

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Using machine learning to incorporate sparse nutrition data into cardiovascular mortality risk prediction

Journal:	BMJ Open	
Manuscript ID	bmjopen-2019-032703	
Article Type:	Research	
Date Submitted by the Author:	04-Jul-2019	
Complete List of Authors:	Rigdon, Joseph ; Stanford University, Quantitative Sciences Unit Basu, Sanjay; Harvard Medical School	
Keywords:	Cardiovascular disease, machine learning, Nutrition < TROPICAL MEDICINE, risk prediction	

SCHOLARONE [™]	
Manuscripts	

BMJ Open

1	
2	
3	Using machine learning to incorporate sparse nutrition data into cardiovascular
4	
6	mortality risk prediction
7	
8	
9	
10	
11	
12	
14	Joseph Rigdon, PhD*
15	
16	Quantitative Sciences Unit, Stanford University School of Medicine,
17	
18	1070 Arastradero Road #3C3104, MC 5559
19	
20	Palo Alto, California 94304
22	irinden@stanford.edu
23	<u>Ingdon@staniord.edu</u>
24	
25	
26	
2/	
20	Sanjay Basu, MD, PhD
30	
31	Center for Primary Care, Harvard Medical School
32	Research and Analytics, Collective Health
33	Research and Analytics, Collective Health
35	School of Public Health, Imperial College London
36	
37	635 Huntington Avenue, 2 nd floor
38	
39	Boston, MA 02115
40 41	
42	sanjay_basu@nms.narvard.edu
43	
44	
45	
46	
4/	*Denotes corresponding author
40 49	
50	
51	
52	
53	
54	
55 56	
57	
58	
59	

Abstract

Objectives: We aimed to test whether or not adding (i) nutrition predictor variables and/or (ii) using machine learning models improves cardiovascular death prediction versus standard Cox models without nutrition predictor variables

Design: Prospective study

Setting: Six waves of NHANES data collected from 1999-2011 linked to the National Death Index

Participants: 29,390 participants were included in the training set for model derivation and 12,600 were included in the test set for model evaluation. Our study sample was approximately 20% black race and 25% Hispanic ethnicity.

Primary and Secondary Outcome Measures: Time from NHANES interview until the minimum of time of cardiovascular death or censoring

Results: A standard risk model excluding nutrition data overestimated risk nearly twofold [calibration slope of predicted versus true risk: 0.53 (95% CI: 0.49, 0.57)] with moderate discrimination [C-statistic: 0.87 (0.85, 0.88)]. Nutrition data alone, or machine learning alone, failed to improve performance, but both together improved calibration [slope: 1.08 (0.83, 1.33)] and discrimination [C-statistic: 0.93 (0.92, 0.94)].

Conclusions: Our results indicate that the inclusion of nutrition data with available machine learning algorithms can substantially improve cardiovascular risk prediction.

Keywords: Cardiovascular disease, machine learning, nutrition, risk prediction **Word Count:** 3,167

Article Summary

Article focus

- Cardiovascular risk prediction models are commonplace in primary care medicine, and current models are built using Cox regression models with simple demographic and clinical variables
- Could using machine learning models and incorporating nutrition predictor variables improve cardiovascular risk prediction?

Key messages

- Use of survival random forest models with nutrition variables can yield wellcalibrated models whereas standard models overestimate risk nearly two-fold and can improve model discrimination from 87% to 93%
- This study supports the clinical scenario where a patient fills out a 24-hour dietary recall in the waiting room prior to seeing the physician, and this nutrition data is used in concert with a machine learning model to more accurately predict CVD risk

Strengths and limitations of this study

- Nationally representative data with a comprehensive evaluation of nutrition, direct laboratory assessment of biomarkers, and direct examination of blood pressure
- Comprehensive follow-up with mortality adjudication by cause of death
- Limitations include the need to impute missing data, a short follow-up duration among individuals collected in the later waves of NHANES, and the lack of information about CVD events in addition to CVD mortality.

Introduction

Nutrition is thought to be a major contributor to cardiovascular disease mortality risk¹⁻⁴, but as yet is not explicitly incorporated into cardiovascular risk models that are used to guide clinical prescribing of statins and other preventive medications^{5–9}. Nutrition is both imperfectly measured, typically through 24-hour dietary recalls, and nutrition data are sparse and multi-variable, with numerous metrics from individual kilocalorie intakes across a wide range of macro and micronutrients^{10,11}, making it difficult to determine how an overall nutritional profile might be incorporated into clinical practice. Several groups have offered composite nutrition guality scores (e.g., the Healthy Eating Index and alternatives)¹²⁻¹⁴, which correlate to some degree with cardiovascular mortality ¹⁵⁻²² but have not yet been incorporated into common risk equations that use more traditional risk markers (e.g., systolic blood pressure)⁵. Optimizing cardiovascular disease risk prediction is important in clinical practice, because many modern clinical guidelines recommend that physicians prescribe therapies (such as statins, aspirin, and intensive blood pressure treatment) based in part on estimates of overall cardiovascular disease risk, not simply based on the levels of a single biomarker such as cholesterol or blood pressure levels, which fail to fully capture the influence of nutrition on risk ^{23–26}.

With modern machine learning methods, it may be possible to avoid the problems of composite indices, such as reducing a large amount of sparse data to a rough composite that does not explain substantial variation in observed risk²⁷. Machine learning approaches are particularly adept at capturing a complex array of large data represented by the sparse matrices of nutrition variables, and incorporating interactions among the data variables (such as between different types of nutrients, e.g., different fats, different carbohydrates, etc.), and identify nonlinear relationships between risk factors and outcomes (e.g., increasing carbohydrate to a very high level from a medium level may

BMJ Open

differ in impact than increasing from low to medium) that traditional regression models may not fully capture^{28–31}. Additionally, with high-quality, more rapid 24-hour dietary recall techniques that can more comprehensively assess a person's dietary behaviors and link them to large nutritional databases, it is now possible to assess nutritional profiles in detail in the clinician's office or clinic waiting room^{32–35}. It remains unclear, however, whether nutritional information from a 24-hour recall can add meaningful value to cardiovascular mortality risk prediction beyond biomarker values—such as lipid profile, blood pressure, and diabetes status—and whether using a machine learning approach can advance the predictive power of dietary recalls for cardiovascular risk assessment beyond composite indices already available.

Here, we use a 2-by-2 factorial experimental design to test two hypotheses using observational data: (i) that the data from a single 24-hour dietary recall can add substantial predictive value to cardiovascular mortality risk estimation beyond that afforded by standard biomarkers already included in traditional cardiovascular risk calculators; and (ii) that machine learning approaches to directly incorporate sparse matrices of nutrition data into risk estimates can be superior to standard regression models or the composite nutritional indices constructed through linear modeling methods in the past.

Methods

We conducted a 2-by-2 factorial experiment in which we compared the calibration and discrimination of cardiovascular disease mortality risk prediction models with and without data from a 24-hour dietary recall, and with and without a machine learning approach.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Data Source

Six waves of cross-sectional data from the National Health and Nutrition Examination Survey (NHANES, 1999-2000, 2001-2002, 2003-2004, 2005-2006, 2007-2008, and 2009-2010) were used to develop and validate the risk prediction models. The details of the NHANES sampling scheme are described elsewhere³⁶. Briefly, NHANES is a survey including laboratory biomarkers and clinical examination, collected in two-year waves among children and adults, sampled to represent the non-institutionalized civilian U.S. population. Each observation within each wave was linked to the National Death Index (NDI, through 2011) by the Centers for Disease Control. The NDI provided data on the time of CVD death or censoring of follow-up, and additionally a variable attributing death to one of nine-cause specific categories (heart disease, cancer, chronic lower respiratory disease, cerebrovascular diseases, diabetes, pneumonia and influenza, Alzheimer's disease, kidney disease, and unintentional injuries).

The primary statistical outcome was defined as time from NHANES interview to the minimum of time of censoring or time of death from heart disease or cerebrovascular diseases, henceforth CVD mortality. Death from any other cause was treated as censored. Inclusion criteria were age 20-79 years old at time of interview with no prior CVD history. No actions were taken to blind assessment of predictors for the outcome and other predictors. No actions were taken to blind assessment of the outcome.

All potential predictors in the models were collected at time of NHANES interview to mimic a hypothetical scenario where a medical provider may want to conduct an in-clinic 24-hour dietary recall to improve prediction of CVD mortality. Demographic variables included age, sex, and race (Black race, Hispanic ethnicity), and currently-employed cardiovascular disease risk factors of total cholesterol (mg/dL), high-density lipoprotein

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no)⁵. Nutrition variables included daily standardized intake of micronutrients (e.g., sodium, selenium) and macronutrients (e.g., fat, carbohydrates, protein) collected during a single 24-hour dietary recall following the NHANES interview (Supplementary Table A).

Patient and Public Involvement

No patient involved.

Model Development

Random samples of 70% of each NHANES wave were pooled to form the training sample from which the models were derived, with the remaining 30% prospectively held out to form the test set to assess performance of each model without refitting or recalibration. To train the models in the presence of missing data, 10 imputed data sets for the training sample were created using multiple imputation via chained equations^{37,38}.

In one arm of the 2-by-2 design, we tested whether or not switching from the standard Cox proportional hazards model to a machine learning algorithm could improve calibration and discrimination. The machine learning algorithms tested were those commonly used for clinical event risk prediction for censored time-to-event data: survival gradient boosted machines (GBMs)³⁹ and survival random forests (RFs)⁴⁰. Both of these machine learning approaches construct decision trees from data. In a typical decision tree, each branch of the tree divides the sampled study population into increasingly-smaller subgroups that differ in their probability of the outcome. A good decision tree will separate the sampled population into groups that have low within-group variability and high between-group variability in the probability of the outcome. GBMs average many

BMJ Open

trees where errors made by the first tree contribute to learning of a less erroneous tree in the next iteration (a "boosting" strategy)^{41,42}. RFs also build numerous decision trees, but average a forest composed of many trees, where each tree is independently fitted (a "bagging" strategy) with a random subset of covariates selected to be eligible to define the branches^{42–45}. RFs use inverse probability of censoring weights to address censoring.

In the second arm of the 2-by-2 design, we tested whether or not adding nutrition variables, including all micro and macronutrients assessed in the NHANES dietary recall, to the standard demographic and biomarker variables could improve prediction. We additional compare incorporating all nutrition data versus using common existing composite nutrition indices: the Healthy Eating Index (HEI)⁴⁶, Alternate Healthy Eating Index (AHEI)⁴⁷, Mediterranean Diet Score (MDS)⁴⁸, and the Dietary Approaches to Stop Hypertension diet score (DASH)⁴⁹.

In total, our 2-by-2 design contained 18 models in four quadrants (Supplementary Table B). The no machine learning, no nutrition (standard model) quadrant included only one model: a Cox regression model with demographics and biomarker variables. The machine learning, no nutrition quadrant included two models: a gradient boosted machine and a random forest, both using only demographics and biomarker variables. The no machine learning, nutrition quadrant included five models: a Cox regression including demographics, biomarkers, and either HEI, AHEI, MDS, DASH, or all micro and macronutrients from NHANES. Finally, the machine learning, nutrition quadrant included 10 total models: gradient boosted machines or random forests including demographics, biomarkers, and either HEI, AHEI, MDS, DASH, or all micro and macronutrients from NHANES.

BMJ Open

Cox regression models, a gradient boosted machine with 100 trees, a maximum tree depth of 1, and a learning rate of 0.1⁵⁰, and a survival random forest based on 20 conditional inference trees^{51,52} were fit to each of the 10 imputed data sets. For the best performing model, we increased the number of trees from 20 to 500 to further improve model fit.

Outcome metrics

Model performance was assessed in terms of calibration (using the Greenwood-Nam-D'Agostino [GND] test) and discrimination (using the C-statistic). In the GND test, model predicted probability of 10-year CVD mortality risk was compared to actual death from CVD within 10 years after the NHANES interview by decile of predicted risk. A slope and intercept line were then drawn using these values across deciles of predicted risk, such that a calibration slope of 1 reflects perfect calibration (a perfect 45-degree line between predicted risk and actual event rates).

Model discrimination was assessed using the C-statistic (area under receiver operating characteristic [ROC] curve). Each point on the ROC curve was defined by the sensitivity (x-axis) and 1-specificity (y-axis) for a given cutpoint. The calculation of sensitivity and specificity followed from model predicted risk (above/below cutpoint) versus gold standard of outcome (whether or not CVD mortality happened within 10 years after NHANES interview). As with the GND statistics, C-statistics were calculated for each of the 10 imputed data sets and an overall C-statistic for each model was estimated by Rubin's rules.

BMJ Open

Each model developed on imputed training data set k = 1, ..., 10 was applied to imputed test set k=1, ..., 10 to avoid overlap between training data model development and test set evaluation. Calibration and discrimination mean values and 95% confidence intervals for each model were calculated using Rubin's rules to combine the 10 calibration values³ (one per imputed data set).

No model updating was done in this study, and no risk groups were created. There were no differences in setting, eligibility criteria, outcome, or predictors between the training (development) set and the test (validation) set. There was no need for participant consent or Ethical Review Board approval as the data are publicly available. All statistical analyses were carried out in Stata 15 software⁵³ and R version 3.5.1⁵⁴. This manuscript was written in accordance with the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) recommendations⁵⁵, summarized in Supplementary Table I. All data relevant to the study are included in the article or uploaded as supplementary information, and statistical code, and dataset (upon request) are available at

https://github.com/joerigdon/CVD_Prediction.

Results

Descriptive statistics on the study sample

Distributions of demographics, covariates and outcome rates were nearly equivalent in training and test sets (Table 1). Of the n=29390 individuals in the training set, 1171/29390 (4.0%) experienced CVD mortality within the follow-up period; of the n=12600 in the test set, 515/12600 (4.1%) experienced CVD mortality. The median

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 43

BMJ Open

follow-up time was 79 months in both training and test sets, with a mean age of 50 years, and 47% of the population being male, 20% Black, 26% Hispanic, 16% with diabetes, and 19% actively smoking tobacco. Composite nutrition indices were identical to within rounding error between the train and test datasets, with a mean HEI score of 47 (out of 100⁴⁶), AHEI score of 47 (out of 110⁴⁷), MDS score of 5 (out of 10⁴⁸), and DASH score of 47 (out of 80⁴⁹); higher scores indicate better adherence to the recommended dietary guidelines for all four of the composite scores.

Compared to individuals without CVD mortality, individuals experiencing CVD mortality were older (74.3 vs. 49.0 years old), more likely to be male (55.0% vs. 46.9%), had higher systolic blood pressure (142.9 vs. 124.8 mmHg), were more likely to take blood pressure medications (74.2% vs. 30.8%), and were more likely to have diabetes (33.3% vs. 15.5%; Table 2). Regarding nutrition variables, those experiencing CVD mortality counter-intuitively had a higher HEI score (51.0 vs. 46.9), a higher AHEI score (48.0 vs. 47.1), and a higher DASH score (48.1 vs. 47.4; Table 2), and comparable MDS scores (5.1 vs. 5.1).

Calibration and discrimination of standard models with and without nutrition data Using the standard approach to CVD risk prediction modeling⁵, a Cox proportional hazards model with variables of age, sex, Black race, and Hispanic ethnicity, total cholesterol, HDL cholesterol, systolic blood pressure, blood pressure medication, diabetes, and tobacco use, yielded a GND calibration slope of 0.53 (95% CI: 0.49, 0.57), reflecting profound risk over-estimation consistent with prior estimates^{56,57}. Adding HEI, AHEI, MDS, or DASH score to the model did not change the calibration slope of 0.53, however the addition of the raw (not composite) 24-hour recall data decreased the slope to 0.48 (0.44, 0.53), reflecting a worsening of over-estimation of risk (Figure 1, Supplementary Table E).

The exclusion or inclusion of nutrition data did not affect discrimination of the standard Cox risk models. The Cox model with the above-mentioned non-nutrition data had a C-statistic of 0.87 (0.85, 0.88) in the test set. Adding HEI, AHEI, MDS, DASH, or all raw 24-hour recall data left the C-statistic unchanged at 0.87 (0.85, 0.88) (Figure 2, Supplementary Table F).

Calibration and discrimination of machine learning models with and without nutrition data When using a machine learning GBM approach instead of a Cox proportional hazards model, but still excluding nutrition data, model calibration improved to 0.54 (0.47, 0.61), and when using random forest in place of Cox, the calibration improved further to 0.58 (0.49, 0.67). Adding nutrition variables improved the machine learning models' calibration when raw 24-hour recall data were used, but not when composite dietary indices were used. Adding HEI, AHEI, MDS, or DASH left the calibration slope unchanged at 0.54 for the GBM models and minimally changed the calibration slope for the random forest models from 0.58 to 0.59 or 0.60. The GBM model had the best calibration when using all 24-hour recall data, producing a calibration slope of 0.56 (0.50, 0.62). The random forest model with raw 24-hour nutrition data was the only model for which the 95% confidence intervals included the ideal value of 1, with a calibration slope of 1.08 (0.83, 1.33) (Figure 1, Supplementary Table E).

Model discrimination also improved with use of machine learning. Using a GBM in place of a Cox model improved discrimination slightly, from C-statistics of 0.87 (0.85, 0.88) in Cox models to 0.88 (0.87, 0.89) for all GBM models without nutrition data and 0.91

BMJ Open

(0.90, 0.93) for the random forest without nutrition data. The discrimination was not significantly different with the addition of composite nutritional indices, but did improve to 0.93 (0.92, 0.94) with the addition of raw nutrition data (Figure 2, Supplementary Table F).

As expected, model calibration values (Supplementary Figure A, Supplementary Table C), and model discrimination values (Supplementary Figure B, Supplementary Table D) were better in the training data sets versus the held-out test set.

Cox model coefficients are detailed in Supplementary Table G and gradient boosted machine model relative influences are detailed in Supplementary Table H. Notable associations with cardiovascular death included age (HR for 1-year increase in age of 1.1 [1.09, 1.1], female sex (HR vs. males of 0.62 [0.55, 0.71]), Hispanic ethnicity (HR vs. non-Hispanics of 0.72 [0.61, 0.86]), systolic BP (HR for 1-unit increase of 1.01 [1.01, 1.01]), blood pressure medications (HR for each additional med of 1.22 [1.11, 1.34]), type 2 diabetes (HR vs. non-diabetics of 1.46 [1.23, 1.73]), and tobacco use (HR vs. non-users 1.82 [1.53, 2.17]) (Supplementary Table G). No associations with cardiovascular death were found with HEI, AHEI, MDS, or DASH.

In the comprehensive evaluation of all 24-hour nutrition variables, protective associations were seen with fiber (HR 0.97 [0.96, 0.99] for 1-gram increase) and niacin (HR 0.97 [0.95, 0.99] for 1-milligram increase), and harmful association with vitamin B6 (HR 1.17 [1.02, 1.35] for 1-milligram increase). Relative influences in a GBM display how much of a 0-100 importance total is accounted for by each variable in the model (Supplementary Table H). Age consistently had relative influences of around 70/100, with the next most important variables being SBP (around 11), blood pressure

BMJ Open

medications (around 7), total cholesterol (around 3), diabetes (3), and sex (2). Of the composite indices, only HEI (1.92) exceeded a relative influence of 1. Of the 24-hour nutrition variables, only potassium (1.82) exceeded a relative influence of 1. Partial dependence plots for the random forest model with all nutrition variables reveal an exponential increase in 10-year probability of CVD death starting at about age 65, and an S-shaped risk curve for 10-year probability of CVD death with spike around 145 mmHg systolic blood pressure (Supplementary Figure C)

Discussion

We examined whether or not improvements in CVD mortality prediction could be achieved by including sparse nutrition data into models derived through machine learning algorithms. We observed that the addition of nutrition variables to a standard Cox proportional hazards model was not of substantial benefit alone, nor was the use of machine learning algorithms alone, but when both nutrition data and machine learning were combined, we could substantially improve risk prediction beyond the inclusion of standard demographics and biomarkers alone. Calibration particularly improved when both nutrition data and machine learning algorithms were used.

Our findings are of clinical relevance as more rapid, automated or mobile device-based 24-hour dietary recalls make it feasible to provide a nutrition profile for patients at or before visiting a doctor's office^{1,2}, and as automated cardiovascular disease risk prediction models become an increasingly-important part of precision medicine guidelines that aim to improve the ability of medical practitioners to prescribe preventive cardiovascular treatments to patients with the highest risk⁶. As standard biomarkers fail to explain the full extent to which nutrition relates to cardiovascular mortality^{58,59},

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

machine learning approaches that directly incorporate raw dietary data appear to have benefits over composite nutritional indices that may excessively reduce complexity in nutritional interactions and non-linear relationships that confer risk. Our study benefits from being conducted on a nationally representative sample of US adults, including a comprehensive evaluation of nutrition, direct laboratory assessment of biomarkers, direct examination of blood pressure, and comprehensive follow-up with mortality adjudication by cause of death. Nevertheless, our study has important limitations, including the need to impute missing data, a short follow-up duration among individuals collected in the later waves of NHANES, and the lack of information about CVD events in addition to CVD mortality.

In the future, further research can assess whether the performance of rapid dietary recalls and associated cardiovascular risk estimation can be implemented in practice, whether the level of improvements to calibration and discrimination observed in this assessment produce clinically-meaningful changes in the level of prescribing of key preventive therapies for patients, and whether the difficulties of interpreting machine learning models are compared to traditional Cox-type risk models poses challenges to the acceptability of these models in clinical practice.

At present, our results indicate that the inclusion of nutrition data with available machine learning algorithms can substantially improve cardiovascular risk prediction.

Author Contributions

SB conceptualized the study and design and contributed to data preparation and analysis. JR contributed to data preparation and analysis. Both authors contributed to writing and critically reviewing the manuscript.

Competing Interests statement

JR and SB have no competing interests to report.

Acknowledgements

The authors acknowledge two anonymous reviewers at the Stanford Quantitative Sciences Unit.

Funding

This work was supported by the National Institute On Minority Health And Health Disparities of the National Institutes of Health under Award Number DP2MD010478. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

- Shivappa, N., Steck, S. E., Hussey, J. R., Ma, Y. & Hebert, J. R. Inflammatory potential of diet and all-cause, cardiovascular, and cancer mortality in National Health and Nutrition Examination Survey III Study. *Eur. J. Nutr.* 56, 683–692 (2017).
- Aune, D. *et al.* Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response metaanalysis of prospective studies. *Int. J. Epidemiol.* 46, 1029–1056 (2017).
- 3. Wang, D. D. *et al.* Association of Specific Dietary Fats With Total and Cause-Specific Mortality. *JAMA Intern. Med.* **176**, 1134–1145 (2016).

