305-10.
- 34) Stevens AJ, Jensen JJ, Wyller K, et al. The role of public-sector research in the discovery of drugs and vaccines. N Engl J Med. 2011; 364: 535-41.
- 35) Kesselheim AS, Tan YT, Avorn J. The roles of academia, rare diseases, and repurposing in the development of the most transformative drugs. Health Aff (Millwood). 2015; 34: 286-93.
- 36) Martin L, Hutchens M, Hawkins C, et al. How much do clinical trials cost? Nat Rev Drug Discov. 2017; 16: 381-382.
- 37) Italian Medicines Agency (AIFA) Research & Development Working Group. Feasibility and challenges of independent research on drugs: the Italian medicines agency (AIFA) experience. Eur J Clin Invest. 2010; 40: 69-86.
- 38) Traversa G, Masiero L, Sagliocca L, et al. Italian program for independent research on drugs: 10-year follow-up of funded studies in the area of rare diseases. Orphanet J Rare Dis. 2016; 11: 36.

 39) Messori A. Application of the Price-Volume Approach in Cases of Innovative Drugs Whe Value-Based Pricing is Inadequate: Description of Real Experiences in Italy. Clin Drug Investig. 2016; 36: 599-603. 40) Bach PB. Indication-specific pricing for cancer drugs. JAMA. 2014; 312:1629-30. 41) Chandra A. Carthuraita C. The Economics of Indication Dated Drug Driving. N Evel 1 Materia.
 Value-Based Pricing is Inadequate: Description of Real Experiences in Italy. Clin Drug Investig. 2016; 36: 599-603. 40) Bach PB. Indication-specific pricing for cancer drugs. JAMA. 2014; 312:1629-30. 41) Chandra A. Corthuraita C. The Economics of Indication David Drug Driving NJ Engl LMa
Investig. 2016; 36: 599-603. 40) Bach PB. Indication-specific pricing for cancer drugs. JAMA. 2014; 312:1629-30.
40) Bach PB. Indication-specific pricing for cancer drugs. JAMA. 2014; 312:1629-30.
41) Chandres A. Conthusite C. The Economics of Indication Decod Drug Driving N Engl I Ma
+1) Chandra A, Garthwalte C. The Economics of Indication-Based Drug Pricing. N Engl J Me
2017; 377:103-106
42) Kantarjian H, Rajkumar SV. Why are cancer drugs so expensive in the United States, and
what are the solutions? Mayo Clin Proc. 2015; 90:500-4
43) Hwang TJ, Gyawali B. Association between progression-free survival and patients' quality
of life in cancer clinical trials. Int J Cancer. 2019; 144:1746-1751. doi: 10.1002/ijc.31957.
14) Prasad V, Kim C, Burotto M, Vandross A. The Strength of Association Between Surrogate
End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses
JAMA Intern Med. 2015; 175:1389-98. doi: 10.1001/jamainternmed.2015.2829.