Page 17 of 43

BMJ Open

1		
3	Л	Landley-Evans S.C. Nutrition in early life and the programming of adult disease: a
4 5	4.	Langley-Evalis, S. C. Nutrition in early me and the programming of addit disease. a
6 7		review. <i>J. Hum. Nutr. Diet.</i> 28 , 1–14 (2015).
8 9	5.	Goff David C. et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular
10 11		Risk. Circulation 129, S49–S73 (2014).
12 13	6.	Stone Neil J. et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol
14 15 16		to Reduce Atherosclerotic Cardiovascular Risk in Adults. Circulation 129, S1–S45
10 17 18		(2014).
19 20	7.	Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in
21 22		Adults. Executive Summary of the Third Report of the National Cholesterol
23 24		Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment
25 26		of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA J. Am. Med.
27 28		Assoc. 285, 2486–2497 (2001).
29 30	8.	Lloyd-Jones, D. M. et al. Prediction of Lifetime Risk for Cardiovascular Disease by
31 32		Risk Factor Burden at 50 Years of Age. Circulation 113, 791–798 (2006).
33 34 35	9.	Yadlowsky, S. et al. Clinical Implications of Revised Pooled Cohort Equations for
36 37		Estimating Atherosclerotic Cardiovascular Disease Risk. Ann. Intern. Med. 169, 20
38 39		(2018).
40 41	10.	Stumbo, P. Considerations for selecting a dietary assessment system. J. Food
42 43		Compos. Anal. Off. Publ. U. N. Univ. Int. Netw. Food Data Syst. 21, S13–S19
44 45		(2008).
46 47	11.	Stewart, K. K. & Whitaker, J. R. Modern Methods of Food Analysis. (Springer
48 49		Science & Business Media, 2012).
50 51 52	12.	Kennedy, E. T., Ohls, J., Carlson, S. & Fleming, K. The Healthy Eating Index: Design
52 53 54		and Applications. J. Am. Diet. Assoc. 95, 1103–1108 (1995).
55 56		
57 58		
59		For peer review only - http://bmionen.hmi.com/site/about/guidelines.yhtml
00		. or peer retrett only integr/ onlyopenionly.com/site/ubout/guidelines/intim

- 13. McCullough, M. L. & Willett, W. C. Evaluating adherence to recommended diets in adults: the Alternate Healthy Eating Index. *Public Health Nutr.* **9**, (2006).
- Panagiotakos, D. B., Pitsavos, C. & Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. *Nutr. Metab. Cardiovasc. Dis.* **16**, 559–568 (2006).
- Reedy, J. *et al.* Higher Diet Quality Is Associated with Decreased Risk of All-Cause, Cardiovascular Disease, and Cancer Mortality among Older Adults. *J. Nutr.* 144, 881–889 (2014).
- 16. Onvani, S., Haghighatdoost, F., Surkan, P. J., Larijani, B. & Azadbakht, L. Adherence to the Healthy Eating Index and Alternative Healthy Eating Index dietary patterns and mortality from all causes, cardiovascular disease and cancer: a metaanalysis of observational studies. *J. Hum. Nutr. Diet.* **30**, 216–226 (2017).
- 17. Fung, T. T. *et al.* Mediterranean diet and incidence and mortality of coronary heart disease and stroke in women. *Circulation* **119**, 1093–1100 (2009).
- Akbaraly, T. N. *et al.* Alternative Healthy Eating Index and mortality over 18 y of follow-up: results from the Whitehall II cohort. *Am. J. Clin. Nutr.* **94**, 247–253 (2011).
- Schwingshackl, L. & Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension Score, and Health Outcomes: A Systematic Review and Meta-Analysis of Cohort Studies. *J. Acad. Nutr. Diet.* **115**, 780-800.e5 (2015).
- Kant, A. K. Indexes of Overall Diet Quality: A Review. J. Am. Diet. Assoc. 96, 785– 791 (1996).
- Folsom, A. R., Parker, E. D. & Harnack, L. J. Degree of Concordance With DASH Diet Guidelines and Incidence of Hypertension and Fatal Cardiovascular Disease.
 Am. J. Hypertens. 20, 225–232 (2007).

ge 19 of 43	BMJ Open
2	2. Fung, T. T. et al. Adherence to a DASH-Style Diet and Risk of Coronary Heart
	Disease and Stroke in Women. Arch. Intern. Med. 168, 713–720 (2008).
2	3. Grundy, S. M. <i>et al.</i> 2018
	AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA
	Guideline on the Management of Blood Cholesterol: A Report of the American
	College of Cardiology/American Heart Association Task Force on Clinical Practice
	Guidelines. J. Am. Coll. Cardiol. 25709 (2018). doi:10.1016/j.jacc.2018.11.003
2	4. Bibbins-Domingo, K. et al. Statin Use for the Primary Prevention of Cardiovascular
	Disease in Adults: US Preventive Services Task Force Recommendation Statement.
	<i>JAMA</i> 316 , 1997–2007 (2016).
2	5. Bibbins-Domingo, K. & on behalf of the U.S. Preventive Services Task Force. Aspirin
	Use for the Primary Prevention of Cardiovascular Disease and Colorectal Cancer:
	U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med.
	164 , 836 (2016).
2	6. Whelton, P. K. <i>et al.</i> 2017
	ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the
	Prevention, Detection, Evaluation, and Management of High Blood Pressure in
	Adults. J. Am. Coll. Cardiol. 71, e127–e248 (2018).
2	7. Suresh, S., Saraswathi, S. & Sundararajan, N. Performance enhancement of
	extreme learning machine for multi-category sparse data classification problems.
	Eng. Appl. Artif. Intell. 23, 1149–1157 (2010).
2	8. Messina, M., Lampe, J. W., Birt, D. F., Appel, L. J. & al, et. Reductionism and the
	narrowing nutrition perspective: Time for reevaluation and emphasis on food
	synergy. Am. Diet. Assoc. J. Am. Diet. Assoc. Chic. 101, 1416–9 (2001).
2	9. Wang, J., Li, D., Dangott, L. J. & Wu, G. Proteomics and Its Role in Nutrition
	Research, J. Nutr. 136, 1759–1762 (2006).
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open
30.	Marcos, A., Nova, E. & Montero, A. Changes in the immune system are conditione
	by nutrition. Eur. J. Clin. Nutr. 57, S66–S69 (2003).
31.	Zeisel, S. H. et al. Nutrition: A Reservoir for Integrative Science. J. Nutr. 131, 1319
	1321 (2001).
32.	Subar, A. F. et al. The Automated Self-Administered 24-Hour Dietary Recall
	(ASA24): A Resource for Researchers, Clinicians, and Educators from the National
	Cancer Institute. J. Acad. Nutr. Diet. 112, 1134–1137 (2012).
33.	Vereecken, C. A., Covents, M., Matthys, C. & Maes, L. Young adolescents' nutritic
	assessment on computer (YANA-C). Eur. J. Clin. Nutr. 59, 658–667 (2005).
34.	Hongu, N. et al. Dietary Assessment Tools Using Mobile Technology. Top. Clin.
	Nutr. 26, 300 (2011).
35.	Thompson, F. E. et al. Comparison of Interviewer-Administered and Automated Se
	Administered 24-Hour Dietary Recalls in 3 Diverse Integrated Health Systems. An
	<i>J. Epidemiol.</i> 181 , 970–978 (2015).
36.	NHANES - About the National Health and Nutrition Examination Survey. (2017).
	Available at: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm. (Accessed: 11
	March 2019)
37.	van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chain
	Equations in R. J. Stat. Softw. 45, 1–67 (2011).
38.	Vergouwe, Y., Royston, P., Moons, K. G. M. & Altman, D. G. Development and
	validation of a prediction model with missing predictor data: a practical approach.
	<i>Clin. Epidemiol.</i> 63 , 205–214 (2010).
39.	Chen, Y., Jia, Z., Mercola, D. & Xie, X. A Gradient Boosting Algorithm for Survival
	Analysis via Direct Optimization of Concordance Index. Computational and
	Mathematical Methods in Medicine (2013). doi:10.1155/2013/873595
	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

1	
2 3	40 Ishwaran H. Kogalur II B. Blackstone F. H. & Lauer M. S. Random survival
4	
5 6	forests. Ann. Appl. Stat. 2, 841–860 (2008).
7	41. Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378
8	
10	(2002).
11	42 Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine, App
12	12. Theaman, e. H. Creedy Function Approximation. A Creation Docoding Machine. Ann.
14	<i>Stat.</i> 29 , 1189–1232 (2001).
15	13 Quinlan I. P. Induction of decision troos Mach Learn 1 81 106 (1086)
16 17	43. Quinian, J. R. Induction of decision trees. Mach. Learn. 1, 81–100 (1960).
18	44. Breiman, L. Random Forests. <i>Mach. Learn.</i> 45 , 5–32 (2001).
19 20	45 Friedman, I. Hastin, T. & Tibabirani, D. Additiva logistic regression: a statistical view
20	45. Friedman, J., Hastie, T. & Tibshirani, R. Additive logistic regression. a statistical view
22	of boosting (With discussion and a rejoinder by the authors). Ann. Stat. 28, 337–407
23 24	
25	(2000).
26	46. Guenther, P. M. et al. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr.
27 28	
29	<i>Diet.</i> 113 , 569–580 (2013).
30	47 Chiuve S E et al Alternative Dietary Indices Both Strongly Predict Risk of Chronic
31	
33	Disease. J. Nutr. 142, 1009–1018 (2012).
34	48 Trichopoulou A. Costacou T. Bamia C. & Trichopoulos D. Adherence to a
35 36	40. Thenopoulou, A., Costacou, T., Banna, C. & Thenopoulos, D. Auherence to a
37	Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 348, 2599-
38	2608 (2002)
40	2008 (2003).
41	49. Günther, A. L. B. et al. Association Between the Dietary Approaches to Hypertension
42 43	
44	Diet and Hypertension in Youth With Diabetes Mellitus. Hypertension 53, 6–12
45	(2009).
46 47	
48	50. Greenwell, B., Boehmke, B., Cunningham, J. & Developers (https://github.com/gbm-
49	developers) G B M abm ⁻ Generalized Boosted Regression Models (2019)
50 51	
52	51. Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. & Van Der Laan, M. J. Survival
53	ensembles Biostatistics 7 355-373 (2006)
55	
56	
57	
50 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 52. Hothorn, T., Hornik, K., Strobl, C. & Zeileis, A. *party: A Laboratory for Recursive Partytioning*. (2019).
- 53. StataCorp. Stata Statistical Software: Release 15. (StataCorp LLC, 2017).
- 54. R Core Team. R: A language and environment for statistical computing. (2018).
- 55. Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. M. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. *Ann. Intern. Med.* **162**, 55 (2015).
- Yadlowsky, S. *et al.* Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk. *Ann. Intern. Med.* (2018). doi:10.7326/M17-3011
- 57. Ridker, P. M. & Cook, N. R. Statins: new American guidelines for prevention of cardiovascular disease. *The Lancet* **382**, 1762–1765 (2013).
- 58. Kant, A. K. Dietary patterns: biomarkers and chronic disease riskThis paper is one of a selection of papers published in the CSCN–CSNS 2009 Conference, entitled Are dietary patterns the best way to make nutrition recommendations for chronic disease prevention? *Appl. Physiol. Nutr. Metab.* **35**, 199–206 (2010).
- 59. Boushey, C. J., Coulston, A. M., Rock, C. L. & Monsen, E. *Nutrition in the Prevention and Treatment of Disease*. (Elsevier, 2001).

Figure Legends

Figure 1: Calibration slopes and confidence intervals of models in the hold-out test set (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N= 12600). All models included demographic variables age, sex, and race (Black race, Hispanic ethnicity). ACC=American College of Cardiology covariates of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no), HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest

Figure 2: Model discrimination (C-statistic) in the hold-out test set (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N= 12600). All models included demographic variables age, sex, and race (Black race, Hispanic ethnicity). ACC=American College of Cardiology covariates of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no), HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest **Tables**

Table 1: Descriptive statistics on the study sample (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N=41990). Statistics are grouped to reflect participants in the training (n=29390/41990 = 70%) or test (n=12600/41990 = 30%) data subsets. CVD = cardiovascular disease, HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest. Mean (±standard deviation) reported for continuous variables and N (%) reported for categorical variables.

	Training data for model derivation n=29390	Test data for model evaluation n=12600	P-value for difference ¹
CVD death			
No	28,219 (96.0%)	12,085 (95.9%)	0.63
Yes	1,171 (4.0%)	515 (4.1%)	
Time since interview	79.3 (±41.5)	79.5 (±41.4)	0.71
(months)			
Wave			
99-00	3,810 (13.0%)	1,633 (13.0%)	1.00
01-02	8,853 (30.1%)	3,795 (30.1%)	
03-04	3,926 (13.4%)	1,684 (13.4%)	
05-06	3,891 (13.2%)	1,669 (13.2%)	
07-08	4,353 (14.8%)	1,866 (14.8%)	
09-10	4,557 (15.5%)	1,953 (15.5%)	
Age	50.1 (±20.4)	50.0 (±20.4) 🛁	0.55
Sex			
Male	13,870 (47.2%)	5,941 (47.2%)	0.94
Female	15,520 (52.8%)	6,659 (52.8%)	
Black			
No	14,826 (50.4%)	6,316 (50.1%)	0.35
Yes	5,839 (19.9%)	2,554 (20.3%)	
Missing	8,725 (29.7%)	3,730 (29.6%)	
Hispanic			
No	21,861 (74.4%)	9,369 (74.4%)	0.96

	Vec	Training data for model derivation	Test data for model evaluation	P-value for difference ¹
	Total chol Missing	7,529 (25.6%) 197.8 (±42.9) 3,640 (12.4%)	3,231 (25.6%) 198.5 (±44.3) 1,485 (11.8%)	0.33
	HDL Missing	45.6 (±23.0)	45.4 (±22.9)	0.63
	SBP Missing	125.5 (±20.8)	125.4 (±20.7)	0.81
	DBP Missing	69.8 (±12.7)	69.9 (±12.5)	0.58
	Number of blood	3,377 (11.5%)	1,428 (11.3%)	
	pressure			
	0	19,855 (67,6%)	8,473 (67.2%)	0.66
	1 2 or more	7,875 (26.8%) 1,660 (5.6%)	3,428 (27.2%) 699 (5.5%)	
	T2DM			
	No	10,560 (35.9%)	4,518 (35.9%)	0.18
	Yes	4,695 (16.0%)	2,096 (16.6%)	
	Missing	14,135 (48.1%)	5,986 (47.5%)	
	Smoking			
	No	23,713 (80.7%)	10,246 (81.3%)	0.14
	Yes	5,675 (19.3%)	2,354 (18.7%)	
	Missing	2(0.0%)	0(0.0%)	0 59
	Missing	$47.0(\pm11.0)$ 3.074(11.1%)	$47.1(\pm 11.0)$ 1 364 (10.8%)	0.56
		47 2 (+11 0)	47 1 (+11 1)	0.59
	Missina	3.258 (11.1%)	1.358 (10.8%)	0.00
	MDS	5.1 (±1.2)	5.1 (±1.2)	0.70
	Missing	3,270 (11.1%)	1,368 (10.9%)	
	DASH	47.4 (±9.3)	47.4 (±9.4)	0.77
-	Missing	8,700 (29.6%)	3,796 (30.1%)	

¹Wilcoxon rank sum test for continuous variables, e.g., age, and Fisher's exact test for categorical variables, e.g., black race

Table 2: Comparisons of participant characteristics by outcome (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N=41990). Descriptive summary of variables in those participants without CVD event (n=40304) vs. those with a CVD event (n=1686) during the follow-up period. Mean (±standard deviation) reported for continuous variables and N (%) reported for categorical variables.

1				
2 3 4		No CVD	CVD	P-value for difference ¹
5		n=40304	n=1686	
6 7 8	Time since interview (months) Wewe	80.3 (±41.4)	55.7 (±34.9)	<0.0001
9		5 168 (12 8%)	275 (16 3%)	<0.0001
10	01-02	11 681 (29 0%)	967 (57 4%)	VUUUU
11	01-02	5 401 (13 4%)	200 (12 4%)	
12	05-06	5 451 (13 5%)	109 (6 5%)	
13	07-08	6 127 (15 2%)	92 (5 5%)	
14	09-10	6,127 (15.270) 6,176 (16.1%)	34 (2.0%)	
15	09-10 Ago	$40.0(\pm 20.1)$	5+(2.070) 74.2 (±11.0)	<0.0001
10	Age	49.0 (±20.1)	74.3 (±11.9)	<0.0001
17	Mala	10 002 (46 00/)	020 (55 00/)	<0.0001
10		10,003 (40.9%)	920 (00.0%) 750 (15.0%)	\0.000 I
20		ZI,4ZI (53.1%)	100 (40.0%)	
20			4 407 (07 40/)	<0.0004
21	NO	20,005 (49.6%)	1,137 (67.4%)	<0.0001
22	Yes	8,110 (20.1%)	283 (16.8%)	
23	Missing	12,189 (30.2%)	266 (15.8%)	
25	Hispanic			/
26	No	29,781 (73.9%)	1,449 (85.9%)	<0.0001
20	Yes	10,523 (26.1%)	237 (14.1%)	
28	Total chol	198.1 (±43.2)	196.2 (±47.0)	0.10
29	Missing	4,670 (11.6%)	455 (27.0%)	
30	HDL	45.5 (±23.0)	45.0 (±24.2)	0.002
31	Missing	4,672 (11.6%)	455 (27.0%)	
32	SBP	124.8 (±20.3)	142.9 (±26.8)	<0.0001
33	Missing	4,114 (10.2%)	409 (24.3%)	
34	DBP	70.0 (±12.5)	67.5 (±14.7)	<0.0001
35	Missing	4,359 (10.8%)	446 (26.5%)	
36	Number of blood			
37	pressure			
38	medications			
39	0	27,894 (69.2%)	434 (25.7%)	<0.0001
40	1	10,205 (25,3%)	1.098 (65.1%)	
41	2	2.205 (5.5%)	154 (9.1%)	
42	T2DM	_,(0.07.07)		
43	No	14 680 (36 4%)	398 (23.6%)	<0.0001
44	Yes	6 229 (15 5%)	562 (33 3%)	0.0001
45	Missing	10 305 (48 1%)	726 (43 1%)	
46	Smoking	10,000 (70.170)	120 (70.170)	
47	No	32 508 (80 7%)	1 451 (86 1%)	<0.0001
48		7 701 (10 2%)	735 (12 Q%)	NU0001
49	Missing	2 (0 0%)	200 (10.970) 0 (0.0%)	
50		∠ (U.U70) 46 0 (±11 0)	0 (0.070) 51 0 (±10 2)	<0.0001
51		40.9 (III.U) 1 170 (10 10/)	01.0 (±10.0) 450 (07.00/)	\0.000 I
52	wissing	4,179 (10.4%)	409 (27.2%)	0.000
53	AHEI	47.1 (±11.1)	48.0 (±10.9)	0.006
54	Missing	4,158 (10.3%)	458 (27.2%)	0.40
55	MDS	5.1 (±1.2)	5.1 (±1.2)	0.10
56	Missing	4,472 (11.1%)	166 (9.8%)	
57				
58				

BMJ Open

1				
2				
3		No CVD	CVD	P-value for
5	DAGU		40.4 (+0.0)	difference
6	DASH	47.4 (±9.4)	48.1 (±9.2)	0.01
7	Wissing	11,774 (29.2%)	<u>722 (42.8%)</u>	ichar's avaat taat far
8	optogorical variables of a black	nunuous variables,	e.g., age, and F	isher's exact test for
9	categorical variables, e.g., blac	CKTACE		
10				
11				
12				
13				
15				
16				
17				
18				
19				
20				
21				
22				
24				
25				
26				
27				
28				
29				
30 21				
32				
33				
34				
35				
36				
37				
38				
29 40				
41				
42				
43				
44				
45				
46				
47 48				
49				
50				
51				
52				
53				
54				
55 56				
57				
58				
59				
60	For peer review only -	http://bmjopen.bmj.c	:om/site/about/guic	lelines.xhtml

Page 27 of 43

BMJ Open

Supplementary Appendix

Figure Legends

Supplementary Figure A: Calibration slopes and confidence intervals of models in training set (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N= 12600). All models included demographic variables age, sex, and race (Black race, Hispanic ethnicity). ACC=American College of Cardiology covariates of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no), HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest

Supplementary Figure B: Model discrimination (C-statistic) in training set (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N= 12600). All models included demographic variables age, sex, and race (Black race, Hispanic ethnicity). ACC=American College of Cardiology covariates of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no), HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest

Supplementary Figure C: Partial dependence plots for best model (500 trees using full data) for (a) age and (b) systolic blood pressure. Plots estimated by averaging model predictions for 1000 random samples from the training data at each decile of age or SBP.

Supplementary Table A: List of all predictor variables included in statistical models

Variable name	Definition
Demographic and risk factors (4)	
age	Age in years
sex	Sex (0 if male, 1 if female)
black	Black race (0 if no, 1 if yes)
hispanic	Hispanic ethnicity (0 if no. 1 if yes)
ACC covariates (7)	
total chol	Total cholesterol (mg/dL)
hdl	HDL cholesterol (mg/dL)
shn	Systolic blood pressure (mmHa)
dbp	Diastolic blood pressure (mmHg)
bomeds	Number of blood pressure medications
dm	Type 2 diabetes (0 if no 1 if yes)
toh	Current smoking (0 if no. 1 if yes)
Composite nutrition variables (4)	Current shloking (o ii no, i ii yes)
bei	Healthy eating index $(0, 100)$
abei	Alternative healthy eating index (0 110)
anei	Mediterranean diet seere (0,0)
daab	
24 hour recall variables (103)	
milk a	Milk and milk drinks (a)
nink_g	Croome and croom substitutes (g)
mille dessert a	Ville desserts, seuses, gravies (g)
nilik_dessent_g	Chappen (g)
cheese_g	Cheeses (g)
meat_ns_g	Neat, not specified as to type (g)
beet_g	Beef (g)
pork_g	Pork (g)
lamb_g	Lamb, veal, game, other carcass meat (g)
poultry_g	Poulty (g)
organ_meat_g	Organ meats, sausages, and lunchmeats,
• .	and meat spreads (g)
fish_g	Fish and shellfish (g)
meat_nonmeat_g	Meat, poultry, fish with nonmeat items (g)
protein_frozen_g	Proetin and shelf-stable plate meals,
	soups, and gravies with meat, poulty fish
	base; gelatin and gelatin-based drinks
eggs_g	Eggs (g)
egg_mixture_g	Egg mixtures (g)
egg_sub_g	Egg substitutes (g)
egg_frozen_g	Frozen plate meals with egg as major
	ingredient (g)
legumes_g	Legumes (g)
nuts_g	Nuts, nut butters, and nut mixtures (g)
seeds_g	Seeds and seed mixtures (g)
carob_g	Carob products (g)
flour_mix_g	Flour and dry mixes (g)
bread_yeast_g	Yeast breads, rolls (g)
_/	(U)

54
55
56
57
58
59
60

1		
2	brood quick a	$O_{\rm wisk}$ broads (c)
4	bread_quick_g	QUICK DIEBUS (g) Cakes essekies pice postrios hare (a)
5	pasities_g	Crackers and solty appake from grain
6	crackers_g	Crackers and sally shacks from grain
7	nanoakoa, a	Products (g) Danaakaa wafflaa Eranah taaat athar
8	pancakes_g	arcin products (g)
9	nantan a	grain products (g)
10	pastas_g	Pasias, cooked cereals, fice (g)
11	cereals_g	Cereals, not cooked of not specified as
12		Cooked (g)
13	grain_mix_g	Grain mixtures, frozen plate meals, sou
14	we at the second	(g) Maataukatitutaa mainku aamalumatain
15	meat_sub_g	Meat substitutes, mainly cereal protein
16	citrus_g	Citrus truits, juices (g)
17	fruit_dried_g	Dried fruits (g)
18	fruit_other_g	Other fruits (g)
19	fruit_juice_g	Fruit juices and nectars excluding citrus
20	fruit_baby_g	Fruit and juices baby food (g)
21	potatoes_g	White potatoes and Puerto Rican starc
22		vegetables (g)
23	veg_darkgreen_g	Dark-green vegetables (g)
24	veg deepyellow g	Deep-yellow vegetables (g)
25	tomatoes g	Tomatoes and tomato mixtures (g)
26	veg other g	Other vegetables (g)
27	veg baby g	Vegetables and mixtures mostly
28		vegetables baby food (g)
29	veg meat g	Vegetables with meat poultry fish (g)
30	veg mixture g	Mixtures mostly vegetables without me
31	vog_mxtaro_g	noultry fish (a)
32	fats o	Eats (a)
33		Oils(g)
34 25	salad dressing g	Salad dressings (g)
30	sweets a	Sugars and sweets (g)
30 27	sweets_y	Nonclocholic hoveragos (g)
37 20		Alechalia haverages (g)
20	bev_alconol_g	Alcoholic beverages (g)
39	water_g	Water, noncarbonated (g)
40 41	bev_nutrition_g	Formulated nutrition beverages, energy
41		drinks, sports drinks, functional bevera
42		(g)
45	kcal	Energy (kcal)
45	protein_g	Protein (g)
46	carb_g	Carbohydrates (g)
47	fiber_g	Fiber (g)
48	fat_g	Fat (g)
49	fat_sat_g	Saturated fats (g)
50	fat_mono_g	Monounsaturated fats (g)
51	fat_poly_g	Polyunsaturated fats (g)
52	cholesterol_mg	Cholesterol (mg)
53	vite mg	Vitamin-E as alpha-tocopherol (mg)
54	vita_mcg	Vitamin A, RAE (mcg)
55	betacaro mcg	Beta-carotene (mca)
56	vitb1 mg	Thiamin (Vitamin B1) (mg)
57	··· _ ·3	
58		
59		
60	For peer review only - ht	tp://bmjopen.bmj.com/site/about/guidelines.xhtml

, cooked cereals, rice (g) s, not cooked or not specified as to 1 (g) nixtures, frozen plate meals, soups ubstitutes, mainly cereal protein (g) fruits, juices (g) ruits (g) ruits (g) ices and nectars excluding citrus (g) nd juices baby food (g) potatoes and Puerto Rican starchy bles (g) reen vegetables (g) ellow vegetables (g) pes and tomato mixtures (g) egetables (g) bles and mixtures mostly bles baby food (g) bles with meat, poultry, fish (g) es mostly vegetables without meat, , fish (g) dressings (g) and sweets (g) coholic beverages (g) lic beverages (g) noncarbonated (g) lated nutrition beverages, energy sports drinks, functional beverages (kcal) (g) nydrates (g) g) ted fats (g) insaturated fats (g) saturated fats (g) sterol (mg) n-E as alpha-tocopherol (mg) n A, RAE (mcg) arotene (mcg) n (Vitamin B1) (mg)

3	vitb2_mg
4	niacin_mg
5	vitb6_mg
6	folate mcg
/	vitb12 mcg
8	vitc ma
9	calcium mg
10	phosphorus ma
11	magnesium mg
12	iron ma
13	zinc ma
14	copper ma
15	sodium ma
10	notassium ma
17	polassium_mg
10	selenium_mcg
20	theobromine ma
20	
21	alconol_gm
22	sta_40_gm
25	sta_60_gm
25	sta_80_gm
25	sta_100_gm
20	sfa_120_gm
28	sfa_140_gm
29	sfa_160_gm
30	sfa_180_gm
31	mfa_161h_gm
32	mfa_161o_gm
33	mfa_201_gm
34	mfa_221_gm
35	pfa_182_gm
36	pfa 183 gm
37	pfa 184 gm
38	pfa 204 gm
39	pfa_205_gm
40	pfa 225 gm
41	pfa 226 gm
42	water vesterday om
43	water_yeeterday_gin

60

Riboflavin (Vitamin B2) (mg) Niacin (mg) Vitamin B6 (mg) Total folate (mcg) Vitamin B12 (mcg) Vitamin C (mg) Calcium (mg) Phosphorus (mg) Magnesium (mg) Iron (mg) Zing (mg) Copper (mg) Sodium (mg) Potassium (mg) Selenium (mg) Caffeine (mg) Theobromine (mg) Alcohol (gm) SFA 4:0 (Butanoic) (g) SFA 6:0 (Hexanoic) (g) SFA 8:0 (Octanoic) (g) SFA 10:0 (Decanoic) (g) SFA 12:0 (Dodecanoic) (g) SFA 14:0 (Tetradecanoic) (g) SFA 16:0 (Hexadecanoic) (g) SFA 18:0 (Octadecanoic) (g) MFA 16:1 (Hexadecanoic) (g) MFA 16:1 (Octadecanoic) (g) MFA 20:1 (Eicosenoic) (g) MFA 22:1 (Docosenoic) (g) PFA 18:2 (Octadecadienoic) (g) PFA 18:3 (Octadecatrienoic) (g) PFA 18:4 (Octadecatatraenoic) (g) PFA 20:4 (Eicosatetraenoic) (g) PFA 20:5 (Eicosapentaenoic) (g) PFA 22:5 (Docosapentaenoic) (g) PFA 22:6 (Docosahexaenoic) (g) Total plain water drank yesterday (g)

				Standard		Machin	e learning
				A. Cox	B. Grad	dient	C. Surviva
				regression model	booste	d	random fo
Standa	rd	1. Demogra ACC	phics,	Model 1A	Model	1B	Model 1C
		2. Demogra	phics,	Model 2A	Model	2B	Model 2C
		3. Demogra	phics,	Model 3A	Model	3B	Model 3C
		4. Demogra ACC, Med o	aphics, diet	Model 4A	Model	4B	Model 4C
Add nutrition variables		score 5. Demogra ACC, DASH	aphics, H diet	Model 5A	Model	5B	Model 5C
		score				6D	Model 6C
		6. Demogra	ipnics, -hour	Model 6A	Model	OD	
Supple	mentary	ACC, all 24 recall data	alibration	Model 6A	onfidence int	tervals c	on the trainir
Supple data	mentary	ACC, all 24 recall data	alibration	Model 6A slopes and c	confidence inf	tervals c Machir	on the trainin
Supple data Standard	Demo	of Demogra ACC, all 24 recall data Table C : Ca	alibration Standa Cox mc 0.52 (0	Model 6A slopes and c ard odel .50, 0.54)	GBM 0.55 (0.51,	tervals c Machir 0.60)	on the trainin ne learning Random 0.74 (0.5
Supple data Standard	Demo ACC	ographics,	alibration Standa Cox mc 0.52 (0	Model 6A slopes and c ard odel .50, 0.54)	GBM 0.55 (0.51, 0.55 (0.51,	tervals c Machir 0.60) 0.60)	on the trainin ne learning Random 0.74 (0.5
Supple data Standard	Demo ACC Demo ACC Demo ACC	ographics, HEI ographics, ACC, all 24 recall data	alibration Standa Cox mc 0.52 (0 0.52 (0 0.52 (0	Model 6A slopes and c odel .50, 0.54) .50, 0.54)	GBM 0.55 (0.51, 0.56 (0.51,	tervals c Machir 0.60) 0.60) 0.60)	on the trainin ne learning Random 0.74 (0.5 0.76 (0.5
Supple data Standard	Demo ACC Demo ACC Demo ACC	ographics, , HEI ographics, , AHEI ographics, , MEI ographics, , Med diet	Alibration Standa Cox mc 0.52 (0 0.52 (0 0.52 (0 0.51 (0	Model 6A slopes and c odel .50, 0.54) .50, 0.54) .50, 0.54) .49, 0.54)	GBM 0.55 (0.51, 0.55 (0.51, 0.55 (0.51, 0.55 (0.51,	tervals c Machir 0.60) 0.60) 0.60) 0.60)	on the trainin ne learning Random 0.74 (0.5 0.76 (0.5 0.75 (0.5
Suppled data Standard Plus nutrition variables	Dema ACC Dema ACC Dema ACC Score Dema ACC	ographics, AEC, all 24 recall data Table C : Ca ographics, HEI ographics, AHEI ographics, Med diet ographics, DASH diet	Alibration Standa Cox mc 0.52 (0 0.52 (0 0.51 (0 0.52 (0	Model 6A slopes and c ard odel .50, 0.54) .50, 0.54) .50, 0.54) .49, 0.54) .50, 0.53)	GBM 0.55 (0.51, 0.55 (0.51, 0.55 (0.51, 0.55 (0.51, 0.55 (0.50,	tervals c Machir 0.60) 0.60) 0.60) 0.60)	on the trainin ne learning Random 0.74 (0.5 0.76 (0.5 0.75 (0.5 0.76 (0.5

Supplementary Table D: C-statistics on the training data

Standard	Demographics, ACC	Standard Cox model 0.87 (0.86, 0.88)	Machin GBM 0.88 (0.87, 0.89)	e learning Random forest 0.97 (0.96, 0.98)
	Demographics, ACC, HEI	0.87 (0.86, 0.88)	0.88 (0.87, 0.89)	0.97 (0.97, 0.98)
	Demographics, ACC, AHEI	0.87 (0.86, 0.88)	0.88 (0.87, 0.89)	0.97 (0.97, 0.98)
Plus	Demographics, ACC, Med diet score	0.87 (0.86, 0.88)	0.88 (0.87, 0.89)	0.97 (0.97, 0.98)
nutrition variables	Demographics, ACC, DASH diet score	0.87 (0.86, 0.88)	0.88 (0.87, 0.89)	0.97 (0.97, 0.98)
	Demographics, ACC, all 24- hour recall data	0.88 (0.88, 0.89)	0.88 (0.88, 0.89)	0.99 (0.99, 0.99)

Supplementary Table E: Calibration slopes and confidence intervals on the held-out test data

			Standard	Machine	e learning
			Cox model	GBM	Random forest
ę	Standard	Demographics, ACC	0.53 (0.49, 0.57)	0.54 (0.47, 0.61)	0.58 (0.49, 0.67)
		Demographics, ACC, HEI	0.53 (0.49, 0.57)	0.54 (0.47, 0.61)	0.59 (0.50, 0.68)
		Demographics, ACC, AHEI	0.53 (0.48, 0.57)	0.54 (0.48, 0.61)	0.60 (0.50, 0.70)
		Demographics, ACC, Med diet	0.53 (0.49, 0.57)	0.54 (0.47, 0.61)	0.59 (0.51, 0.67)
	Plus	score			
1	nutrition variables	Demographics, ACC, DASH diet score	0.52 (0.49, 0.56)	0.54 (0.47, 0.61)	0.60 (0.50, 0.69)
		Demographics, ACC, all 24- hour recall data	0.48 (0.44, 0.53)	0.56 (0.50, 0.62)	1.08 (0.83, 1.33) ¹

¹Model built using 500 trees; 20-tree model had slope 0.88 (0.69, 1.07)
Supplementary Table F: C-statistics on the held out test dat
--

		Standard	Machine	elearning
		Cox model	GBM	Random forest
Standard	Demographics, ACC	0.87 (0.85, 0.88)	0.88 (0.87, 0.89)	0.91 (0.90, 0.93)
	Demographics, ACC, HEI	0.87 (0.85, 0.88)	0.88 (0.87, 0.89)	0.91 (0.90, 0.93)
	Demographics, ACC, AHEI	0.87 (0.85, 0.88)	0.88 (0.87, 0.89)	0.92 (0.90, 0.93)
Plus nutrition	Demographics, ACC, Med diet score	0.87 (0.85, 0.88)	0.88 (0.87, 0.89)	0.91 (0.90, 0.92)
variables	Demographics, ACC, DASH diet score	0.87 (0.85, 0.88)	0.88 (0.87, 0.89)	0.92 (0.90, 0.93)
	Demographics, ACC, all 24-hour recall data	0.87 (0.85, 0.88)	0.88 (0.87, 0.89)	0.93 (0.92, 0.94) ¹

¹Model built using 500 trees; 20-tree model had C-statistic 0.90 (0.89, 0.92)

Supplementary Table G: Hazard ratios (95% CIs) from Cox models developed on training data. Estimates of hazard ratios and confidence intervals estimated using Rubin's rules, combining results from the 10 imputed training sets. See Supplementary Table A for variable definitions.

	Model 1 (ACC)	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)
age sex black hispanic total_chol hdl sbp bpmeds dm tob hei	$\begin{array}{c} 1.1 \ (1.09, 1.1) \\ 0.62 \ (0.55, 0.71) \\ 1.06 \ (0.9, 1.26) \\ 0.72 \ (0.61, 0.86) \\ 1 \ (0.99, 1) \\ 1 \ (1, 1) \\ 1.01 \ (1.01, 1.01) \\ 1.22 \ (1.11, 1.34) \\ 1.46 \ (1.23, 1.73) \\ 1.82 \ (1.53, 2.17) \end{array}$	$\begin{array}{c} 1.1 \ (1.09, 1.1) \\ 0.62 \ (0.55, 0.71) \\ 1.07 \ (0.91, 1.26) \\ 0.72 \ (0.61, 0.86) \\ 1 \ (0.99, 1) \\ 1 \ (1, 1) \\ 1.01 \ (1.01, 1.01) \\ 1.22 \ (1.11, 1.34) \\ 1.48 \ (1.26, 1.74) \\ 1.82 \ (1.52, 2.17) \\ 1 \ (0.99, 1.01) \end{array}$	$\begin{array}{c} 1.1 \ (1.09, 1.1) \\ 0.62 \ (0.55, 0.7) \\ 1.08 \ (0.91, 1.27) \\ 0.73 \ (0.61, 0.86) \\ 1 \ (0.99, 1) \\ 1 \ (1, 1) \\ 1.01 \ (1.01, 1.01) \\ 1.22 \ (1.11, 1.34) \\ 1.47 \ (1.25, 1.73) \\ 1.8 \ (1.51, 2.14) \end{array}$	$\begin{array}{c} 1.1 \ (1.09, 1.1) \\ 0.62 \ (0.55, 0.71) \\ 1.07 \ (0.91, 1.26) \\ 0.72 \ (0.61, 0.86) \\ 1 \ (0.99, 1) \\ 1 \ (1, 1) \\ 1.01 \ (1.01, 1.01) \\ 1.22 \ (1.11, 1.34) \\ 1.48 \ (1.25, 1.74) \\ 1.82 \ (1.53, 2.17) \end{array}$	$\begin{array}{c} 1.1 \ (1.09, 1.1) \\ 0.62 \ (0.55, 0.71) \\ 1.05 \ (0.89, 1.24) \\ 0.73 \ (0.61, 0.86) \\ 1 \ (0.99, 1) \\ 1 \ (1, 1) \\ 1.01 \ (1.01, 1.01) \\ 1.21 \ (1.1, 1.33) \\ 1.46 \ (1.24, 1.72) \\ 1.78 \ (1.49, 2.13) \end{array}$	$\begin{array}{l} 1.09 \ (1.09, 1.1) \\ 0.56 \ (0.49, 0.64) \\ 1.03 \ (0.85, 1.23) \\ 0.65 \ (0.54, 0.79) \\ 1 \ (0.99, 1) \\ 1 \ (1, 1) \\ 1.01 \ (1.01, 1.01) \\ 1.24 \ (1.12, 1.37) \\ 1.38 \ (1.16, 1.63) \\ 1.72 \ (1.42, 2.07) \end{array}$
ahei mds dash milk_g cream_g milk_desse			1 (0.99, 1)	1.02 (0.97, 1.08)	0.99 (0.98, 1)	1 (1, 1) 1 (0.99, 1) 1 (1, 1)
rt_g cheese_g meat_ns_g beef_g pork_g lamb_g poultry_g organ_mea						1 (1, 1) 1 (0.99, 1.02) 1 (1, 1) 1 (1, 1) 1 (1, 1) 1 (1, 1) 1 (1, 1) 1 (1, 1)
t_g fish_g meat_nonm eat_g protein_fro zen_g						1 (0.99, 1) 1 (1, 1) 1 (1, 1)
eggs_g egg_mixtur e_g egg_sub_g legumes_g nuts_g seeds_g						1 (1, 1) 1 (1, 1) 1 (0.99, 1) 1 (1, 1) 1 (1, 1) 1 (0.99, 1.01)

	Model 1 (ACC)	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)
carob_g flour_mix_	()	((((0.94 (0, ∞) 0.39 (0, ∞)
g bread_yeas						1 (1, 1)
_g read_quic						1 (1, 1)
tries_g						1 (1, 1)
ers_g kes_						1 (1, 1) 1 (1, 1)
astas_g						1 (1, 1)
jrain_mix_						1 (1, 1)
eat_sub_ a						0.91 (0, ∞)
citrus_g fruit_dried_						1 (1, 1) 1 (1, 1.01)
g fruit_other_						1 (1, 1)
g fruit_juice_						1 (1, 1)
g fruit_baby_ ~						1 (0.99, 1.02)
g potatoes_g						1 (1, 1)
een_g						1 (1, 1, 01)
ellow_g tomatoes_g						1 (1, 1)
veg_other_ g						1 (1, 1)
veg_baby_ g						0.8 (0, ∞)
/eg_meat_]						1 (1, 1)
veg_mixtur e_g fate_g						1(1, 1) 1(0.00, 1.01)
ils_g alad_dres						1.01 (0.99, 1.03)
sing_g sweets g						1 (1, 1)
bev_nonalc ohol_g						1 (1, 1)
bev_alcoho l_g						1 (1, 1)
water_g kcal						1 (1, 1) 1 (1, 1)
protein_g carb_g						1.01 (1, 1.02) 1 (1, 1.01)
fat_g						1 (0.97, 1.03) 1 06 (0.91, 1.23)
fat_mono_						1 (0.94, 1.07)
fat_poly_g cholesterol						1 (0.96, 1.03) 1 (1, 1)
_mg vite_mg						0.99 (0.97, 1.01)
vita_mg betacaro_m						1 (1, 1) 1 (1, 1)
cg vitb1_mg						1.05 (0.81, 1.35)
niacin_mg						0.97 (0.85, 1.34)
folate_mcg vitb12 mcg						1 (1, 1) 1 (0.98, 1 02)
vitc_mg calcium m						1 (1, 1) 1 (1, 1)
g phosphoru						1 (1, 1)
s_mg						

3		Model 1	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)
4	iron_mg	(100)	(****=*)	(17412)	(********	("Brieff)	1 (0.98, 1.02)
5	zinc_mg						1.01 (1, 1.03)
6	sodium mg						1 (1, 1)
7	potassium_						1 (1, 1)
8	mg selenium						1 (1, 1)
9	mcg						
10	caffeine_m						1 (1, 1)
11	theobromin						1 (1, 1)
12	e_mg alcoholam						1 01 (1 1 02)
13	sfa_40_gm						1.4 (0.6, 3.27)
14	sfa_60_gm						0.58 (0.13, 2.64)
15	sfa_80_gm sfa 100 g						0.75 (0.16, 3.59)
16	m						
17	sta_120_g m						1.01 (0.85, 1.2)
18	sfa_140_g						0.9 (0.59, 1.37)
19	sfa_160_g						0.95 (0.79, 1.14)
20	m sfa 180 g						0.96 (0.79, 1.17)
21	m						0.30 (0.73, 1.17)
22	mfa_161h_ am						0.95 (0.71, 1.26)
23	mfa_161o_						1 (0.95, 1.06)
24	gm mfa 201 g						1 12 (0 81 1 54)
25	m						
26	mfa_221_g						0.67 (0.24, 1.87)
27	pfa_182_g						1.04 (0.99, 1.09)
28	m pfa_183_g						0.84 (0.66, 1.07)
29	m						0.05 (0. 20.27)
30	pia_164_g m						0.05 (0, 39.37)
31	pfa_204_g						0.28 (0.05, 1.61)
32	m pfa 205 q						0.34 (0.04, 2.66)
33	m						
34	pfa_225_g m						27.42 (0.19, 3905.43)
35	pfa_226_g						2.91 (0.52, 16.29)
30	m water vest						1 (1, 1)
3/	_erday_gm						· · · /
38							
39							

Supplementary Table H: Relative influences of variables in GBM models, averaged across the 10 imputed training sets. See Supplementary Table A for variable definitions.