to perteries only

BMJ Open

Medicine Name	Active Substance	Clinical setting	Treatment group	Control group	PFS TRT (median in weeks)	PFS CRT (median in weeks)	OS TRT (median in weeks)	OS CRT (median in weeks)	ORR TRT (%)	ORR CRT (%)	Year First Auth.	Official negot. price (€)	Disc. price (€)
Teysuno	tegafur / gimeracil / oteracil	advanced gastric cancer in combination with cisplatin.	teysuno 25 mg/m + cisplatin 75 mg/m2	5-fluorouracil 1000 mg/m2 /24 + cisplatin 100 mg/m2			34.4	31.6			2011	4942	3479
Jevtana	cabazitaxel	hormone-refractory metastatic prostate cancer .	cabazitaxel + prednisone	mitoxantrone + prednisone	11.2	5.6	60.4	50.8	14.4	4.4	2011	52983	38254
Yervoy	ipilimumab	advanced (unresectable or metastatic) melanoma	ipilimumab + placebo	peptide vaccine glycoprotein 100 (gp100)	11.04	11.04	39.8	25.8	5.7	1.5	2011	71400	45107
Votubia	everolimus	Renal angiomyolipoma associated with tuberous sclerosis complex (TSC)	everolimus	placebo		45.48			41.8	0	2011	66521	41424
Votubia	everolimus	Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC)	everolimus	placebo					34.6	0		53216	33139
Halaven	eribulin	locally advanced or metastatic breast cancer	eribulin 1.23 mg/m2 (equivalent to 1.4 mg/m2 eribulin mesylate)	treatment of physician's choice	16.14	9.71	57.57	45.86	12.2	4.7	2011	32300	28130
Zytiga	abiraterone acetate	metastatic castration-resistant prostate cancer	abiraterone acetate	placebo	22.4	14.4	68.9	48.7	29.1	5.5	2011	46842	33397
Dacogen	decitabine	newly diagnosed de novo or secondary acute myeloid leukaemia (AML)	decitabine	patient's choice	14.8	8.4	30.8	20			2012	54366	34346
Caprelsa	vandetanib	aggressive and symptomatic medullary thyroid cancer (MTC) unresectable locally advanced or metastatic disease.	vandetanib	placebo	122	77.2	7		45	13	2012	67405	53533
Zelboraf	vemurafenib	BRAF-V600-mutation-positive unresectable or metastatic melanoma.	vemurafenib	dacarbazine	21.28	6.44	52.8	39.6	48.4	5.5	2012	119929	108236
Xalkori	crizotinib	anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung cancer (NSCLC).	crizotinib	pemetrexed or docetaxel	30.8	12			65.3	19.5	2012	79538	57427

Table 1. Characteristics of the 30 anticancer drugs included in the analysis.

BMJ Open

Xalkori	crizotinib	first-line treatment of adults with anaplastic lymphoma kinase (ALK) positive advanced non-small cell lung cancer (NSCLC).	crizotinib	chemotherapy	43.6	28			74.4	45		79538	57427
Inlyta	axitinib	advanced renal-cell carcinoma (RCC)	axitinib	sorafenib	26.8	18.8			19.4	9.4	2012	57632	39295
Perjeta	pertuzumab	HER2-positive metastatic or locally recurrent unresectable breast cancer	pertuzumab + trastuzumab + docetaxel	placebo + trastuzumab + docetaxel	74	49.6			80.2	69.3	2013	51643	46608
Kadcyla	trastuzumab emtansine	HER2-positive, unresectable locally advanced or metastatic breast cancer	trastuzumab emtansine (tdm1)	lapatinib + capecitabine (lap+cap)	38.4	25.6	123.9	100.4			2013	87215	75877
Giotrif	afatinib	locally advanced or metastatic non- small cell lung cancer (NSCLC) with activating EGFR mutation(s);	afatinib (film- coated tablets)	pemetrexed (lyophilised powder) + cisplatin (solution for infusion)	44.56	27.6			56.1	22.6	2013	29528	21853
Stivarga	regorafenib	metastatic colorectal cancer (CRC)	regorafenib + best supportive care	placebo + best supportive care	8.4	7.4	28	21.6	1	0.4	2013	85800	77434
Stivarga	regorafenib	unresectable or metastatic gastrointestinal stromal tumors (GIST)	regorafenib + best supportive care	placebo + best supportive care	21	4			1.5	4.5		85800	77434
Tafinlar	dabrafenib	unresectable or metastatic melanoma with a BRAF V600 mutation.	dabrafenib	dacarbazine	27.6	10.8	72.8	62.4	59	24	2013	107935	87670
Zaltrap	aflibercept	metastatic colorectal cancer (MCRC)	aflibercept+folfiri	placebo+folfiri	27.6	18.7	54	48.4	19.8	11.1	2013	30576	27591
Xtandi	enzalutamide	metastatic castration resistant prostate cancer	enzalutamide (mdv3100)	placebo	33.2	11.6	74.4	54.4			2013	49184	31960
Imnovid	pomalidomid e	relapsed and refractory multiple myeloma	pom+ld-dex	hd-dex	15.7	8		34			2013	127985	101646
Lynparza*	olaparib	platinum-sensitive relapsed BRCA- mutated (germline and/or somatic) high grade serous epithelial ovarian, fallopian tube, or primary peritoneal cancer	olaparib	placebo	33.6	19.2	119.2	111.2			2014	70517	52142
Cyramza	ramucirumab	advanced gastric cancer or gastro- oesophageal junction adenocarcinoma with disease progression	ramucirumab+ paclitaxel	placebo+paclitaxel	17.6	11.6	38.4	29.6	27.9	16.1	2014	87360	78842
Mekinist	trametinib	unresectable or metastatic melanoma with a BRAF V600 mutation.	trametinb	chemotherapy (dtic or paclitaxel)	19.6	6	62.4	45.2	19	5	2014	62398	28157