	Model 1 (ACC)	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)	
age	70.98	70.79	70.84	71.41	71.02	66.58	
sex	2.44	2.38	2.42	2.50	2.32	2.02	
black	0.00	0.00	0.00	0.00	0.00	0.00	
hispanic	0.01	0.02	0.01	0.00	0.01	0.00	
total chol	3.60	3.48	3.47	3.30	3.60	2.16	
hdl _	0.42	0.37	0.45	0.41	0.33	0.05	
sbp	11.81	10.62	11.83	11.84	11.70	8.42	
bpmeds	7.45	7.35	7.32	7.29	7.50	6.49	
dm	3.06	2.85	3.11	2.99	2.90	2.61	
tob	0.23	0.23	0.27	0.26	0.26	0.00	
hei		1.92					
ahei			0.28				
mds				0.00			
dash					0.35		
milk a						0.08	
cream q						0.09	
milk desse						0.17	
rt_g						-	

	Model 1 (ACC)	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)
cheese_g meat_ns_g beef_g pork_g lamb_g poultry_g organ_mea						0.00 0.29 0.00 0.14 0.08 0.00 0.00
t_g fish_g meat_nonm eat g						0.02 0.00
protein_fro zen g						0.00
eggs_g egg_mixtur						0.03 0.00
e_g egg_sub_g legumes_g nuts_g seeds_g carob_g flour_mix_						0.23 0.12 0.09 0.34 0.00 0.00
g bread_yeas						0.16
t_g bread_quic k_g						0.03
pastries_g crackers_g pancakes_						0.08 0.06 0.00
g pastas_g cereals_g grain_mix_						0.13 0.00 0.00
g meat_sub_ ~						0.00
g citrus_g fruit_dried_ g						0.00 0.00
fruit_other_						0.00
fruit_juice_ a						0.00
fruit_baby_ q						0.00
potatoes_g veg_darkgr						0.00 0.02
veg_deepy						0.00
tomatoes_g veg_other_						0.06 0.12
g veg_baby_						0.00
9 veg_meat_ a						0.06
ษ veg_mixtur						0.00
e_g fats_g oils_g salad_dres						0.15 0.24 0.06
sing_g sweets_g bev_nonalc						0.07 0.00
ohol_g bev_alcoho						0.00
I_g water_g kcal protein_g carb_g fiber_g fat_g fat_sat_g fat_sat_g fat_mono_						0.00 0.29 0.44 0.55 1.69 0.00 0.21 0.17

3		Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
4	fat poly g	(ACC)	(+HEI)	(+AHEI)	(+MDS)	(+DASH)	(+AII)
5	cholesterol						0.00
6	_mg vite ma						0.00
7	vita_mg						0.18
8	betacaro_m						0.19
9	vitb1_mg						0.05
10	vitb2_mg						0.02
11	vitb6_mg						0.32
12	folate_mcg						0.11
13	vitc_mg						0.00
14	calcium_m						0.23
15	9 phosphoru						0.13
16	s_mg magnesium						0.47
17	_mg						0.47
18	iron_mg						0.11
19	copper_mg						0.29
20	sodium_mg						0.02
21	mg						1.02
22	selenium_						0.09
23	caffeine_m						0.00
24	g the chromin						0.00
25	e_mg						0.00
26	alcohol_gm						0.02
27	sfa_40_gm						0.00
28	sfa_80_gm						0.07
29	sia_100_g m						0.00
30	sfa_120_g						0.14
31	sfa_140_g						0.02
32	m sfa 160 g						0.00
33	m						0.00
34	sfa_180_g						0.30
35	mfa_161h_						0.17
36	gm mfa 161o						0.35
37	gm						0.55
38	mfa_201_g						0.00
39	mfa_221_g						0.00
40	m nfa 182 g						0.00
41	m						0.00
42	pfa_183_g						0.07
43	pfa_184_g						0.02
44	m pfa 204 g						0.00
45	m						0.00
46	pfa_205_g						0.00
47	 pfa_225_g						0.00
48	m nfa 226 g						0.04
49	m						U.UT
50	water_yest						0.00
51	eiuay_yiii						
52							

Supplementary Table I: TRIPOD checklist

	<u> </u>	Title and abstract	Page number
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted	1
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions	2
		Introduction	
Background and objectives	3a	Explain the medical context (including diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models	4-5
	3b	Specify the objectives, including whether the study describes the development or validation of the model, or both	5
	1.	Methods	
Source of data	4a	Describe the study design or sources of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable	6
Dorticipanto	4D	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up)	0
Participants	5a	specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centers	0
	50	Describe eligibility criteria for participants	0
Outcome	5c 6a	Clearly define the outcome that is predicted by the prediction model, including how	N/A 6
		and when assessed	
	6b	Report any actions to blind assessment of the outcome to be predicted	6
Predictors	7a	Clearly define all predictors used in developing the multivariable prediction model, including how and when they were measured	6-7, Supp Table A
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors	6
Sample size	8	Explain how the study size was arrived at	7
Missing data	9	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method	7
Statistical analysis	10a	Describe how predictors were handled in the analysis (D)	6-7
,	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation (D)	7-8
	10c	For validation, describe how predictions were calculated (V)	7
	100	Specify all measures used to assess model performance and, if relevant, to compare multiple models	8-9
	10e	Describe any model updating (e.g., recalibration) arising from the validation, if done	10
Risk arouns	11	Provide details on how risk groups were created if done	Ν/Δ
Development vs.	12	For validation, identify any differences from the development data in setting, eligibility criteria outcome and predictors (V)	N/A
Validation	-	Posults	
Participants	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-	10
	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including number of participants with missing data for predictors and outcome	10, Table 1
	13c	For validation, show a comparison with the development data of the distribution of	10, Table 1
Madal day (1) (1)	44	Important variables (demographics, predictors, and outcome) (V)	40.44
wodel development	14a	Specify the number of participants and outcome events in each analysis (D)	
	140	outcome (D)	Table G
Model specification	15a	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point) (D)	12-13, Supp Table G
	15b	Explain how to use the prediction model (D)	12-13
Model performance	16	Report performance measures (with CIs) for the prediction model	11-13
Model updating	17	If done, report the results from any model updating (i.e., model specification, model performance) (V)	N/A
		Discussion	
Limitations	18	Discuss any limitations of the study (such as non-representative sample, few events per predictor, missing data)	14
Interpretation	19a	For validation, discuss the results with reference to performance in the development data, and any other validation data (V)	14
	19b	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence	15
Implications	20	Discuss the notential clinical use of the model and implications for future research	15
Other information	. 20		
Supplementary	21	Provide information about the availability of supplementary resources, such as study protocol. Web calculator, and data sets	25-37
Funding	22	Give the source of funding and the role of the funders for the present study	16
		· · · · · · · · · · · · · · · · · · ·	

1	
2	
3	
4	
5	
5	
6	
/	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	/ 0
	o c
1	9
2	0
2	1
2	2
2	3
2	4
2	5
2	ر د
2	0
2	/
2	8
2	9
3	0
3	1
3	2
3	3
2	л Л
ינ ר	4 7
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
1	2
4	ך ע
4	4
4	5
4	6
4	7
4	8
4	9
5	0
5	1
5	2
5	2 2
2 7	כ ג
5	4
5	5
5	6
5	7
5	8
5	9

Page 41 of 43

BMJ Open

Machine learning with sparse nutrition data to improve cardiovascular mortality risk prediction in the United States using nationally randomly sampled data

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-032703.R1
Article Type:	Original research
Date Submitted by the Author:	04-Oct-2019
Complete List of Authors:	Rigdon, Joseph ; Wake Forest School of Medicine, Department of Biostatistics and Data Science Basu, Sanjay; Harvard Medical School
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Research methods
Keywords:	Cardiovascular disease, machine learning, Nutrition < TROPICAL MEDICINE, risk prediction

60

BMJ Open

1	
2	
3	Machine learning with sparse nutrition data to improve cardiovascular mortality
5	
6	risk prediction in the United States using nationally randomly sampled data
7	
8	
9	
10	
11	
13	
14	Joseph Rigdon, PhD*
15	
16	Department of Biostatistics and Data Science, Wake Forest School of Medicine,
17	
18	525@Vine #4403
19	Wington Solom North Coroling 27157
21	Winston-Salem, North Carolina 27 157
22	irindon@wakehealth.edu
23	<u>Inguona wakeneann.cuu</u>
24	
25	
26 27	
27	
29	Sanjay Basu, MD, PhD
30	
31	Center for Primary Care, Harvard Medical School
32	Research and Analytics, Collective Health
33	Research and Analytics, collective freatth
35	School of Public Health, Imperial College London
36	
37	635 Huntington Avenue, 2 nd floor
38	
39	Boston, MA 02115
40	
41 42	sanjay_basu@hms.harvard.edu
43	
44	
45	
46	
47	*Denotes corresponding author
48 79	
49 50	
51	
52	
53	
54	
55	
50 57	
58	

Abstract

Objectives: We aimed to test whether or not adding (i) nutrition predictor variables and/or (ii) using machine learning models improves cardiovascular death prediction versus standard Cox models without nutrition predictor variables

Design: Retrospective study

Setting: Six waves of National Health and Nutrition Examination Survey (NHANES) data collected from 1999-2011 linked to the National Death Index (NDI)

Participants: 29,390 participants were included in the training set for model derivation and 12,600 were included in the test set for model evaluation. Our study sample was approximately 20% black race and 25% Hispanic ethnicity.

Primary and Secondary Outcome Measures: Time from NHANES interview until the minimum of time of cardiovascular death or censoring

Results: A standard risk model excluding nutrition data overestimated risk nearly twofold [calibration slope of predicted versus true risk: 0.53 (95% CI: 0.50, 0.55)] with moderate discrimination [C-statistic: 0.87 (0.86, 0.89)]. Nutrition data alone failed to improve performance while machine learning alone improved calibration to 1.18 (0.92, 1.44) and discrimination to 0.91 (0.90, 0.92). Both together substantially improved calibration [slope: 1.01 (0.76, 1.27)] and discrimination [C-statistic: 0.93 (0.92, 0.94)]. **Conclusions**: Our results indicate that the inclusion of nutrition data with available machine learning algorithms can substantially improve cardiovascular risk prediction.

Keywords: Cardiovascular disease, machine learning, nutrition, risk prediction **Word Count:** 3,475

BMJ Open

Strengths and limitations of this study

- Nationally representative data with a comprehensive evaluation of nutrition, direct laboratory assessment of biomarkers, and direct examination of blood pressure
- Comprehensive follow-up with mortality adjudication by cause of death
- Limitations include the need to impute missing data, a short follow-up duration among individuals collected in the later waves of NHANES, and the lack of information about cardiovascular disease (CVD) events in addition to CVD mortality.

Introduction

Nutrition is thought to be a major contributor to cardiovascular disease mortality risk^{1–4}, but as yet is not explicitly incorporated into cardiovascular risk models that are used to guide clinical prescribing of statins and other preventive medications^{5–9}. Nutrition is both imperfectly measured, typically through 24-hour dietary recalls, and nutrition data are sparse and multi-variable, with numerous metrics from individual kilocalorie intakes across a wide range of macro and micronutrients^{10,11}, making it difficult to determine how an overall nutritional profile might be incorporated into clinical practice. Several groups have offered composite nutrition quality scores (e.g., the Healthy Eating Index and alternatives)^{12–14}, which correlate to some degree with cardiovascular mortality ^{15–22} but have not yet been incorporated into common risk equations that use more traditional risk markers (e.g., systolic blood pressure)⁵. Optimizing cardiovascular disease risk prediction is important in clinical practice, because many modern clinical guidelines recommend that physicians prescribe therapies (such as statins, aspirin, and intensive blood pressure treatment) based in part on estimates of overall cardiovascular disease

risk, not simply based on the levels of a single biomarker such as cholesterol or blood pressure levels, which fail to fully capture the influence of nutrition on risk ^{23–26}.

With modern machine learning methods, it may be possible to avoid the problems of composite indices, such as reducing a large amount of sparse data to a rough composite that does not explain substantial variation in observed risk²⁷. Machine learning approaches are particularly adept at capturing a complex array of large data represented by the sparse matrices of nutrition variables, and incorporating interactions among the data variables (such as between different types of nutrients, e.g., different fats, different carbohydrates, etc.), and identify nonlinear relationships between risk factors and outcomes (e.g., increasing carbohydrate to a very high level from a medium level may differ in impact than increasing from low to medium) that traditional regression models may not fully capture^{28–31}. Additionally, with high-quality, more rapid 24-hour dietary recall techniques that can more comprehensively assess a person's dietary behaviors and link them to large nutritional databases, it is now possible to assess nutritional profiles in detail in the clinician's office or clinic waiting room^{32–35}. It remains unclear, however, whether nutritional information from a 24-hour recall can add meaningful value to cardiovascular mortality risk prediction beyond biomarker values—such as lipid profile, blood pressure, and diabetes status—and whether using a machine learning approach can advance the predictive power of dietary recalls for cardiovascular risk assessment beyond composite indices already available.

Here, we use a 2-by-2 factorial experimental design to test two hypotheses using observational data: (i) that the data from a single 24-hour dietary recall can add substantial predictive value to cardiovascular mortality risk estimation beyond that afforded by standard biomarkers already included in traditional cardiovascular risk calculators; and (ii) that machine learning approaches to directly incorporate sparse

BMJ Open

matrices of nutrition data into risk estimates can be superior to standard regression models or the composite nutritional indices constructed through linear modeling methods in the past.

Methods

We conducted a 2-by-2 factorial experiment in which we compared the calibration and discrimination of cardiovascular disease mortality risk prediction models with and without data from a 24-hour dietary recall, and with and without a machine learning approach.

Data Source

Six waves of cross-sectional data from the National Health and Nutrition Examination Survey (NHANES, 1999-2000, 2001-2002, 2003-2004, 2005-2006, 2007-2008, and 2009-2010) were used to develop and validate the risk prediction models. The details of the NHANES sampling scheme are described elsewhere³⁶. Briefly, NHANES is a survey including laboratory biomarkers and clinical examination, collected in two-year waves among children and adults, sampled to represent the non-institutionalized civilian U.S. population. Each observation within each wave was linked to the National Death Index (NDI, through 2011) by the Centers for Disease Control. The NDI provided data on the time of CVD death or censoring of follow-up, and additionally a variable attributing death to one of nine-cause specific categories (heart disease, cancer, chronic lower respiratory disease, cerebrovascular diseases, diabetes, pneumonia and influenza, Alzheimer's disease, kidney disease, and unintentional injuries).

The primary statistical outcome was defined as time from NHANES interview to the minimum of time of censoring or time of death from heart disease or cerebrovascular diseases, henceforth CVD mortality. Death from any other cause was treated as censored. Inclusion criteria were age 20-79 years old at time of interview with no prior CVD history. No actions were taken to blind assessment of predictors for the outcome and other predictors. No actions were taken to blind assessment of the outcome.

All potential predictors in the models were collected at time of NHANES interview to mimic a hypothetical scenario where a medical provider may want to conduct an in-clinic 24-hour dietary recall to improve prediction of CVD mortality. Demographic variables included age, sex, and race (Black race, Hispanic ethnicity), and currently-employed cardiovascular disease risk factors of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no)⁵. Nutrition variables included daily standardized intake of micronutrients (e.g., sodium, selenium) and macronutrients (e.g., fat, carbohydrates, protein) collected during a single 24-hour dietary recall following the NHANES interview (Supplementary Table A).

Patient and Public Involvement

No patient involved.

Model Development

Random samples of 70% of each NHANES wave were pooled to form the training sample from which the models were derived, with the remaining 30% prospectively held out to form the test set to assess performance of each model without refitting or recalibration. To train the models in the presence of missing data, multiple imputation via

BMJ Open

chained equations^{37,38} was employed to fill in missing values (Supplementary Table B) so that one complete data set was available.

In one arm of the 2-by-2 design, we tested whether or not switching from the standard Cox proportional hazards model to a machine learning algorithm could improve calibration and discrimination. The machine learning algorithms tested were those commonly used for clinical event risk prediction for censored time-to-event data: survival gradient boosted machines (GBMs)³⁹ and survival random forests (RFs)⁴⁰. Both of these machine learning approaches construct decision trees from data. In a typical decision tree, each branch of the tree divides the sampled study population into increasinglysmaller subgroups that differ in their probability of the outcome. A good decision tree will separate the sampled population into groups that have low within-group variability and high between-group variability in the probability of the outcome. GBMs average many trees where errors made by the first tree contribute to learning of a less erroneous tree in the next iteration (a "boosting" strategy)^{41,42}. RFs also build numerous decision trees, but average a forest composed of many trees, where each tree is independently fitted (a "bagging" strategy) with a random subset of covariates selected to be eligible to define the branches^{42–45}. RFs use inverse probability of censoring weights to address censoring.

In the second arm of the 2-by-2 design, we tested whether or not adding nutrition variables, including all micro and macronutrients assessed in the NHANES dietary recall, to the standard demographic and biomarker variables could improve prediction. We additional compare incorporating all nutrition data versus using common existing composite nutrition indices: the Healthy Eating Index (HEI)⁴⁶, Alternate Healthy Eating

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Index (AHEI)⁴⁷, Mediterranean Diet Score (MDS)⁴⁸, and the Dietary Approaches to Stop Hypertension diet score (DASH)⁴⁹.

In total, our 2-by-2 design contained 18 models in four quadrants. The no machine learning, no nutrition (standard model) quadrant included only one model: a Cox regression model with demographics and biomarker variables. The machine learning, no nutrition quadrant included two models: a gradient boosted machine and a random forest, both using only demographics and biomarker variables. The no machine learning, nutrition quadrant included five models: a Cox regression including demographics, biomarkers, and either HEI, AHEI, MDS, DASH, or all micro and macronutrients from NHANES. Finally, the machine learning, nutrition quadrant included machines or random forests including demographics, biomarkers, and either HEI, MDS, DASH, or all micro and macronutrients from NHANES. Finally, the machine learning, nutrition quadrant included Machines or random forests including demographics, biomarkers, and either HEI, MDS, DASH, or all micro and macronutrients from NHANES. Finally, the Machine learning, nutrition quadrant included Machines or random forests including demographics, biomarkers, and either HEI, MDS, DASH, or all micro and macronutrients from NHANES.

Cox regression models, GBM, and RF were fit to the 70% training data. GBMs were tuned via manual grid search over number of trees equal to 100, 300, or 500 and tree depth equal to 1, 5 or 10, with learning rate set to 0.1⁵⁰. RFs based on conditional inference trees^{51,52} were tuned via manual grid search over number of trees equal to 100, 300, or 500 and number of input variables randomly sampled at each node equal to 1, 5, or 10. The best performing GBM and RF models were those that minimized in the 30% held-out test set the sum of (i) the squared error between the calibration metric (described below) and the ideal target of 1 and (ii) the squared error between the discrimination metric (described below) and the ideal target of 1.

Outcome metrics

Model performance was assessed in terms of calibration (using the Greenwood-Nam-D'Agostino [GND] test) and discrimination (using the C-statistic). In the GND test, model predicted probability of 10-year CVD mortality risk was compared to observed rates of death from CVD within 10 years after the NHANES interview by decile of predicted risk. A slope and intercept line were then drawn using these values across deciles of predicted risk, such that a calibration slope of 1 reflects perfect calibration (a perfect 45degree line between predicted and observed risk).

Model discrimination was assessed using the C-statistic (area under receiver operating characteristic [ROC] curve). Each point on the ROC curve was defined by the sensitivity (x-axis) and 1-specificity (y-axis) for a given cutpoint. The calculation of sensitivity and specificity followed from model predicted risk (above/below cutpoint) versus gold standard of outcome (whether or not CVD mortality happened within 10 years after NHANES interview). Confidence intervals for C-statistics were calculated using DeLong's test⁵³ as implemented in the R package 'pROC'⁵⁴.

Sensitivity analyses included (i) adding education and poverty to the best performing model and (ii) applying the best performing model to the component outcomes CVD mortality, heart disease and cerebrovascular diseases, separately. No model updating was done in this study, and no risk groups were created. There were no differences in setting, eligibility criteria, outcome, or predictors between the training (development) set and the test (validation) set. There was no need for participant consent or Ethical Review Board approval as the data are publicly available. All statistical analyses were carried out in Stata 15 software⁵⁵ and R version 3.6.1⁵⁶.

This manuscript was written in accordance with the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) recommendations⁵⁷, summarized in Supplementary Table C.

Data Availability Statement

Statistical code used for data scraping (from NHANES and NDI websites, as specified in comments in the code), training and test data sets, data management, model fitting, and table and figure creation are available in the following public, open access repository: https://github.com/joerigdon/CVD Prediction.

Results

Descriptive statistics on the study sample

Distributions of demographics, covariates and outcome rates were nearly equivalent in training and test sets (Table 1). Of the n=29390 individuals in the training set, 1179/29390 (4.0%) experienced CVD mortality within the follow-up period; of the n=12600 in the test set, 507/12600 (4.0%) experienced CVD mortality. The median follow-up time was 79 months in both training and test sets, with a mean age of 50 years, and 47% of the population being male, 20% Black, 26% Hispanic, 16% with diabetes, and 19% actively smoking tobacco. Composite nutrition indices were identical to within rounding error between the train and test datasets, with a mean HEI score of 47 (out of 100^{46}), AHEI score of 47 (out of 110^{47}), MDS score of 5 (out of 10^{48}), and DASH score of 47 (out of 80⁴⁹); higher scores indicate better adherence to the recommended dietary guidelines for all four of the composite scores.

Page 11 of 64

BMJ Open

Compared to individuals without CVD mortality, individuals experiencing CVD mortality were older (74.3 vs. 49.0 years old), more likely to be male (55.0% vs. 46.9%), had higher systolic blood pressure (142.9 vs. 124.8 mmHg), were more likely to take blood pressure medications (74.2% vs. 30.8%), and were more likely to have diabetes (33.3% vs. 15.5%; Table 2). Regarding nutrition variables, those experiencing CVD mortality counter-intuitively had a higher HEI score (51.0 vs. 46.9), a higher AHEI score (48.0 vs. 47.1), and a higher DASH score (48.1 vs. 47.4; Table 2), and comparable MDS scores (5.1 vs. 5.1).

Model calibration performance

As expected, model calibration values were better in the training (Supplementary Figure A, Supplementary Tables D, E, F, G, H, I) versus the held-out test set (Figure 1, Supplementary Tables J, K, L, M, N, O). Using the standard approach to CVD risk prediction modeling⁵, a Cox proportional hazards model with variables of age, sex, Black race, and Hispanic ethnicity, total cholesterol, HDL cholesterol, systolic blood pressure, blood pressure medication, diabetes, and tobacco use, yielded a GND calibration slope of 0.53 (95% CI: 0.50, 0.55), reflecting profound risk over-estimation consistent with prior estimates^{58,59}. Adding HEI, AHEI, MDS, or DASH score to the model did not change the calibration slope of 0.53, however the addition of the raw (not composite) 24-hour recall data decreased the slope to 0.46 (0.43, 0.50), reflecting a worsening of over-estimation of risk (Figure 1, Supplementary Tables J, K, L, M, N, O).

When using a machine learning GBM approach instead of a Cox proportional hazards model, but still excluding nutrition data, model calibration improved to 0.56 (0.51, 0.61), and when using random forest in place of Cox, the calibration improved further to 1.18 (0.92, 1.44). Adding nutrition variables improved the machine learning models'

calibration when raw 24-hour recall data were used, but not when composite dietary indices were used. Adding HEI, AHEI, MDS, or DASH slightly improved calibration slope to 0.59 for the GBM models and improved calibration slope for the random forest models from 1.18 to 1.13. The GBM model had the best calibration when using all 24-hour recall data, producing a calibration slope of 0.83 (0.77, 0.89). The random forest model with raw 24-hour nutrition data was the closest to the ideal value of 1, with a calibration slope of 1.01 (0.76, 1.27) (Figure 1, Supplementary Table O).

Model discrimination performance

Model discrimination values were better in the training (Supplementary Figure B, Supplementary Tables D, E, F, G, H, I) versus the held-out test set (Figure 2, Supplementary Tables J, K, L, M, N, O). The exclusion or inclusion of nutrition data did not affect discrimination of the standard Cox risk models. The Cox model with the abovementioned non-nutrition data had a C-statistic of 0.88 (0.87, 0.89) in the test set. Adding HEI, AHEI, MDS, DASH, or all raw 24-hour recall data left the C-statistic unchanged at 0.88 (Figure 2, Supplementary Tables J, K, L, M, N, O).

Model discrimination also improved with use of machine learning. Using a GBM in place of a Cox model improved discrimination slightly, from C-statistics of 0.88 in Cox models to 0.90 (0.89, 0.91) for all GBM models without nutrition data and 0.91 (0.90, 0.92) for the random forest without nutrition data. The discrimination was not significantly different with the addition of composite nutritional indices, but did improve to 0.93 (0.92, 0.94) with the addition of raw nutrition data (Figure 2, Supplementary Table O).

Important associations

Page 13 of 64

BMJ Open

Cox model coefficients are detailed in Supplementary Table P and gradient boosted machine model relative influences are detailed in Supplementary Table Q. Notable associations with cardiovascular death included age (HR for 1-year increase in age of 1.1 [1.09, 1.1], female sex (HR vs. males of 0.65 [0.57, 0.73]), Hispanic ethnicity (HR vs. non-Hispanics of 0.69 [0.58, 0.81]), systolic BP (HR for 1-unit increase of 1.0050 [1.0024, 1.0075]), blood pressure medications (HR for each additional med of 1.19 [1.08, 1.30]), type 2 diabetes (HR vs. non-diabetics of 1.46 [1.29, 1.65]), and tobacco use (HR vs. non-users 1.91 [1.61, 2.27]) (Supplementary Table P). No associations with cardiovascular death were found with HEI or AHEI. A one-unit increase of MDS slightly increased risk: 1.0481 (1.0004, 1.0980), and a one-unit increase in DASH score slightly reduced risk: 0.9870 (0.9806, 0.9935).

In the comprehensive evaluation of all 24-hour nutrition variables, protective associations were seen with fiber (HR 0.96 [0.95, 0.97] for 1-gram increase) and niacin (HR 0.98 [0.96, 0.99] for 1-milligram increase), and harmful association with saturated fat (HR 1.19 [1.07, 1.32] for 1-gram increase). Examining fat intake per one-gram increase more closely, SFA 16:0 intake was protective [0.85 (0.76, 0.94)], as was SFA 18:0 [0.85 (0.75, 0.98)]. MFA 16:1 [1.06 (1.02, 1.10)], and MFA 20:1 [1.32 (1.03, 1.69)] slightly increased risk, as did PFA 18:2 [1.07 (1.04, 1.11)]. MFA 22:1 [0.34 (0.13, 0.90)] and PFA 18:3 [0.80 (0.68, 0.95)] reduced risk.

Relative influences in a GBM display how much of a 0-100 importance total is accounted for by each variable in the model (Supplementary Table Q). Age consistently had relative influences of 20-30, with the exception of Model 3 with AHEI (relative influence 6), and Model 4 with MDS (relative influence 3). SBP had a relative influence of 19-41 in all models except Model 6 with all nutrition variables (relative influence 3). HDL ranged

from 10-37 with the exception of Model 4 with AHEI (3) and Model 6 with all nutrition variables (3). Total cholesterol ranged from 13-24 with the exception of Model 6 (2). Tobacco use was unusually influential in Model 3 (46) while remaining below 4 in all other models. HEI was important in Model 1 (14) and DASH in Model 5 (17), whereas relative influences for AHEI and MDS failed to exceed 2. Of the 24-hour nutrition variables, iron, legumes, sweets, and pastries had relative influences of 5 or greater. Partial dependence plots for the random forest model with all nutrition variables reveal an exponential increase in 10-year probability of CVD death starting at about age 65, and a linear increase in risk for 10-year probability of CVD death after 120 mmHg systolic blood pressure (Supplementary Figure C).

Sensitivity Analyses

Adding education and poverty to the best performing model did not substantially improve calibration (1.0120 with vs. 1.0137 without), or discrimination (0.9336 with vs. 0.9320 without). Applying the best performing model separately to death from heart disease yielded calibration slope 0.9670 (0.7525, 1.1814) and discrimination C-statistic 0.9256 (0.9120, 0.9391). Applying the best performing model separately to death from cerebrovascular disease yielded calibration slope 0.7406 (0.5636, 0.9177) and discrimination C-statistic 0.9157 (0.8898, 0.9416).

Discussion

We examined whether or not improvements in CVD mortality prediction could be achieved by including sparse nutrition data into models derived through machine learning algorithms. We observed that the addition of nutrition variables to a standard Cox proportional hazards model was not of substantial benefit alone, machine learning

BMJ Open

alone improved calibration and moderately improved discrimination, and when both nutrition data and machine learning were combined, we could substantially improve risk prediction beyond the inclusion of standard demographics and biomarkers alone. Calibration particularly improved when both nutrition data and machine learning algorithms were used.

Our findings are of clinical relevance as more rapid, automated or mobile device-based 24-hour dietary recalls make it feasible to provide a nutrition profile for patients at or before visiting a doctor's office^{1,2}, and as automated cardiovascular disease risk prediction models become an increasingly-important part of precision medicine guidelines that aim to improve the ability of medical practitioners to prescribe preventive cardiovascular treatments to patients with the highest risk⁶. As standard biomarkers fail to explain the full extent to which nutrition relates to cardiovascular mortality^{60,61}, machine learning approaches that directly incorporate raw dietary data appear to have benefits over composite nutritional indices that may excessively reduce complexity in nutritional interactions and non-linear relationships that confer risk. Our study benefits from being conducted on a nationally representative sample of US adults, including a comprehensive evaluation of nutrition, direct laboratory assessment of biomarkers, direct examination of blood pressure, and comprehensive follow-up with mortality adjudication by cause of death.

Nevertheless, our study has important limitations, including the need to impute missing data, a short follow-up duration among individuals collected in the later waves of NHANES, the lack of information about CVD events in addition to CVD mortality, and the need to assess feasibility of model implementation in practice. In the future, further research can assess whether the performance of rapid dietary recalls and associated

cardiovascular risk estimation can be implemented in practice, whether the level of improvements to calibration and discrimination observed in this assessment produce clinically-meaningful changes in the level of prescribing of key preventive therapies for patients, and whether the difficulties of interpreting machine learning models compared to traditional Cox-type risk models poses challenges to the acceptability of these models in clinical practice.

At present, our results indicate that the inclusion of nutrition data with available machine learning algorithms can substantially improve cardiovascular risk prediction.

Author Contributions

SB conceptualized the study and design and contributed to data preparation and analysis. JR contributed to data preparation and analysis. Both authors contributed to writing and critically reviewing the manuscript.

Competing Interests statement

JR and SB have no competing interests to report.

Acknowledgements

The authors acknowledge two anonymous reviewers at the Stanford Quantitative Sciences Unit.

Funding

This work was supported by the National Institute On Minority Health And Health Disparities of the National Institutes of Health under Award Number DP2MD010478. The

BMJ Open

content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

- Shivappa, N., Steck, S. E., Hussey, J. R., Ma, Y. & Hebert, J. R. Inflammatory potential of diet and all-cause, cardiovascular, and cancer mortality in National Health and Nutrition Examination Survey III Study. *Eur. J. Nutr.* 56, 683–692 (2017).
- 2. Aune, D. *et al.* Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies. *Int. J. Epidemiol.* **46**, 1029–1056 (2017).
- 3. Wang, D. D. *et al.* Association of Specific Dietary Fats With Total and Cause-Specific Mortality. *JAMA Intern. Med.* **176**, 1134–1145 (2016).
- 4. Langley Evans, S. C. Nutrition in early life and the programming of adult disease: a review. *J. Hum. Nutr. Diet.* **28**, 1–14 (2015).
- Goff David C. *et al.* 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. *Circulation* **129**, S49–S73 (2014).
- Stone Neil J. *et al.* 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. *Circulation* **129**, S1–S45 (2014).
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). *JAMA J. Am. Med. Assoc.* 285, 2486–2497 (2001).

- Lloyd-Jones, D. M. *et al.* Prediction of Lifetime Risk for Cardiovascular Disease by Risk Factor Burden at 50 Years of Age. *Circulation* **113**, 791–798 (2006).
- Yadlowsky, S. *et al.* Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk. *Ann. Intern. Med.* 169, 20 (2018).
- Stumbo, P. Considerations for selecting a dietary assessment system. J. Food Compos. Anal. Off. Publ. U. N. Univ. Int. Netw. Food Data Syst. 21, S13–S19 (2008).
- Stewart, K. K. & Whitaker, J. R. *Modern Methods of Food Analysis*. (Springer Science & Business Media, 2012).
- 12. Kennedy, E. T., Ohls, J., Carlson, S. & Fleming, K. The Healthy Eating Index: Design and Applications. *J. Am. Diet. Assoc.* **95**, 1103–1108 (1995).
- McCullough, M. L. & Willett, W. C. Evaluating adherence to recommended diets in adults: the Alternate Healthy Eating Index. *Public Health Nutr.* 9, (2006).
- Panagiotakos, D. B., Pitsavos, C. & Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. *Nutr. Metab. Cardiovasc. Dis.* **16**, 559–568 (2006).
- Reedy, J. *et al.* Higher Diet Quality Is Associated with Decreased Risk of All-Cause, Cardiovascular Disease, and Cancer Mortality among Older Adults. *J. Nutr.* 144, 881–889 (2014).
- 16. Onvani, S., Haghighatdoost, F., Surkan, P. J., Larijani, B. & Azadbakht, L. Adherence to the Healthy Eating Index and Alternative Healthy Eating Index dietary patterns and mortality from all causes, cardiovascular disease and cancer: a metaanalysis of observational studies. *J. Hum. Nutr. Diet.* **30**, 216–226 (2017).
- 17. Fung, T. T. *et al.* Mediterranean diet and incidence and mortality of coronary heart disease and stroke in women. *Circulation* **119**, 1093–1100 (2009).

60

BMJ Open

2	
3	18. Akbaraly, T. N. et al. Alternative Healthy Eating Index and mortality over 18 y of
5	follow-up: results from the Whitehall II cohort. Am. J. Clin. Nutr. 94, 247–253 (2011).
7	19. Schwingshackl, L. & Hoffmann, G. Diet Quality as Assessed by the Healthy Eating
9 10	Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop
11 12	Hypertension Score, and Health Outcomes: A Systematic Review and Meta-Analysis
13 14	of Cohort Studies. <i>J. Acad. Nutr. Diet.</i> 115 , 780-800.e5 (2015).
15 16	20. Kant, A. K. Indexes of Overall Diet Quality: A Review. J. Am. Diet. Assoc. 96, 785–
17 18	791 (1996)
19 20	21 Folsom A. R. Parker, F. D. & Harnack J. J. Degree of Concordance With DASH
21 22	Diet Cuidelines and Insidence of Hypertension and Fetal Cardiovascular Disease
23	
24 25	<i>Am. J. Hypertens.</i> 20 , 225–232 (2007).
26 27	22. Fung, T. T. et al. Adherence to a DASH-Style Diet and Risk of Coronary Heart
28 29	Disease and Stroke in Women. Arch. Intern. Med. 168, 713–720 (2008).
30 31	23. Grundy, S. M. <i>et al.</i> 2018
32 33	AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA
34 35	Guideline on the Management of Blood Cholesterol: A Report of the American
36 37	College of Cardiology/American Heart Association Task Force on Clinical Practice
38 39	Guidelines. J. Am. Coll. Cardiol. 25709 (2018). doi:10.1016/j.jacc.2018.11.003
40 41	24. Bibbins-Domingo, K. et al. Statin Use for the Primary Prevention of Cardiovascular
42 43	Disease in Adults: US Preventive Services Task Force Recommendation Statement
44 45	
46	JAMA 316 , 1997–2007 (2016).
47 48	25. Bibbins-Domingo, K. & on behalf of the U.S. Preventive Services Task Force. Aspirin
49 50	Use for the Primary Prevention of Cardiovascular Disease and Colorectal Cancer:
51 52	U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med.
53 54	164 , 836 (2016).
55 56	
57	
58	
27	

Page 20 of 64

26. Whelton, P. K. et al. 2017

ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. *J. Am. Coll. Cardiol.* **71**, e127–e248 (2018).

BMJ Open

- Suresh, S., Saraswathi, S. & Sundararajan, N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. *Eng. Appl. Artif. Intell.* 23, 1149–1157 (2010).
- Messina, M., Lampe, J. W., Birt, D. F., Appel, L. J. & al, et. Reductionism and the narrowing nutrition perspective: Time for reevaluation and emphasis on food synergy. *Am. Diet. Assoc. J. Am. Diet. Assoc. Chic.* **101**, 1416–9 (2001).
- 29. Wang, J., Li, D., Dangott, L. J. & Wu, G. Proteomics and Its Role in Nutrition Research, *J. Nutr.* **136**, 1759–1762 (2006).
- 30. Marcos, A., Nova, E. & Montero, A. Changes in the immune system are conditioned by nutrition. *Eur. J. Clin. Nutr.* **57**, S66–S69 (2003).
- Zeisel, S. H. *et al.* Nutrition: A Reservoir for Integrative Science. *J. Nutr.* **131**, 1319– 1321 (2001).
- Subar, A. F. *et al.* The Automated Self-Administered 24-Hour Dietary Recall (ASA24): A Resource for Researchers, Clinicians, and Educators from the National Cancer Institute. *J. Acad. Nutr. Diet.* **112**, 1134–1137 (2012).
- Vereecken, C. A., Covents, M., Matthys, C. & Maes, L. Young adolescents' nutrition assessment on computer (YANA-C). *Eur. J. Clin. Nutr.* 59, 658–667 (2005).
- Hongu, N. *et al.* Dietary Assessment Tools Using Mobile Technology. *Top. Clin. Nutr.* 26, 300 (2011).
- Thompson, F. E. *et al.* Comparison of Interviewer-Administered and Automated Self-Administered 24-Hour Dietary Recalls in 3 Diverse Integrated Health Systems. *Am. J. Epidemiol.* 181, 970–978 (2015).

1	
2 3	36. NHANES - About the National Health and Nutrition Examination Survey. (2017).
4	
6	Available at: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm. (Accessed: 11th
7	March 2019)
8 9	
10	37. van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained
11 12	Equations in R. <i>J. Stat. Softw.</i> 45 , 1–67 (2011).
13 14	38. Vergouwe, Y., Royston, P., Moons, K. G. M. & Altman, D. G. Development and
15	validation of a production model with missing productor data; a practical approach.
16	validation of a prediction model with missing predictor data. a practical approach. J.
18	<i>Clin. Epidemiol.</i> 63 , 205–214 (2010).
19 20	39 Chen Y lia Z Mercola D & Xie X A Gradient Boosting Algorithm for Survival
21	bit offen, T., sia, Z., Mercola, D. & Xie, X. A Gradient Boosting Agontinin for our war
22 23	Analysis via Direct Optimization of Concordance Index. Computational and
24	Mathematical Methods in Medicine (2013) doi:10.1155/2013/873595
25	
27	40. Ishwaran, H., Kogalur, U. B., Blackstone, E. H. & Lauer, M. S. Random survival
28	forests. Ann. Appl. Stat. 2, 841–860 (2008).
30	
31	41. Friedman, J. H. Stochastic gradient boosting. <i>Comput. Stat. Data Anal.</i> 38, 367–378
32 33	(2002).
34	12 Eriedman, J. H. Greedy Europien Approximations A Credient Departies Machine, App
35 36	42. Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine. Ann.
37	Stat. 29, 1189–1232 (2001).
38 39	13 Quinlan I. P. Induction of decision trees. Mach Learn 1 81–106 (1986)
40	
41 42	44. Breiman, L. Random Forests. <i>Mach. Learn.</i> 45 , 5–32 (2001).
43	45 Friedman J. Hastie T & Tibshirani R Additive logistic regression: a statistical view
44	
45 46	of boosting (With discussion and a rejoinder by the authors). Ann. Stat. 28, 337–407
47	(2000)
48 49	(2000).
50	46. Guenther, P. M. et al. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr.
51 52	<i>Diet.</i> 113 , 569–580 (2013).
53	
54 55	47. Chiuve, S. E. et al. Alternative Dietary Indices Both Strongly Predict Risk of Chronic
56	Disease. <i>J. Nutr.</i> 142 , 1009–1018 (2012).
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

48. Trichopoulou, A., Costacou, T., Bamia, C. & Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 348, 2599-2608 (2003). 49. Günther, A. L. B. et al. Association Between the Dietary Approaches to Hypertension Diet and Hypertension in Youth With Diabetes Mellitus. *Hypertension* **53**, 6–12 (2009).50. Greenwell, B., Boehmke, B., Cunningham, J. & Developers (https://github.com/gbmdevelopers), G. B. M. gbm: Generalized Boosted Regression Models. (2019). 51. Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. & Van Der Laan, M. J. Survival ensembles. *Biostatistics* 7, 355–373 (2006). 52. Hothorn, T., Hornik, K., Strobl, C. & Zeileis, A. party: A Laboratory for Recursive Partytioning. (2019). 53. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. *Biometrics* 44, 837–845 (1988). 54. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011). 55. StataCorp. Stata Statistical Software: Release 15. (StataCorp LLC, 2017). 56. R Core Team. R: A language and environment for statistical computing. (2018). 57. Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. M. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Ann. Intern. Med. 162, 55 (2015). 58. Yadlowsky, S. et al. Clinical Implications of Revised Pooled Cohort Equations for Estimating Atherosclerotic Cardiovascular Disease Risk. Ann. Intern. Med. (2018). doi:10.7326/M17-3011

1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
1/		
18		
19		
20		
21		
22		
25		
24 25		
25		
20		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
4/		
40 ∕10		
49 50		
50		
57		
52		
54		
55		
56		
57		
58		
~~		

60

- 59. Ridker, P. M. & Cook, N. R. Statins: new American guidelines for prevention of cardiovascular disease. *The Lancet* **382**, 1762–1765 (2013).
- 60. Kant, A. K. Dietary patterns: biomarkers and chronic disease riskThis paper is one of a selection of papers published in the CSCN–CSNS 2009 Conference, entitled Are dietary patterns the best way to make nutrition recommendations for chronic disease prevention? *Appl. Physiol. Nutr. Metab.* **35**, 199–206 (2010).
- . . M., . .e. (Elsevier, 61. Boushey, C. J., Coulston, A. M., Rock, C. L. & Monsen, E. Nutrition in the Prevention and Treatment of Disease. (Elsevier, 2001).

Figure Legends

Figure 1: Calibration slopes and confidence intervals of models in the hold-out test set (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N= 12600). All models included demographic variables age, sex, and race (Black race, Hispanic ethnicity). ACC=American College of Cardiology covariates of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no), HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest

Figure 2: Model discrimination (C-statistic) in the hold-out test set (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N= 12600). All models included demographic variables age, sex, and race (Black race, Hispanic ethnicity). ACC=American College of Cardiology covariates of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no), HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest

relien

Tables

Table 1: Descriptive statistics on the study sample (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N=41990). Statistics are grouped to reflect participants in the training (n=29390/41990 = 70%) or test (n=12600/41990 = 30%) data subsets. CVD = cardiovascular disease, HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest. Mean (±standard deviation) reported for continuous variables and N (%) reported for categorical variables.

	Training data for model derivation n=29390	Test data for model evaluation n=12600	P-value f differenc	
CVD death	00.044 (00.00()	40.000	0.00	
NO	28,211 (96.0%)	12,093	0.96	
Yes	1,179 (4.0%)	507 (4.0%)		
Heart disease death	. ,			
No	28,507 (97.0%)	12,214	0.76	
Vec	883 (3.0%)	(96.9%) 386 (3.1%)		
Cerebrovascular	003 (3.0 %)	500 (5.170)		
death				
No	29,094 (99.0%)	12,479	0.71	
	000 (1.00()	(99.0%)		
Yes Time since interview	296 (1.0%)	121 (1.0%)	0.94	
(months)	79.3 (±41.4)	79.4 (±41.0)	0.04	
Wave				
99-00	3,810 (13.0%)	1,633 (13.0%)	1.0	
01-02	8,853 (30.1%)	3,795 (30.1%)		
03-04	3,926 (13.4%)	1,684 (13.4%)		
05-06 07-08	3,891 (13.2%)	1,669 (13.2%)		
09-10	4.557 (15.5%)	1,953 (15.5%)		
Age	50.0 (±20.4)	50.1 (±20.6)	0.60	
Sex				
Male	13,924 (47.4%)	5,887 (46.7%)	0.22	
Female	15,466 (52.6%)	6,713 (53.3%)		
No	14,807 (50,4%)	6,335 (50,3%)	0.94	
Yes	5,882 (20.0%)	2,511 (19.9%)	0.01	
Missing	8,701 (29.6%)	3,754 (29.8%)		
Hispanic	04.074.774.400	0.050 (74.00)		
N0 Xoc	21,871 (74.4%)	9,359 (74.3%)	0.77	
Education level	1,019 (20.0%)	J,241 (2J.170)		
<9th	3,942 (13.4%)	1,756 (13.9%)	0.087	
9-11	4,538 (15.4%)	1,954 (15.5%)		
HS degree	6,543 (22.3%)	2,716 (21.6%)		
Some college or	7,138 (24.3%)	2,986 (23.7%)		
Associate's	5 061 (17 2%)	2 268 (18 0%)		
Missina	2.168 (7.4%)	920 (7.3%)		
Ratio of family	2.5 (±1.6)	2.5 (±1.6)	0.59	
income to poverty	- *			
threshold				
Missing	2,655 (9.0%)	1,109 (8.8%)	0.96	
Missing	190.0 (±43.1) 3 641 (12 4%)	190.0 (±43.9) 1 484 (11 8%)	0.00	

HDL Missing	45.5 (±23.0)	45.6 (±23.0)	0.36
SBD	3,043 (12.4 %) 125 / (+20.6)	1,404 (11.0 %)	0.38
Missing	3 175 (10 8%)	123.0(121.1) 1 348 (10 7%)	0.50
DRP	69 9 (+12 6)	69 8 (+12 7)	0 50
Missing	3 374 (11 5%)	1 431 (11 4%)	0.00
Number of blood	0,07 + (11.070)	1,401 (11.470)	
nressure			
medications			
0	19 892 (67 7%)	8 436 (67 0%)	0.32
1	7 851 (26 7%)	3 452 (27 4%)	0.02
2 or more	1 647 (5 6%)	712 (5 7%)	
Type 2 diabetes	1,047 (0.070)	112 (0.170)	
No	10 537 (35 9%)	4 541 (36 0%)	0 42
Yes	4 783 (16 3%)	2 008 (15 9%)	0.12
Missing	14 070 (47 9%)	6 051 (48 0%)	
Smoking		0,001 (10.070)	
No	23 774 (80 9%)	10 185	0.90
		(80.8%)	
Yes	5,615 (19,1%)	2.414 (19.2%)	
Missing	1 (0.0%)	1 (0.0%)	
HEI	47.0 (±11.0)	47.2 (±11.0)	0.28
Missing	3.277 (11.2%)	1.361 (10.8%)	
AHEI	47.1 (±11.1)	47.1 (±11.0)	0.76
Missing	3.263 (11.1%)	1.353 (10.7%)	
MDS	5.1 (±1.2)	▶ 5.1 (±1.2)	0.095
Missing	3.270 (11.1%)	1.368 (10.9%)	
DASH	47.4 (±9.3)	47.4 (±9.4)	0.75
Missing	8,835 (30.1%)	3,661 (29.1%)	

¹Wilcoxon rank sum test for continuous variables, e.g., age, and Fisher's exact test for categorical variables, e.g., black race

Table 2: Comparisons of participant characteristics by outcome (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N=41990). Descriptive summary of variables in those participants without CVD event (n=40304) vs. those with a CVD event (n=1686) during the follow-up period. Mean (±standard deviation) reported for continuous variables and N (%) reported for categorical variables.