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Imbruvica	ibrutinib	chronic lymphocytic leukaemia (CLL)	ibrutinib	chlorambucil		75.6			82.4	35.3		73805	51663
Zydelig	idelalisib	chronic lymphocytic leukaemia (CLL)	idelalisib + rituximab	placebo + rituximab		22			74.5	14.5	2014	48667	34067
Sylvant	siltuximab	multicentric Castlemans disease	siltuximab + best supportive care	placebo + best supportive care					37.7	3.8	2014	66104	29829
Keytruda	pembrolizum ab	advanced(unresectable or metastatic) melanoma	ipilimumab	pembrolizumab	22	11.2			33.7	11.9	2015	90400	81586
Opdivo	nivolumab	advanced (unresectable or metastatic) melanoma	nivolumab 3 mg/kg	dacarbazine	18.8	16.8			31.7	10.6	2015	81310	71181
Opdivo	nivolumab	locally advanced or metastatic non- small cell lung cancer (NSCLC)	nivolumab 3 mg/kg	docetaxel 75 mg/m2	9.32	16.8	48.8	37.4	19.2	12.4		81310	71181
Opdivo	nivolumab	advanced renal cell carcinoma	nivolumab 3 mg/kg	everolimus100mg	18.4	17.8	100	78.2	25.1	5.4		81310	in negotia tion
Lenvima	lenvatinib mesylate	progressive, locally advanced or metastatic, differentiated (papillary/follicular/Hrthle cell) thyroid carcinoma (DTC), refractory to radioactive iodine (RAI)	lenvatinib	placebo	73.2	14.4			64.8	1.5	2015	68433	58673
Cotellic	cobimetinib hemifumarat e	unresectable or metastatic melanoma with a BRAF V600 mutation	cobimetinib+vemu rafenib	placebo+vemurafenib	45.2	24			67.8	44.8	2015	75374	54420
Kyprolis	carfilzomib	multiple myeloma who have received at least one prior therapy.	carfilzomib + lenalidomide + dexamethasone	lenalidomide + dexamethasone (rd)	105.2	70.4			87.1	67.7	2015	75900	44525

Discounted Prices (Disc. Prices).

*: During the evaluation at the EMA, lymparza was found to be more effective in a subgroup of patients with a specific biomarker with the following outcome results: PFS lymparza: 44,8 w; PFS control: 17,2 w; OS lymparza: 139,6 w; OS control: 127,6.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

For peer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure, tables, titles and legends

Figure 1. Correlation between anticancer drug prices (officially negotiated) and health benefits

Figure 1a. Official negotiated price (ex-factory) vs difference in median OS (16 drugs are included in the analysis: 15 with a single indication and one with two indications)

Figure 1b. Official negotiated price (ex-factory) vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

Figure 1c. Official negotiated price (ex-factory) vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Figure 2. Correlation between anticancer drug prices (discounted) and health benefits

Figure 2a. Discounted price with additional compulsory rebates vs difference in median OS (16 drugs related to a single indication are included in the analysis)

Figure 2b. Discounted price with additional compulsory rebates vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

Figure 2c. Discounted price with additional compulsory rebates vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication and four with two indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Table 1. Characteristics of the 30 anticancer drugs included in the analysis.

Legend:

Progression Free Survival (PFS); Overall Survival (OS); Treatment Group (TRT); Control Group (CTR); Objective Response Rate (ORR); Official Negotiated Prices (Official Negot.); Discounted Prices (Disc. Prices).

*: During the evaluation at the EMA, lymparza was found to be more effective in a subgroup of patients with a specific biomarker with the following outcome results: PFS lymparza: 44,8 w; PFS control: 17,2 w; OS lymparza: 139,6 w; OS control: 127,6.

Supplementary Table 1. Details of the statistical analysis conducted

Supplementary Figures 1-4. Correlations in the sensitivity analysis conducted

Supplementary Figure 1a. Official negotiated price (ex-factory) vs percentage improvement in median Overall Survival (OS) (16 drugs are included in the analysis: 15 with a single indication and one with two indications)

Supplementary Figure 1b. Official negotiated price (ex-factory) vs percentage improvement in median Progression Free Survival (PFS) (25 drugs are included in the analysis: 22 with a single indication, two with two indications and one with three indication)

Supplementary Figure 1c. Official negotiated price (ex-factory) vs percentage improvement in proportion of Objective Response Rate (ORR) (24 drugs are included in the analysis: 20 with a single indication, three with two indications and one with three indications)

Figure 2. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), excluding negative outcome data (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

Supplementary Figure 3a. Official negotiated price (ex-factory) vs median Overall Survival (OS), considering only data from placebo-controlled trials. (7drugs related to a single indication are included in the analysis)

Supplementary Figure 3b. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), considering only data from placebo-controlled trials. (11 drugs are included in the analysis: 10 with a single indication and one with 2 indications)

Supplementary Figure 4a. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication, two with two indications and one with three indication)

Supplementary Figure 4b. Discounted price with additional compulsory rebates vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication and three with 2 indications)

Legend: Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR);

Figure 1. Correlation between anticancer drug prices (officially negotiated) and health benefits

180x219mm (300 x 300 DPI)

BMJ Open

2b. Discounted price with additional compulsory rebates vs difference in median PFS (25 drugs are included in the analysis: 22 with a single indication and three with two indications)

2c. Discounted price with additional compulsory rebates vs proportion of ORR (24 drugs are included in the analysis: 20 with a single indication and four with two indications)

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

Figure 2. Correlation between anticancer drug prices (discounted) and health benefits

180x219mm (300 x 300 DPI)

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
22	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
Δ1	
/∩	
42	
43	
44	
45	