	No CVD	CVD	P-value for difference ¹
	n=40304	n=1686	
Time since interview (months)	80.3 (±41.4)	55.7 (±34.9)	<0.0001
Wave			
99-00	5,168 (12.8%)	275 (16.3%)	<0.0001
01-02	11,681 (29.0%)	967 (57.4%)	
03-04	5,401 (13.4%)	209 (12.4%)	
58 59

2				
3		No CVD	CVD	P-value for
4			015	difference ¹
5	05-06	5 451 (13 5%)	109 (6 5%)	
6	07-08	6 127 (15 2%)	02 (5 5%)	
7	00 10	6,127(15.270)	32(0.070)	
8	09-10 Ago	0,470(10.1%)	34(2.0%)	-0.0001
9	Age	49.0 (±20.1)	74.3 (±11.9)	<0.0001
10	Sex			
11	Male	18,883 (46.9%)	928 (55.0%)	<0.0001
12	Female	21,421 (53.1%)	758 (45.0%)	
13	Black			
14	No	20,005 (49.6%)	1,137	<0.0001
15		, (,	(67.4%)	
10	Yes	8 110 (20 1%)	283 (16.8%)	
17	Missing	12 180 (30 2%)	266 (15.8%)	
19	Hispanic	12,109 (30.270)	200 (15.070)	
20	No	00.704(70.00/)	1 1 1 0	-0.0001
21	NO	29,781 (73.9%)	1,449	<0.0001
22			(85.9%)	
23	Yes	10,523 (26.1%)	237 (14.1%)	
24	Education level			
25	<9th	5,223 (13.0%)	475 (28.2%)	<0.0001
26	9-11	6,201 (15.4%)	291 (17.3%)	
27	HS degree	8,923 (22,1%)	336 (19.9%)	
28	Some college or	9 776 (24 3%)	348 (20.6%)	
29	Associate's	0,110 (24.070)	040 (20.070)	
30	College degree	7 111 (17 6%)	218 (12 9%)	
31	Missing	3 070 (7 6%)	18 (1 1%)	
32	Ratio of family income to	3,070(7.070)	10(1.170)	<0.0001
33	Ratio of family income to	2.5 (±1.0)	2.1 (±1.4)	<0.0001
34	Missing	2 EGE (0 00/)	100 (11 00/)	
35	Tatal abal	3,303(0.0%)	199 (11.0%)	0.40
30 27		198.1 (±43.2)	196.2 (±47.0)	0.10
3/ 20	Missing	4,670 (11.6%)	455 (27.0%)	
30	HDL	45.5 (±23.0)	45.0 (±24.2)	0.002
40	Missing	4,672 (11.6%)	455 (27.0%)	
41	SBP	124.8 (±20.3)	142.9 (±26.8)	<0.0001
42	Missing	4,114 (10.2%)	409 (24.3%)	
43	DBP	70.0 (±12.5)	67.5 (±14.7)	<0.0001
44	Missing	4 359 (10 8%)	446 (26 5%)	
45	Number of blood pressure	1,000 (10.070)	110 (20.070)	
46	medications			
47		27 804 (60 2%)	131 (25 7%)	<0.0001
48	1	27,094 (09.270)	404 (20.770)	<0.0001
49	1	10,205 (25.3%)		
50	2		(65.1%)	
51	2 or more	2,205 (5.5%)	154 (9.1%)	
52	Type 2 diabetes			
53	No	14,680 (36.4%)	398 (23.6%)	<0.0001
54	Yes	6,229 (15.5%)	562 (33.3%)	
55	Missing	19,395 (48.1%)	726 (43.1%)	
56	5	-,(,-)	- (/ • /	
5/				

BMJ Open

No CVD	CVD	P-value for difference ¹
32,508 (80.7%)	1,451 (86.1%)	<0.0001
7,794 (19.3%)	235 (13.9%)	
2 (0.0%)	0 (0.0%)	
46.9 (±11.0)	51.0 (±10.3)	<0.0001
4,179 (10.4%)	459 (27.2%)	
47.1 (±11.1)	48.0 (±10.9)	0.006
4,158 (10.3%)	458 (27.2%)	
5.1 (±1.2)	5.1 (±1.2)	0.10
4,472 (11.1%)	166 (9.8%)	
47.4 (±9.4)	48.1 (±9.2)	0.01
11,774 (29.2%)	722 (42.8%)	
No CVD	CVD	P-value for difference ¹
n=40304	n=1686	
80.3 (±41.4)	55.7 (±34.9)	<0.0001
5,168 (12.8%)	275 (16.3%)	<0.0001
11,681 (29.0%)	967 (57.4%)	
5,401 (13.4%)	209 (12.4%)	
5,451 (13.5%)	109 (6.5%)	
6,127 (15.2%)	92 (5.5%)	
6,476 (16.1%)	34 (2.0%)	
49.0 (±20.1)	74.3 (±11.9)	<0.0001
18,883 (46.9%)	928 (<mark>5</mark> 5.0%)	<0.0001
21,421 (53.1%)	758 (45.0%)	
20,005 (49.6%)	1,137 (67.4%)	<0.0001
8,110 (20.1%)	283 (16.8%)	
12,189 (30.2%)	266 (15.8%)	
	· /	
29,781 (73.9%)	1,449	<0.0001
	(85.9%)	
10,523 (26.1%)	237 (14.1%)	
	-	
5,223 (13.0%)	475 (28.2%)	<0.0001
6,201 (15.4%)	291 (17.3%)	
8,923 (22.1%)	336 (19.9%)́	
9,776 (24.3%)	348 (20.6%)	
	No CVD 32,508 (80.7%) 7,794 (19.3%) 2 (0.0%) $46.9 (\pm 11.0)$ 4,179 (10.4%) $47.1 (\pm 11.1)$ 4,158 (10.3%) $5.1 (\pm 1.2)$ 4,472 (11.1%) $47.4 (\pm 9.4)$ 11,774 (29.2%) No CVD n=40304 $80.3 (\pm 41.4)$ 5,168 (12.8%) 11,681 (29.0%) 5,401 (13.4%) 5,451 (13.5%) 6,127 (15.2%) 6,476 (16.1%) $49.0 (\pm 20.1)$ 18,883 (46.9%) 21,421 (53.1%) 20,005 (49.6%) 8,110 (20.1%) 12,189 (30.2%) 29,781 (73.9%) 10,523 (26.1%) 5,223 (13.0%) 6,201 (15.4%) 8,923 (22.1%) 9,776 (24.3%)	No CVDCVD $32,508 (80.7\%)$ $1,451$ (86.1%) $7,794 (19.3\%)$ $235 (13.9\%)$ $2 (0.0\%)$ $2 (0.0\%)$ $0 (0.0\%)$ $46.9 (\pm 11.0)$ $51.0 (\pm 10.3)$ $4,179 (10.4\%)$ $47.1 (\pm 11.1)$ $48.0 (\pm 10.9)$ $47.1 (\pm 11.2)$ $4,158 (10.3\%)$ $458 (27.2\%)$ $5.1 (\pm 1.2)$ $5.1 (\pm 1.2)$ $5.1 (\pm 1.2)$ $4,472 (11.1\%)$ $466 (9.8\%)$ $47.4 (\pm 9.4)$ $48.1 (\pm 9.2)$ $11,774 (29.2\%)$ $722 (42.8\%)$ No CVDCVD $n=40304$ $n=1686$ $80.3 (\pm 41.4)$ $5.168 (12.8\%)$ $5,401 (13.4\%)$ $275 (16.3\%)$ $99 (12.4\%)$ $5,451 (13.5\%)$ $5,451 (13.5\%)$ $109 (6.5\%)$ $6,127 (15.2\%)$ $92 (5.5\%)$ $6,476 (16.1\%)$ $49.0 (\pm 20.1)$ $74.3 (\pm 11.9)$ $18,883 (46.9\%)$ $21,421 (53.1\%)$ $928 (55.0\%)$ $758 (45.0\%)$ $20,005 (49.6\%)$ $1,137$ (67.4%) $8,110 (20.1\%)$ $29,781 (73.9\%)$ $1,449$ (85.9%) $10,523 (26.1\%)$ $237 (14.1\%)$ $5,223 (13.0\%)$ $475 (28.2\%)$ $6,201 (15.4\%)$ $9,776 (24.3\%)$ $348 (20.6\%)$

2				
3		No CVD	CVD	P-value for
4				difference ¹
5	College degree	7 111 (17 6%)	218 (12 9%)	
6	Missing	3 070 (7 6%)	18 (1 1%)	
7	Patio of family income to	$25(\pm 16)$	$2 1 (\pm 1 4)$	~0.0001
8	noverty threshold	2.3 (11.0)	2.1 (±1.4)	<0.0001
9	Missing	2 565 (0 00/)	100 (11 00/)	
10		3,303(0.0%)	199 (11.0%)	0.40
11		$198.1(\pm 43.2)$	$190.2(\pm 47.0)$	0.10
12	Missing	4,670 (11.6%)	455 (27.0%)	
13	HDL	45.5 (±23.0)	45.0 (±24.2)	0.002
14	Missing	4,672 (11.6%)	455 (27.0%)	
15	SBP	124.8 (±20.3)	142.9 (±26.8)	<0.0001
17	Missing	4,114 (10.2%)	409 (24.3%)	
18	DBP	70.0 (±12.5)	67.5 (±14.7)	< 0.0001
19	Missing	4 359 (10 8%)	446 (26 5%)	
20	Number of blood pressure	1,000 (10.070)	110 (20.070)	
21	medications			
22		27 894 (69 2%)	434 (25 7%)	<0.0001
23	1	10 205 (25 2%)	1 000	SO.0001
24		10,205 (25.576)		
25	2		(65.1%)	
26	2 or more	2,205 (5.5%)	154 (9.1%)	
27	Type 2 diabetes			
28	No	14,680 (36.4%)	398 (23.6%)	<0.0001
29	Yes	6,229 (15.5%)	562 (33.3%)	
30	Missing	19,395 (48.1%)	726 (43.1%)	
31	Smoking	, (
32	No	32 508 (80 7%)	1 451	<0 0001
33		02,000 (00.170)	(86.1%)	0.0001
34	Vec	7 704 (10 20/)	(00.170)	
35	1 es	7,794(19.5%)	235(13.9%)	
30 27	wissing	2 (0.0%)	0 (0.0%)	
27 20	HEI	46.9 (±11.0)	51.0 (±10.3)	<0.0001
30	Missing	4,179 (10.4%)	459 (27.2%)	
40	AHEI	47.1 (±11.1)	48.0 (±10.9)	0.006
41	Missing	4,158 (10.3%)	458 (27.2%)	
42	MDS	5.1 (±1.2)	5.1 (±1.2)	0.10
43	Missing	4.472 (11.1%)	166 (9.8%)	
44	DASH	47 4 (+9 4)	48 1 (+9 2)	0.01
45	Missing	11 774 (20 2%)	722 (42 8%)	0.01
46		·····		

¹Wilcoxon rank sum test for continuous variables, e.g., age, and Fisher's exact test for categorical variables, e.g., black race

BMJ Open

Page 31 of 64

BMJ Open

Supplementary Appendix

Figure Legends

Supplementary Figure A: Calibration slopes and confidence intervals of models in training set (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N= 12600). All models included demographic variables age, sex, and race (Black race, Hispanic ethnicity). ACC=American College of Cardiology covariates of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no), HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest

Supplementary Figure B: Model discrimination (C-statistic) in training set (National Health and Nutrition Examination Survey, 1999-2010 linked to the 2011 National Death Index, N= 12600). All models included demographic variables age, sex, and race (Black race, Hispanic ethnicity). ACC=American College of Cardiology covariates of total cholesterol (mg/dL), high-density lipoprotein cholesterol (HDL; mg/dL), systolic blood pressure (mmHg), blood pressure treatment status (yes/no), diabetes status (yes/no), and current smoking status (yes/no), HEI=healthy eating index, AHEI=alternative healthy eating index, MDS=Mediterranean diet score, DASH=dietary approaches to stop hypertension diet score, GBM=gradient boosted machine, RF=random forest

Supplementary Figure C: Partial dependence plots for best model (100 trees, interaction depth 5 using demographics, ACC variables, and full nutrition profile) for (a) age and (b) systolic blood pressure. Plots estimated by averaging model predictions for by decile of age or SBP.

1		
2		
3	Supplementary Table A: List of all predic	ctor variables included in statistical models
4		
5	Variable name	Definition
6	Demographic and risk factors (4)	
7	age	Age in vears
8	Sex	Sex (0 if male 1 if female)
9	black	Black race (0 if no 1 if yes)
10	hispanic	Hispanic ethnicity (0 if no 1 if yes)
11	ACC covariates (7)	
12	total chol	Total cholesterol (mg/dL)
13	bdl	HDL cholestorol (mg/dL)
14		Systelia blood procedure (mmHa)
15	sup	Diastalia bland pressure (mml/g)
16	app	Diastolic blood pressure (mmHg)
1/	opmeas	Number of blood pressure medications
18	am	Type 2 diabetes (0 if no, 1 if yes)
19	tob	Current smoking (0 if no, 1 if yes)
20	Composite nutrition variables (4)	
21	hei	Healthy eating index (0-100)
22	ahei	Alternative healthy eating index (0-110)
23	mds 💦	Mediterranean diet score (0-9)
24	dash	DASH diet score (0-80)
25	24-hour recall variables (103)	
20	milk_g	Milk and milk drinks (g)
27	cream g	Creams and cream substitutes (g)
28	milk dessert g	Milk desserts, sauces, gravies (g)
29	cheese g	Cheeses (q)
30	meat ns q	Meat, not specified as to type (g)
ן כ כח	beef a	Beef (a)
2∠ 22	pork a	Pork (g)
24	lamb g	Lamb yeal game other carcass meat (g)
25	poultry a	Poulty (a)
36	organ meat g	Organ meats sausages and lunchmeats
30	organ_meat_g	and meat spreads (a)
38	fish a	Fish and shollfish (g)
30	mont nonmont a	Most poultry fish with popmost itoms (g)
40	nretoin frozon a	Brootin and shalf stable plate mode
40	protein_nozen_g	Proelin and shell-stable plate meals,
42		soups, and gravies with meat, pourly lish
43		base; gelatin and gelatin-based drinks
44	eggs_g	Eggs (g)
45	egg_mixture_g	Egg mixtures (g)
46	egg_sub_g	Egg substitutes (g)
47	egg_frozen_g	Frozen plate meals with egg as major
48		ingredient (g)
49	legumes_g	Legumes (g)
50	nuts_g	Nuts, nut butters, and nut mixtures (g)
51	seeds_g	Seeds and seed mixtures (g)
52	carob_g	Carob products (g)
53	flour_mix_g	Flour and dry mixes (g)
54	bread yeast g	Yeast breads, rolls (g)
55	bread quick q	Quick breads (g)
56	pastries q	Cakes, cookies, pies, pastries, bars (a)
57	·····	(9)
58		

2	
3	
4	
5	
6	
7	
8	
0	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
5Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

crackers g pancakes g pastas g cereals g grain mix g meat_sub_g citrus g fruit dried g fruit other g fruit_juice_g fruit baby g potatoes g veg darkgreen g veg deepyellow g tomatoes g veg other g veg_baby_g veg meat g veg mixture g fats g oils g salad dressing_g sweets q bev nonalcohol g bev alcohol g water g bev nutrition g kcal protein g carb g fiber g fat g fat_sat_g fat_mono_g fat poly g cholesterol mg vite mg vita mcg betacaro mcg vitb1 mg

vitb2 mg

Crackers and salty snacks from grain products (g) Pancakes, waffles, French toast, other grain products (g) Pastas, cooked cereals, rice (g) Cereals, not cooked or not specified as to cooked (g) Grain mixtures, frozen plate meals, soups (g) Meat substitutes, mainly cereal protein (g) Citrus fruits, juices (g) Dried fruits (g) Other fruits (g) Fruit juices and nectars excluding citrus (g) Fruit and juices baby food (g) White potatoes and Puerto Rican starchy vegetables (g) Dark-green vegetables (g) Deep-yellow vegetables (g) Tomatoes and tomato mixtures (g) Other vegetables (g) Vegetables and mixtures mostly vegetables baby food (g) Vegetables with meat, poultry, fish (g) Mixtures mostly vegetables without meat, poultry, fish (g) Fats (g) Oils (g) Salad dressings (g) Sugars and sweets (g) Nonalcoholic beverages (g) Alcoholic beverages (g) Water, noncarbonated (g) Formulated nutrition beverages, energy drinks, sports drinks, functional beverages (g) Energy (kcal) Protein (g) Carbohydrates (g) Fiber (g) Fat (g) Saturated fats (g) Monounsaturated fats (g) Polyunsaturated fats (g) Cholesterol (mg) Vitamin-E as alpha-tocopherol (mg) Vitamin A, RAE (mcg) Beta-carotene (mcg) Thiamin (Vitamin B1) (mg) Riboflavin (Vitamin B2) (mg)

60

1	
2	
3	niacin ma
4	vithe ma
5	foloto mor
6	Iolate_mcg
7	Vitb12_mcg
8	vitc_mg
9	calcium_mg
10	phosphorus_mg
11	magnesium_mg
12	iron_mg
13	zinc mg
14	copper mg
15	sodium mg
16	potassium mg
17	selenium mcg
18	caffeine mg
19	theobromine ma
20	alcohol am
21	sfa 40 gm
22	sfa_60_gm
23	sta_00_gin
24	sia_00_gill
25	sia_100_gill
26	sia_120_yiii
27	sia_140_gill
28	sia_160_gm
29	sta_180_gm
30	mta_161n_gm
31	mfa_1610_gm
32	mfa_201_gm
33	mfa_221_gm
34	pfa_182_gm
35	pta_183_gm
36	pfa_184_gm
37	pfa_204_gm
38	pfa_205_gm
39	pfa_225_gm
40	pfa_226_gm
41	water_yesterday_gm
42	
43	
44	
45	
46	
47	

Niacin (mg) Vitamin B6 (mg) Total folate (mcg) Vitamin B12 (mcg) Vitamin C (mg) Calcium (mg) Phosphorus (mg) Magnesium (mg) Iron (mg) Zing (mg) Copper (mg) Sodium (mg) Potassium (mg) Selenium (mg) Caffeine (mg) Theobromine (mg) Alcohol (gm) SFA 4:0 (Butanoic) (g) SFA 6:0 (Hexanoic) (g) SFA 8:0 (Octanoic) (g) SFA 10:0 (Decanoic) (g) SFA 12:0 (Dodecanoic) (g) SFA 14:0 (Tetradecanoic) (g) SFA 16:0 (Hexadecanoic) (g) SFA 18:0 (Octadecanoic) (g) MFA 16:1 (Hexadecanoic) (g) MFA 16:1 (Octadecanoic) (g) MFA 20:1 (Eicosenoic) (g) MFA 22:1 (Docosenoic) (g) PFA 18:2 (Octadecadienoic) (g) PFA 18:3 (Octadecatrienoic) (g) PFA 18:4 (Octadecatatraenoic) (g) PFA 20:4 (Eicosatetraenoic) (g) PFA 20:5 (Eicosapentaenoic) (g) PFA 22:5 (Docosapentaenoic) (g) PFA 22:6 (Docosahexaenoic) (g) Total plain water drank yesterday (g)

4 5 Percentage missing Variable 6 milk g 10.99 7 10.99 cream g 8 9 milk dessert g 10.99 10 10.99 cheese g 11 10.99 meat ns g 12 beef g 10.99 13 pork_g 10.99 14 lamb g 10.99 15 10.99 poultry_g 16 17 10.99 organ meat g 18 10.99 fish g 19 10.99 meat nonmeat g 20 protein frozen g 10.99 21 10.99 eggs g 22 egg_mixture g 10.99 23 10.99 24 egg_sub_g 25 egg_frozen_g 10.99 26 10.99 legumes g 27 10.99 nuts g 28 seeds g 10.99 29 10.99 carob g 30 flour_mix_g 10.99 31 32 bread yeast g 10.99 33 bread quick g 10.99 34 10.99 pastries g 35 crackers g 10.99 36 pancakes g 10.99 37 pastas g 10.99 38 10.99 39 cereals g 40 grain_mix_g 10.99 41 meat sub g 10.99 42 10.99 citrus g 43 10.99 fruit dried g 44 fruit other g 10.99 45 fruit juice g 10.99 46 47 fruit baby g 10.99 48 potatoes g 10.99 49 veg darkgreen g 10.99 50 veg deepyellow g 10.99 51 10.99 tomatoes_g 52 10.99 veg other g 53 veg_baby_g 10.99 54 55 veg meat g 10.99 56 10.99 veg_mixture_g 57 58

Supplementary Table B: Percentage of missing data for variables included in analysis

1 2 3

59

1		
2	.,	
4	Variable	Percentage missing
5	tats_g	10.99
6	olls_g	10.99
7	salad_dressing_g	10.99
8	sweets_g	10.99
9	bev_nonalcohol_g	10.99
10	bev_alcohol_g	10.99
12	water_g	10.99
12	bev_nutrition_g	10.99
14	permth_int	0.00
15	bpmeds	0.00
16	kcal	10.98
17	protein g	10.98
18	carb g	10.98
19	fiber g	10.98
20	fat g	10.98
21	fat sat g	10.98
22	fat mono q	10.98
23	fat poly q	10.98
25	cholesterol ma	10.98
26	vite ma	10.98
27	vita mo	10.98
28	betacaro mod	10.98
29	vith1 mg	10.08
30	vitb2 mg	10.90
3 I 2 2	villoz_mg	10.98
33	hiacin_mg	10.98
34	VILDO_ITIQ	10.90
35	Iolate_mcg	10.90
36	vitb i2_mcg	10.98
37	vitc_mg	10.98
38	calcium_mg	10.98
39	pnospnorus_mg	10.98
40	magnesium_mg	10.98
41	iron_mg	10.98
43	zinc_mg	10.98
44	copper_mg	10.98
45	sodium_mg	10.98
46	potassium_mg	10.98
47	selenium_mcg	10.98
48	caffeine_mg	10.98
49	theobromine_mg	10.98
5U 51	alcohol_gm	10.98
52	sfa_40_gm	10.98
53	sfa_60_gm	10.98
54	sfa_80_gm	10.98
55	sfa_100 gm	10.98
56		
57		
58		

Variable	Percentage missing
sfa_120_gm	10.98
sfa_140_gm	10.98
sfa_160_gm	10.98
sfa_180_gm	10.98
mfa_161h_gm	10.98
mfa_161o_gm	10.98
mfa_201_gm	10.98
mfa_221_gm	10.98
pfa_182_gm	10.98
pfa_183_gm	10.98
pfa_184_gm	10.98
pfa_204_gm	10.98
pfa_205_gm	10.98
pfa_225_gm	10.98
pfa_226_gm	10.98
water_yesterday_gm	10.82
age	0.00
sex	0.00
black	29.66
hispanic	0.00
sbp 🦯	10.77
tob	0.00
hdl	12.21
total_chol	12.21
pov	8.96
dm	47.92
cvdevent	0.00
hd	0.00
cereb	0.00
educ2	7.35
hei	11.05
ahei	10.99
mds	11.05
dash	29.76

Supplementary Table C: TRIPOD checklist

		Title and abstract	Page number
Title	1	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted	1
Abstract	2	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions	2
Background and objectives	3a	Explain the medical context (including diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models	4-5
	3b	Specify the objectives, including whether the study describes the development or validation of the model, or both	4-5
Source of data	40	Methods Describe the study design or sources of data (e.g., randomized trial, exhert, or	5
Source of data	4a 4b	registry data), separately for the development and validation data sets, if applicable Specify the key study dates, including start of accrual; end of accrual; and, if	5
Participants	5a	applicable, end of follow-up) Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centers	5
	5b	Describe eligibility criteria for participants	6
	5c	Give details of treatments received, if relevant	N/A
Outcome	6a	Clearly define the outcome that is predicted by the prediction model, including how and when assessed	6
Dradiatora	6b 7a	Report any actions to blind assessment of the outcome to be predicted	6 6 Curre Table
Predictors	7a	clearly define all predictors used in developing the multivariable prediction model,	6, Supp Table
	7b	Report any actions to blind assessment of predictors for the outcome and other predictors	6
Sample size	8	Explain how the study size was arrived at	7
Missing data	9	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method	7
Statistical analysis	10a	Describe how predictors were handled in the analysis (D)	6-7
	10b	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation (D)	7-8
	10c	For validation, describe how predictions were calculated (V)	9
	100	multiple models	0-9
	ite	(V)	9
Risk groups	11	Provide details on how risk groups were created, if done	N/A
Development vs. validation	12	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors (V)	N/A
D (1) 1	10	Results	10
Participants	13a	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow- up time. A diagram may be helpful.	10
	13b	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including number of participants with missing data for predictors and outcome	10, Table 1
	13c	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors, and outcome) (V)	10, Table 1
Model development	14a	Specify the number of participants and outcome events in each analysis (D)	10-11
Mandallana sifia shiana	14b	If done, report the unadjusted association between each candidate predictor and outcome (D).	12-13, Supp Table P
Model specification	15a	regression coefficients, and model intercept or baseline survival at a given time point) (D)	Table P, GitHub repository
	15b	Explain how to use the prediction model (D)	12-13
Model performance	16	Report performance measures (with CIs) for the prediction model	11-13
Model updating	17	It done, report the results from any model updating (i.e., model specification, model performance) (V)	N/A
Limitations	18	Discuss any limitations of the study (such as non-representative sample few events	15
Interpretation	.9 19a	per predictor, missing data) For validation, discuss the results with reference to performance in the development	14-15
- p	19b	data, and any other validation data (V) Give an overall interpretation of the results, considering objectives, limitations, results	15-16
		from similar studies, and other relevant evidence	
Implications	20	Discuss the potential clinical use of the model and implications for future research	15-16
Other information Supplementary	21	Provide information about the availability of supplementary resources, such as study	10
Funding	22	Give the source of funding and the role of the funders for the present study	16
· anding	1	ente alle section of fulfulling and the follo of the fulfullion for the present study	

Supplementary Table D: *Internal* validation results from models including demographic and ACC variables only. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$.

	Intercept 95% Cl	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Cox	0.0011	0.5144	0.8607	0.2552
	-0.0016	0.4941	0.8517	
	0.0038	0.5348	0.8698	
GBM: 100, 1	-0.0004	0.5415	0.8761	0.2256
	-0.0070	0.4919	0.8680	
	0.0061	0.5910	0.8842	
GBM: 100, 5	-0.0022	0.5550	0.8990	0.2082
	-0.0044	0.5399	0.8912	
	0.0000	0.5702	0.9068	
GBM: 100, 10	0.0039	0.5678	0.9163	0.1938
	-0.0106	0.5237	0.9088	
	0.0029	0.6118	0.9238	
GBM: 300, 1 🗹	0.0005	0.5388	0.8747	0.2284
	-0.0070	0.4847	0.8664	
	0.0079	0.5930	0.8831	
GBM: 300, 5	-0.0014	0.5436	0.8963	0.2191
	-0.0050	0.5186	0.8884	
	0.0023	0.5687	0.9042	
GBM: 300, 10	-0.0038	0.5719	0.9140	0.1907
	-0.0068	0.5514	0.9065	
	-0.0007	0.5924	0.9215	
GBM: 500, 1	-0.0004	0.5401	0.8767	0.2267
	-0.0070	0.4908	0.8685	
	0.0062	0.5894	0.8849	
GBM: 500, 5	-0.0014	0.5493	0.8985	0.2134
	-0.0042	0.5295	0.8907	
	0.0015	0.5691	0.9063	
GBM: 500, 10	-0.0020	0.5488	0.9113	0.2114
	-0.0052	0.5279	0.9037	
	0.0012	0.5696	0.9189 💊	
RF: 100, 1	-0.0462	1.3190	0.9210	0.1080
	-0.0824	0.8935	0.9140	
	-0.0101	1.7445	0.9279	
RF: 100, 5	-0.0185	0.7434	0.9728	0.0666
	-0.0489	0.5668	0.9705	
	0.0118	0.9199	0.9751	
RF: 100, 10	-0.0191	0.7191	0.9720	0.0797
	-0.0526	0.5421	0.9696	
	0.0144	0.8961	0.9744	
RF: 300, 1	-0.0442	1.2884	0.9210	0.0894
	-0.0750	0.9315	0.9140	
	-0.0135	1.6454	0.9279	

1		
-		
4	<u> </u>	
3	3	
2	1	
,		
-)	
6	5	
-	7	
5	5	
9)	
1	۱N	
	10	
1	12	
1	3	
4	1 1	
	14	
1	15	
1	16	
1	17	
1	8	
1	19	
-	2 N	
-	1	
4	21	
2	22	
-	2	
-	- J	
4	24	
2	25	
2	6	
-		
4	~/	
2	28	
2	29	
-	20	
-	50	
3	31	
3	32	
-	१२	
-		
-	54	
3	35	
-	36	
-	, . 	
-	57	
3	38	
7	39	
)	10	
2	ŧU	
2	11	
2	12	
	12	
-	τ.) 	
2	14	
2	15	
2	16	

RF: 300, 5	-0.0156	0.7380	0.9731	0.0694
	-0.0409	0.5808	0.9708	
	0.0096	0.8951	0.9755	
RF: 300, 10	-0.0194	0.7222	0.9724	0.0779
	-0.0535	0.5423	0.9701	
	0.0147	0.9021	0.9747	
RF: 500, 1	-0.0475	1.3431	0.9272	0.1230
	-0.0805	0.9557	0.9206	
	-0.0145	1.7304	0.9337	
RF: 500, 5	-0.0198	0.7633	0.9763	0.0566
	-0.0524	0.5706	0.9741	
	0.0128	0.9560	0.9784	
RF: 500, 10	-0.0219	0.7462	0.9758	0.0650
	-0.0610	0.5376	0.9736	
	0.0172	0.9549	0.9780	

Supplementary Table E: *Internal* validation results from models including demographic, ACC variables, and HEI. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$.

	Intercept 95% Cl	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Cox	0.0009	0.5165	0.8608	0.2531
	-0.0018	0.4962	0.8517	
	0.0036	0.5368	0.8699	
GBM: 100, 1	-0.0006	0.5595	0.8762	0.2094
	-0.0065	0.5159	0.8679	
	0.0054	0.6031	0.8845	
GBM: 100, 5	-0.0018	0.5513	0.8992	0.2115
	-0.0041	0.5348	0.8914 🧹	
	0.0006	0.5678	0.9070	
GBM: 100, 10	-0.0043	0.5829	0.9107 🛸	0.1819
	-0.0113	0.5354	0.9027	
	0.0028	0.6305	0.9187	
GBM: 300, 1	-0.0015	0.5601	0.8752	0.2091
	-0.0068	0.5200	0.8668	
	0.0037	0.6003	0.8837	
GBM: 300, 5	-0.0032	0.5638	0.9027	0.1997
	-0.0071	0.5366	0.8950	
	0.0008	0.5910	0.9105	
GBM: 300, 10	-0.0049	0.5859	0.9191	0.1780
	-0.0106	0.5482	0.9118	
	0.0008	0.6236	0.9264	

Page	42	of	64
. age		<u> </u>	• •

1	
2	
3	
4	
6	
7	
8	
9	
10	
11	
12	
15 14	
15	
16	
17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
3/	
30 20	
40	
41	
42	
43	
44	
45	
46 47	
47	
49	
50	
51	
52	
53	
54 57	
55 56	
57	
58	
59	
60	

GBM: 500, 1	-0.0007	0.5485	0.8754	0.2194
	-0.0076	0.4959	0.8671	
	0.0062	0.6011	0.8836	
GBM: 500, 5	-0.0030	0.5680	0.9009	0.1964
	-0.0063	0.5456	0.8931	
	0.0002	0.5904	0.9088	
GBM: 500, 10	-0.0035	0.5777	0.9144	0.1857
	-0.0086	0.5437	0.9068	
	0.0016	0.6117	0.9219	
RF: 100, 1	-0.0463	1.3193	0.9302	0.1068
	-0.0772	0.9646	0.9239	
	-0.0154	1.6740	0.9365	
RF: 100, 5	-0.0193	0.7561	0.9759	0.0601
	-0.0512	0.5684	0.9737	
	0.0125	0.9439	0.9782	
RF: 100, 10	-0.0207	0.7366	0.9757	0.0700
	-0.0575	0.5408	0.9735	
	0.0160	0.9325	0.9779	
RF: 300, 1	-0.0448	1.2936	0.9345	0.0905
	-0.0793	0.9023	0.9285	
DZ 000 Z	-0.0102	1.6848	0.9405	0.0500
RF: 300, 5	-0.0199	0.7645	0.9764	0.0560
	-0.0523	0.5724	0.9742	
	0.0125	0.9566	0.9785	0.0004
RF: 300, 10	-0.0213	0.7440	0.9762	0.0661
	-0.0591	0.5423	0.9740	
	0.0164	0.9457	0.9783	0.0007
RF: 500, 1	-0.0454	1.3038	0.9336	0.0967
	-0.0815	0.8937	0.9275	
	-0.0094	1.7139	0.9397	0.0500
RF: 500, 5	-0.0174	0.7627	0.9768	0.0568
	-0.0459	0.5824	0.9746	
DE. 500 40	0.0112	0.9429	0.9789	0.0000
KF: 500, 10	-0.0182	0.7384	0.9766	0.0690
	-0.0500	0.5556	0.9744	
	0.0137	0.9212	0.9/8/	

Supplementary Table F: *Internal* validation results from models including demographic, ACC variables, and AHEI. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$.

Intercept	Slope	C-Statistic	Criteria
95% CI	95% CI	95% CI	

59

2					
3	Cox	0.0011	0.5142	0.8610	0.2553
4		-0.0009	0.4993	0.8520	
5		0.0031	0.5292	0.8701	
0 7	GBM: 100. 1	-0.0012	0.5533	0 8761	0 2149
, 8	, -	-0.0075	0.5057	0.8678	0.2110
9		0.0050	0.6008	0 8844	
10	GBM: 100.5	-0.0020	0.5502	0.8991	0 2125
11	•======;•	-0.0060	0.5231	0.8012	0.2120
12		0.0000	0.5231	0.0012	
13	GBM: 100 10	0.0013	0.5775	0.01/7	0 1764
14		-0.0049	0.5007	0.9147	0.1704
15		-0.0110	0.5440	0.3070	
10	GRM: 300 1	0.0017	0.0334	0.9225	0 2271
18	GDIVI. 300, 1	-0.0004	0.0099	0.0700	0.2271
19		-0.0059	0.4909	0.00//	0.2271
20	CPM: 200 5	0.0051	0.3000	0.0042	0.2271
21	GDIVI. 300, 5	-0.0024	0.5566	0.8977	0.2053
22		-0.0050	0.5407	0.8897	
23	CDM- 200 40	0.0001	0.5764	0.9057	0.4000
24	GBIVI: 300, 10	-0.0020	0.5685	0.9159	0.1933
25		-0.0066	0.5385	0.9081	
27	0014 500 4	0.0026	0.5985	0.9237	0.0055
28	GBM: 500, 1	-0.0005	0.5416	0.8762	0.2255
29		-0.0072	0.4909	0.8679	
30		0.0063	0.5922	0.8844	
31	GBM: 500, 5	-0.0021	0.5564	0.8993	0.2069
32		-0.0055	0.5328	0.8916	
33		0.0013	0.5800	0.9071	
34 35	GBM: 500, 10	-0.0037	0.5697	0.9165	0.1921
36		-0.0110	0.5227	0.9089	
37		0.0035	0.6167	0.9242	
38	RF: 100, 1	-0.0481	1.3493	0.9317	0.1267
39		-0.0844	0.9270	0.9255	
40		-0.0118	1.7717	0.9379	
41	RF: 100, 5	-0.0202	0.7717	0.9770	0.0526
42		-0.0539	0.5712	0.9749 🛸	
44		0.0135	0.9722	0.9791	
45	RF: 100, 10	-0.0214	0.7427	0.9760	0.0668
46		-0.0596	0.5396	0.9739	
47		0.0168	0.9458	0.9782	
48	RF: 300, 1	-0.0438	1.2788	0.9327	0.0823
49		-0.0756	0.9201	0.9267	
50		-0.0120	1.6374	0.9387	
51 52	RF: 300, 5	-0.0171	0.7559	0.9766	0.0601
53	-	-0.0450	0.5808	0.9745	
54		0.0109	0.9311	0.9788	
55					
56					
57					
58					

RF: 300, 10	-0.0220	0.7478	0.9766	0.0642
	-0.0613	0.5385	0.9745	
	0.0173	0.9571	0.9787	
RF: 500, 1	-0.0498	1.3774	0.9330	0.1469
	-0.0862	0.9518	0.9269	
	-0.0135	1.8029	0.9391	
RF: 500, 5	-0.0176	0.7642	0.9772	0.0561
	-0.0467	0.5813	0.9750	
	0.0115	0.9471	0.9793	
RF: 500, 10	-0.0183	0.7369	0.9768	0.0698
	-0.0505	0.5538	0.9747	
	0.0138	0.9200	0.9789	

Supplementary Table G: *Internal* validation results from models including demographic, ACC variables, and MDS. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$.

	Intercept 95% CI	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Cox	0.0009 🧹	0.5172	0.8609	0.2524
	-0.0015	0.4991	0.8518	
	0.0033	0.5352	0.8700	
GBM: 100, 1	-0.0017	0.5647	0.8763	0.2048
	-0.0064	0.5281	0.8680	
	0. 0031	0.6012	0.8847	
GBM: 100, 5	-0.0010	0.5495	0.8973	0.2135
	-0.0041	0.5284	0.8891	
	0.0020	0.5705	0.9055	
GBM: 100, 10	-0.0043	0.5771	0.9166	0.1858
	-0.0079	0.5530	0.9091	
	-0.0007	0.6011	0.9241	
GBM: 300, 1	-0.0006	0.5417	0.8760	0.2254
	-0.0075	0.4895	0.8677	
	0.0063	0.5939	0.8843	
GBM: 300, 5	-0.0020	0.5547	0.8997	0.2084
	-0.0046	0.5367	0.8920	
	0.0005	0.5727	0.9073	
GBM: 300, 10	-0.0037	0.5752	0.9151	0.1877
	-0.0091	0.5395	0.9075	
	0.0017	0.6109	0.9227	
GBM: 500, 1	-0.0011	0.5551	0.8769	0.2131
	-0.0074	0.5072	0.8687	
	0.0051	0.6029	0.8851	
GBM: 500, 5	-0.0019	0.5575	0.8984	0.2061
	-0.0056	0.5317	0.8905	

	0.0018	0.5832	0.9063		
GBM: 500, 10	-0.0047	0.5814	0.9167	0.1822	
	-0.0115	0.5366	0.9092		
	0.0021	0.6263	0.9242		
RF: 100, 1	-0.0405	1.2255	0.9238	0.0567	
	-0.0689	0.9059	0.9175		
	-0.0121	1.5451	0.9302		
RF: 100, 5	-0.0228	0.7646	0.9724	0.0562	
	-0.0598	0.5597	0.9701		
	0.0142	0.9695	0.9748		
RF: 100, 10	-0.0207	0.7390	0.9731	0.0688	
	-0.0569	0.5445	0.9707		
	0.0155	0.9336	0.9754		
RF: 300, 1	-0.0460	1.318	0.9262	0.1066	
	-0.0788	0.935	0.9197		
	-0.0132	1.701	0.9326		
RF: 300, 5	-0.0169	0.7560	0.9733	0.0602	
	-0.0442	0.5829	0.9709		
	0.0105	0.9291	0.9756		
RF: 300, 10	-0.0209	0.7435	0.9734	0.0665	
	-0.0568	0.5489	0.9711		
	0.0151	0.9380	0.9757		
RF: 500, 1	-0.0457	1.3123	0.9274	0.1028	
	-0.0790	0.9259	0.9211		
	-0.0125	1.6988	0.9338		
RF: 500, 5	-0.0168	0.7556	0.9734	0.0604	
	-0.0440	0.5833	0.9711		
	0.0104	0.9280	0.9757		
RF: 500, 10	-0.0178	0.7375	0.9737	0.0696	
	-0.0484	0.5601	0.9714		
	0.0128	0.9149	0.9760		

Supplementary Table H: *Internal* validation results from models including demographic, ACC variables, and DASH. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$.

	Intercept 95% Cl	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Cox	0.0009	0.5165	0.8615	0.2530
	-0.0027	0.4896	0.8525	
	0.0045	0.5434	0.8706	
GBM: 100, 1	-0.0006	0.5456	0.8769	0.2216
	-0.0073	0.4949	0.8687	
	0.0061	0.5964	0.8851	

Page	46	of	64
------	----	----	----

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
25	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

GBM: 100, 5	-0.0032 -0.0074	0.5684 0.5391	0.9018 0.8940	0.1959
	0.0010	0.5977	0.0040	
GBM: 100. 10	-0.0048	0.5825	0.9183	0.1810
,	-0.0099	0.5494	0.9108	011010
	0.0002	0.6157	0.9258	
GBM: 300, 1	-0.0006	0.5553	0.8766	0.2130
	-0.0075	0.5052	0.8683	
	0.0063	0.6054	0.8848	
GBM: 300, 5	-0.0022	0.5545	0.8990	0.2087
	-0.0064	0.5255	0.8910	
	0.0020	0.5836	0.9069	
GBM: 300, 10	-0.0041	0.5727	0.9172	0.1894
	-0.0105	0.5307	0.9098	
	0.0023	0.6146	0.9245	
GBM: 500, 1	-0.0004	0.5423	0.8772	0.2246
	-0.0076	0.4880	0.8690	
	0.0068	0.5965	0.8853	
GBM: 500, 5	-0.0033	0.5719	0.9016	0.1930
	-0.0078	0.5403	0.8938	
ODM. 500 40	0.0013	0.6035	0.9094	0 4050
GBNI: 500, 10	-0.0029	0.5674	0.9064	0.1959
		0.5300	0.8980	
DE. 100 1	0.0025	0.0043	0.9141	0 1020
Kr. 100, 1	-0.0475	0.0557	0.9272	0.1230
	-0.0005	1 730/	0.9200	
RE: 100.5	-0.0143	0 7633	0.9763	0 0566
	-0.0100	0.7000	0.9741	0.0000
	0.0024	0.9560	0.9784	
RF: 100. 10	-0.0219	0.7462	0.9758	0.0650
,	-0.0610	0.5376	0.9736	
	0.0172	0.9549	0.9780	
RF: 300, 1	-0.0469	1.3320	0.9311	0.1150
	-0.0817	0.9285	0.9249	
	-0.0121	1.7354	0.9372	
RF: 300, 5	-0.0171	0.7578	0.9767	0.0592
	-0.0451	0.5818	0.9746	
	0.0108	0.9339	0.9789	
RF: 300, 10	-0.0225	0.7558	0.9767	0.0602
	-0.0630	0.5384	0.9746	
	0.0179	0.9731	0.9788	
RF: 500, 1	-0.0439	1.2784	0.9309	0.0823
	-0.0757	0.9184	0.9247	
	-0.0121	1.6383	0.9370	

RF: 500, 5	-0.0176 -0.0467	0.7640 0.5804	0.9766 0.9745	0.0562
	0.0115	0.9476	0.9788	
RF: 500, 10	-0.0184	0.7408	0.9766	0.0677
	-0.0506	0.5556	0.9745	
	0.0138	0.9260	0.9787	

Supplementary Table I: *Internal* validation results from models including demographic, ACC variables, and nutrition variables. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$.