Supplementary Table 1. Details of the statistical analysis conducted

Dependent variable	Independent variable 1	Independent variable 2	Number of drugs involved in the analysis	Type of linear regression	Intercept	Coefficient of the Independent variable 1	p value of the Independent variable 1	Correlation coefficient: r	Coefficient of Determination: R ²
Official negotiated price	ΔOS		17	simple	50332.71	1256.724	0.315	0.259	0.067
Discounted price	ΔOS		16	simple	44963.88	528.800	0.695	0.11	0.0113
Official negotiated price	ΔOS	tumor type	17	multiple	57765.99	2065.264	0.433		0.412
Discounted price	ΔOS	tumor type	16	multiple	55312.8	1391.947	0.614		0.257
Official negotiated price	% Δ OS		17	simple	56230.04	349.505	0.524	0.166	0.027
Discounted price	% Δ OS		16	simple	50127.28	42.986	0.937	0.022	0.0005
Official negotiated price	% Δ OS	tumor type	17	multiple	72407.98	292.048	0.766		0.362
Discounted price	% Δ OS	tumor type	16	multiple	68456.17	89.3936	0.930		0.2286
Official negotiated price	Δ PFS		29	simple	73741.11	-113.515	0.738	-0.065	0.004
Discounted price	Δ PFS		28	simple	58574.12	-137.018	0.687	-0.080	0.006
Official negotiated price	Δ PFS	tumor type	29	multiple	70454.93	-271.324	0.635		0.338
Discounted price	Δ PFS	tumor type	28	multiple	56293.38	-393.926	0.508		0.283
Official negotiated price	% Δ PFS		29	simple	68763.32	33.7994	0.427	0.153	0.024
Discounted price	% Δ PFS		28	simple	52823.84	36.2925	0.392	0.169	0.028
Official negotiated price	% Δ PFS	tumor type	29	multiple	66564.96	15.935	0.765		0.333
Discounted price	% Δ PFS	tumor type	28	multiple	51337.49	11.068	0.842		0.266
Official negotiated price	ΔORR		29	simple	67072.16	92.845	0.696	0.076	0.006
Discounted price	ΔORR		28	simple	53147.09	-14.550	0.953	-0.010	0.000
Official negotiated price	ΔORR	tumor type	29	multiple	62277.57	180.118	0.607		0.448
Discounted price	ΔORR	tumor type	28	multiple	42598.33	324.629	0.383		0.450
Official negotiated price	%ΔORR		27	simple	69838.7	0.563	0.918	0.020	0.000
Discounted price	%ΔORR		26	simple	53627.54	0.965	0.864	0.036	0.001
Official negotiated price	%ΔORR	tumor type	27	multiple	67262.18	1.719	0.814		0.436
Discounted price	%ΔORR	tumor type	26	multiple	51599.74	2.958	0.704		0.405

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

Progression Free Survival (PFS); Overall Survival (OS); Objective Response Rate (ORR)

3b. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), considering only data from placebo-controlled trials. (11 drugs are included in the analysis: 10 with a single indication and one with 2 indications)

Progression Free Survival (PFS); Overall Survival (OS)

 4a. Official negotiated price (ex-factory) vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication, two with two indications and one with three indication)

4b. Discounted price with additional compulsory rebates vs median Progression Free Survival (PFS), stratified by type of cancer (at least 2 indications for each cancer type). (24 drugs are included in the analysis: 21 with a single indication and three with 2 indications)

Progression Free Survival (PFS)

BMJ Open

STROBE (Strengthening The Reporting of OBservational Studies in Epidemiology) Checklist

A checklist of items that should be included in reports of observational studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.annals.org/, and Epidemiology at http://www.strobe-statement.org.

Section and Item	ltem No.	Recommendation	Reported on Page No.
Title and Abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	
Introduction			I
Background/Rationale	2	Explain the scientific background and rationale for the investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Methods			
Study Design	4	Present key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case 	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	

Section and Item	ltem No.	Recommendation	Reported o Page No.
Data Sources/	8*	For each variable of interest, give sources of data and details of methods of	
Measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study Size	10	Explain how the study size was arrived at	
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	
		describe which groupings were chosen and why	
Statistical Methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	
		Case-control study—If applicable, explain how matching of cases and controls was	
		addressed	
		Cross-sectional study—If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive Data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome Data	15*	Cohort study—Report numbers of outcome events or summary measures over	
		time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Crass sactional study—Poport numbers of outcome events or summary massures	

Section and Item	Item	Recommendation	Reported or
Main Results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Page No.
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other Analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			<u> </u>
Key Results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other Information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	
*Give information sepa cohort and cross-sectio Once you have comple checklist as part of the	irately for mal studie ted this c main ma	cases and controls in case-control studies and, if applicable, for exposed and unexposes. hecklist, please save a copy and upload it as part of your submission. DO NOT includ nuscript document. It must be uploaded as a separate file.	ed groups in e this