	Intercept 95% CI	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Cox	0.0007	0.5156	0.8750	0.2503
	-0.0016	0.4991	0.8661	
	0.0031	0.5321	0.8838	
GBM: 100, 1	-0.0027	0.5748	0.8811	0.1949
	-0.0075	0.5386	0.8729	
	0.0021 🧹	0.6111	0.8894	
GBM: 100, 5	-0.0063	0.6183	0.9169	0.1526
	-0.0121	0.5778	0.9092	
	-0.0004	0.6589	0.9246	
GBM: 100, 10	-0.0088	0.6767	0.9377	0.1084
	-0.0203	0.5990	0.9309	
	0.0026	0.7545	0.9445	
GBM: 300, 1	-0.0024	0.5723	0.8793	0.1975
	-0.0071	0.5354	0.8707	
	0.0024	0.6091	0.8878	
GBM: 300, 5	-0.0066	0.6294	0.9135	0.1448
	-0.0140	0.5778	0.9059	
	0.0007	0.6811	0.9211	
GBM: 300, 10	-0.0061	0.6427	0.9228	0.1336
	-0.0152	0.5795	0.9152	
	0.0029	0.7060	0.9303	
GBM: 500, 1	-0.0020	0.5616	0.8785	0.2070
	-0.0077	0.5188	0.8700	
	0.0036	0.6044	0.8870	
GBM: 500, 5	-0.0073	0.6395	0.9160	0.1370
	-0.0161	0.5770	0.9082	
	0.0016	0.7020	0.9239	
GBM: 500, 10	-0.0083	0.6644	0.9314	0.1173
	-0.0183	0.5961	0.9242	
	0.0016	0.7327	0.9386	

1
2
3
4
5
6 7
/ 8
9
10
11
12
13
14
15
16
17
18
19
∠∪ 21
21
23
24
25
26
27
28
29
30
31
32
33 24
24 25
36
37
38
39
40
41
42
43
44
45
46
47 10
40 ⊿0
50
51
52
53
54
55
56
57
58
59 60
00

RF: 100, 1	-0.1754	3.3994	0.9874	5.7573
	-0.2884	1.7584	0.9853	
	-0.0624	5.0405	0.9895	
RF: 100, 5	-0.0427	1.2353	0.9967	0.0554
	-0.0884	0.8154	0.9960	
	0.0029	1.6552	0.9973	
RF: 100, 10	-0.0328	1.0458	0.9942	0.0021
	-0.0743	0.7056	0.9932	
	0.0087	1.3860	0.9952	
RF: 300, 1	-0.1742	3.3849	0.9919	5.6878
	-0.2843	1.7938	0.9903	
	-0.0642	4.9760	0.9934	
RF: 300, 5	-0.0432	1.2387	0.9969	0.0570
	-0.0884	0.8230	0.9963	
	0.0021	1.6544	0.9975	
RF: 300, 10	-0.0333	1.0426	0.9943	0.0018
	-0.0739	0.7138	0.9934	
	0.0072	1.3713	0.9953	
RF: 500, 1	-0.1813	3.4987	0.9921	6.2436
	-0.2962	1.8260	0.9907	
	-0.0664	5.1713	0.9935	
RF: 500, 5	-0.0436	1.2453	0.9970	0.0602
	-0.0885	0.8311	0.9964	
	0.0013	1.6596	0.9976	
RF: 500, 10	-0.0337	1.0453	0.9944	0.0021
	-0.0743	0.7155	0.9934	
	0.0069	1.3751	0.9953	

Table J: *External* validation results from models including demographic and ACC variables only. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$. Best performing GBM and RF are italicized.

	Intercept 95% Cl	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Cox	-0.0004	0.5278	0.8780	0.2379
	-0.0038	0.5037	0.8667	
	0.0029	0.5520	0.8893	
GBM: 100, 1	-0.0004	0.5276	0.8846	0.2365
	-0.0096	0.4621	0.8737	
	0.0088	0.5931	0.8956	
GBM: 100, 5	0.0004	0.5294	0.8948	0.2325
	-0.0064	0.4828	0.8840	
	0.0072	0.5761	0.9056	

1					
2					
5 4	GBM: 100, 10	0.0020	0.5358	0.9020	0.2251
5		-0.0050	0.4875	0.8914	
6		0.0090	0.5841	0.9126	
7	GBM: 300, 1	0.0004	0.5250	0.8838	0.2391
8		-0.0101	0.4532	0.8728	
9		0.0108	0.5968	0.8948	
10	GBM: 300, 5	0.0017	0.5254	0.8919	0.2369
11		-0.0063	0.4696	0.8810	
12		0.0097	0.5813	0.9027	
14	GBM: 300, 10	0.0004	0.5342	0.9022	0.2265
15		-0.0058	0.4932	0.8917	
16		0.0065	0.5751	0.9128	
17	GBM: 500, 1	0.0005	0.5173	0.8843	0.2464
18		-0.0102	0.4408	0.8733	
19		0.0113	0.5939	0.8952	
20	GBM: 500, 5	0.0011	0.5306	0.8944	0.2315
21		-0.0052	0.4869	0.8837	
22		0.0074	0.5743	0.9052	
24	GBM: 500, 10	0.0030	0.5608	0.9010	0.2027
25		-0.0042	0.5091	0.8905	
26		0.0102	0.6124	0.9115	
27	RF: 100, 1	-0.0427	1.2546	0.9097	0.0730
28	•	-0.0744	0.8887	0.8982	
29 30		-0.0109	1.6204	0.9213	
31	RF: 100. 5	-0.0077	0.6025	0.9273	0.1633
32	,	-0.0224	0.5196	0.9167	
33		0.0070	0.6853	0.9379	
34	RF: 100. 10	-0.0051	0.5591	0.9260	0.1999
35	,,	-0.0176	0 4954	0.9157	0.1000
36		0.0075	0.6228	0.9363	
3/	RF: 300. 1	-0 0380	1 1824	0.9083	0 0417
30 30		-0.0609	0 9215	0.8969	0.0411
40		-0.0150	1 4433	0.0000	
41	RF: 300.5	-0.0058	0.5959	0.9281	0 1685
42		-0.0171	0.5279	0.9180	0.1000
43		0.0055	0.6639	0.9100	
44	RE-300 10	-0.0035	0.0000	0.0000	0 2026
45		-0.0040	0.0000	0.9203	0.2020
40		0.0100	0.4370	0.0107	
47	RE: 500 1	0.0070	1 22/6	0.9371	0.0635
49		-0.0410	1.2040 0 0/2/	0.0079	0.0000
50		-0.0009	1 5207	0.0303	
51	RE: 500 5	0.0102	0.5066	0.9190	0 1670
52	i i . 500, 5	-0.0000 0.0100	0.0000	0.0201	0.10/9
53		-0.0100 0.0052	0.0210	0.9102	
54 55		0.0000	0.0034	0.9301	
56					
57					
58					

1	
2 3	
4	
5	
6	
/ 8	
9	
10	
11	
12	
14	
15	
16	
1/	
19	
20	
21	
22	
23	
25	
26	
27	
20	
30	
31	
32 33	
34	
35	
36	
38	
39	
40	
41 42	
43	
44	
45	
46 47	
48	
49	
50	
51	
53	
54	
55	
56 57	

60

RF: 500, 10	-0.0060	0.5671	0.9274	0.1927
	-0.0201	0.4952	0.9173	
	0.0080	0.6390	0.9375	

Supplementary Table K: *External* validation results from models including demographic, ACC variables, and HEI. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$. Best performing GBM and RF are italicized.

	Intercept	Slope	C-Statistic	Criteria
	95% CI	95% CI	95% CI	
Cox	-0.0003	0.5265	0.8781	0.2391
	-0.0040	0.5003	0.8667	
	0.0033	0.5527	0.8894	
GBM: 100, 1	0.0005	0.5395	0.8846	0.2254
	-0.0110	0.4587	0.8734	
	0.0120	0.6204	0.8958	
GBM: 100, 5	0.0012	0.5513	0.8943	0.2125
	-0.0071	0.4910	0.8834	
	0.0096	0.6116	0.9051	
GBM: 100, 10	0.0020 🧹	0.5908	0.8968	0.1781
	-0.0048	0.5397	0.8857	
	0.0088	0.6419	0.9080	
GBM: 300, 1	-0.0006	0.5416	0.8843	0.2235
	-0.0110	0.4644	0.8731	
	0.0098	0.6187	0.8955	
GBM: 300, 5	0.0007	0.5469	0.8963	0.2161
	-0.0062	0.4975	0.8855	
	0.0077	0.5963	0.9070	
GBM: 300, 10	0.0012	0.5769	0.9035	0.1883
	-0.0063	0.5229	0.8929	
/	0.0087	0.6309	0.9142	
GBM: 500, 1	-0.0003	0.5362	0.8843	0.2285
	-0.0097	0.4677	0.8733	
	0.0091	0.6047	0.8954	
GBM: 500, 5	0.0012	0.5594	0.8969	0.2048
	-0.0068	0.5011	0.8858	
0014 000 40	0.0092	0.6177	0.9081	
GBM: 500, 10	0.0009	0.5699	0.9047	0.1941
	-0.0037	0.5371	0.8942	
	0.0056	0.6026	0.9152	0.0464
KF: 100, 1	-0.0395	1.2045	0.9127	0.0494
	-0.0619	0.9521	0.9015	
	-0.0171	1.4570	0.9239	

RF: 100, 5	-0.0076	0.6063	0.9309	0.1598	
	-0.0212	0.5282	0.9213		
	0.0060	0.6844	0.9406		
RF: 100, 10	-0.0078	0.5851	0.9304	0.1770	
	-0.0257	0.4934	0.9204		
	0.0101	0.6768	0.9403		
RF: 300, 1	-0.0378	1.1752	0.9154	0.0379	
	-0.0633	0.8938	0.9043		
	-0.0124	1.4566	0.9264		
RF: 300, 5	-0.0084	0.6177	0.9314	0.1509	
	-0.0241	0.5266	0.9216		
	0.0074	0.7088	0.9411		
RF: 300, 10	-0.0078	0.5867	0.9309	0.1756	
	-0.0233	0.5065	0.9212		
	0.0078	0.6669	0.9406		
RF: 500, 1	-0.0377	1.1735	0.9148	0.0374	
	-0.0625	0.8969	0.9038		
	-0.0129	1.4501	0.9258		
RF: 500, 5	-0.0077	0.6221	0.9318	0.1475	
	-0.0222	0.5329	0.9222		
	0.0068	0.7112	0.9415		
RF: 500, 10	-0.0066	0.5851	0.9308	0.1769	
	-0.0209	0.5060	0.9212		
	0.0078	0.6641	0.9403		_

Supplementary Table L: *External* validation results from models including demographic, ACC variables, and AHEI. Criteria is equal to (slope-1)² + (C-statistic-1)². Best performing GBM and RF are italicized.

	Intercept 95% Cl	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Сох	-0.0009	0.5347	0.8784	0.2313
	-0.0041	0.5115	0.8671	
	0.0023	0.5579	0.8897	
GBM: 100, 1	-0.0009	0.5326	0.8839	0.2319
	-0.0106	0.4627	0.8728	
	0.0088	0.6025	0.8951	
GBM: 100, 5	0.0005	0.5312	0.8964	0.2305
	-0.0052	0.4924	0.8857	
	0.0061	0.5700	0.9071	
GBM: 100, 10	0.0009	0.5697	0.9025	0.1947
	-0.0044	0.5315	0.8917	
	0.0063	0.6079	0.9133	
GBM: 300, 1	0.0001	0.5197	0.8852	0.2439
	-0.0088	0.4561	0.8741	

Page	52	of	64
------	----	----	----

2					
3		0 0090	0 5022	0 0062	
4	CDM- 200 5	0.0069	0.0000	0.0903	0 0 0 0 1
5	GDIVI: 300, 5	0.0002	0.5223	0.8957	0.2391
6		-0.0092	0.4583	0.8852	
7		0.0097	0.5864	0.9062	
8	GBM: 300, 10	0.0030	0.5638	0.9061	0.1991
9		-0.0034	0.5179	0.8954	
10		0.0095	0.6096	0.9168	
11	GBM: 500, 1	-0.0004	0.5284	0.8848	0.2357
12		-0.0097	0.4612	0.8737	
14		0.0090	0.5955	0.8960	
15	GBM: 500, 5	0.0018	0.5348	0.8942	0.2276
16		-0.0063	0.4780	0.8836	
17		0.0098	0.5916	0.9047	
18	GBM: 500, 10	0.0011	0.5511	0.9054	0.2105
19		-0.0038	0.5176	0.8948	
20		0.0060	0.5846	0.9161	
21	RF: 100. 1	-0.0416	1 2373	0 9141	0.0637
22	,.	-0.0695	0.9188	0.9028	0.0001
23		-0.0137	1 5558	0.9255	
25	RE: 100 5	-0.0181	0.6211	0.0200	0 1/185
26	141.100,0	-0.0001	0.5268	0.0200	0.1400
27		-0.0243	0.3200	0.9190	
28	DE. 100 10	0.0080	0.7134	0.9395	0 1010
29	KF. 100, 10	-0.0064	0.5761	0.9200	0.1040
30		-0.0200	0.5061	0.9191	
31		0.0071	0.6460	0.9386	0 00 47
32	RF: 300, 1	-0.0372	1.1657	0.9147	0.0347
34		-0.0610	0.9034	0.9036	
35		-0.0134	1.4281	0.9258	
36	RF: 300, 5	-0.0066	0.6066	0.9309	0.1595
37		-0.0184	0.5344	0.9212	
38		0.0053	0.6788	0.9406	
39	RF: 300, 10	-0.0067	0.5774	0.9299	0.1835
40		-0.0206	0.5058	0.9201	
41		0.0073	0.6491	0.9396	
42	RF: 500, 1	-0.0429	1.2622	0.9137 🔷	0.0762
45 AA		-0.0699	0.9513	0.9024	
45		-0.0159	1.5731	0.9249	
46	RF: 500, 5	-0.0074	0.6195	0.9307	0.1496
47		-0.0215	0.5326	0.9208	
48		0.0068	0.7063	0.9407	
49	RF: 500, 10	-0.0055	0.5733	0.9295	0.1870
50	-, -	-0.0175	0.5070	0.9196	
51		0.0066	0.6396	0.9394	
52		0.0000	0.0000	0.0001	
53 54					
55					
56					

Supplementary Table M: *External* validation results from models including demographic, ACC variables, and MDS. Criteria is equal to (slope-1)² + (C-statistic-1)². Best performing GBM and RF are italicized.

	Intercept 95% Cl	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Cox	-0.0003	0.5268	0.8783	0.2387
	-0.0037	0.5020	0.8670	
	0.0032	0.5516	0.8896	
GBM: 100, 1	-0.0009	0.5401	0.8860	0.2245
	-0.0099	0.4738	0.8749	
	0.0081	0.6064	0.8972	
GBM: 100, 5	0.0012	0.5358	0.8960	0.2263
	-0.0047	0.4945	0.8846	
	0.0072	0.5770	0.9075	
GBM: 100, 10	0.0015	0.5480	0.9043	0.2135
	-0.0064	0.4927	0.8939	
	0.0094	0.6034	0.9147	
GBM: 300, 1	-0.0005	0.5253	0.8853	0.2385
	-0.0100	0.4578	0.8743	
	0.0090	0.5927	0.8963	
GBM: 300, 5	0.0009	0.5382	0.8930	0.2247
	-0.0066	0.4851	0.8823	
	0.0084	0.5914	0.9037	
GBM: 300, 10	0.0024	0.5390	0.9036	0.2218
	-0.0053	0.4860	0.8931	
	0.0100	0.5919	0.9141	
GBM: 500, 1	-0.0003	0.5304	0.8856	0.2336
	-0.0110	0.4526	0.8745	
	0.0103	0.6083	0.8966	
GBM: 500, 5	0.0011	0.5551	0.8974	0.2085
	-0.0067	0.4986	0.8867	
	0.0090	0.6116	0.9082	
GBM: 500, 10	0.0014	0.5220	0.9035	0.2378
	-0.0056	0.4750	0.8931	
	0.0085	0.5690	0.9139	
RF: 100, 1	-0.0345	1.1250	0.9055	0.0246
	-0.0557	0.8905	0.8941	
	-0.0133	1.3595	0.9168	
RF: 100, 5	-0.0084	0.6085	0.9275	0.1585
	-0.0232	0.5282	0.9178	
	0.0064	0.6887	0.9371	
RF: 100, 10	-0.0054	0.5666	0.9249	0.1935
	-0.0171	0.5063	0.9148	
	0.0062	0.6269	0.9351	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
27 20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

60

RF: 300, 1	-0.0404	1.2231	0.9094	0.0580
	-0.0659	0.9316	0.8981	
	-0.0150	1.5146	0.9207	
RF: 300, 5	-0.0066	0.6099	0.9269	0.1575
	-0.0190	0.5332	0.9168	
	0.0058	0.6866	0.9371	
RF: 300, 10	-0.0064	0.5802	0.9254	0.1818
	-0.0217	0.5000	0.9154	
	0.0090	0.6605	0.9354	
RF: 500, 1	-0.0388	1.1954	0.9094	0.0464
	-0.0632	0.9179	0.8983	
	-0.0145	1.4728	0.9206	
RF: 500, 5	-0.0060	0.6030	0.9275	0.1629
	-0.0169	0.5352	0.9177	
	0.0050	0.6708	0.9373	
RF: 500, 10	-0.0052	0.5782	0.9267	0.1833
	-0.0171	0.5118	0.9169	
	0.0066	0.6446	0.9364	

Supplementary Table N: *External* validation results from models including demographic, ACC variables, and DASH. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$. Best performing GBM and RF are italicized.

	Intercept 95% Cl	Slope 95% Cl	C-Statistic 95% Cl	Criteria
Cox	-0.0001	0.5248	0.8775	0.2408
	-0.0050	0.4892	0.8662	
	0.0048	0.5604	0.8888	
GBM: 100, 1	-0.0004	0.5277	0.8847	0.2364
	-0.0099	0.4598	0.8735	
	0.0091	0.5956	0.8959	
GBM: 100, 5	0.0008	0.5548	0.8959	0.2090
	-0.0056	0.5080	0.8851	
	0.0073	0.6015	0.9067	
GBM: 100, 10	0.0002	0.6169	0.9073	0.1554
	-0.0062	0.5691	0.8970	
	0.0066	0.6647	0.9175	
GBM: 300, 1	-0.0003	0.5352	0.8849	0.2293
	-0.0109	0.4618	0.8737	
	0.0103	0.6085	0.8961	
GBM: 300, 5	0.0010	0.5268	0.8925	0.2355
	-0.0059	0.4785	0.8812	
	0.0080	0.5750	0.9037	
GBM: 300, 10	0.0022	0.5366	0.9015	0.2244
	-0.0048	0.4889	0.8911	
	0.0092	0.5843	0.9120	

GBM: 500, 1	-0.0003	0.5276	0.8853	0.2363
	-0.0101	0.4577	0.8742	
	0.0094	0.5974	0.8964	
GBM: 500, 5	0.0006	0.5344	0.8963	0.2275
	-0.0074	0.4796	0.8851	
	0.0085	0.5892	0.9074	
GBM: 500, 10	0.0003	0.5544	0.8973	0.2091
	-0.0034	0.5286	0.8860	
	0.0039	0.5803	0.9086	
RF: 100, 1	-0.0410	1.2346	0.9079	0.0635
	-0.0659	0.9484	0.8963	
	-0.0162	1.5207	0.9195	
RF: 100, 5	-0.0066	0.5966	0.9281	0.1679
	-0.0186	0.5278	0.9182	
	0.0053	0.6654	0.9381	
RF: 100, 10	-0.0060	0.5671	0.9274	0.1927
	-0.0201	0.4952	0.9173	
	0.0080	0.6390	0.9375	
RF: 300, 1	-0.0393	1.2049	0.9104	0.0500
	-0.0636	0.9279	0.8988	
	-0.0149	1.4819	0.9219	
RF: 300, 5	-0.0062	0.6025	0.9289	0.1631
·	-0.0178	0.5313	0.9189	
	0.0054	0.6738	0.9389	
RF: 300, 10	-0.0070	0.5789	0.9279	0.1825
·	-0.0214	0.5044	0.9179	-
	0.0074	0.6533	0.9379	
RF: 500, 1	-0.0369	1.1604	0.9114	0.0336
	-0.0597	0.9083	0.9000	
	-0.0142	1.4124	0.9227	
RF: 500, 5	-0.0053	0.5905	0.9300	0.1726
-	-0.0142	0.5364	0.9205	5
	0.0035	0.6446	0.9396	
RF: 500, 10	-0.0057	0.5756	0.9284	0,1852
-	-0.0181	0.5073	0.9185	
	0.0067	0.6440	0 0383	

Supplementary Table O: *External* validation results from models including demographic, ACC variables, and nutrition variables. Criteria is equal to $(slope-1)^2 + (C-statistic-1)^2$. Best performing GBM and RF are italicized.

Intercept	Slope	C-Statistic	Criteria	
95% CI	95% CI	95% CI		

Page	56	of	64
i uge	50	01	U 1

Сох	0.0010	0.4611	0.8830	0.3041
	-0.0034	0.4264	0.8698	
	0.0054	0.4959	0.8962	
GBM: 100, 1	-0.0030	0.5674	0.8896	0.1993
	-0.0092	0.5227	0.8784	
	0.0031	0.6120	0.9007	
GBM: 100, 5	-0.0016	0.5621	0.9072	0.2004
	-0.0073	0.5227	0.8966	
	0.0041	0.6015	0.9178	
GBM: 100, 10	0.0027	0.6518	0.9090	0.1295
	-0.0049	0.5906	0.8981	
	0.0103	0.7131	0.9200	
GBM: 300, 1	-0.0026	0.5681	0.8886	0.1989
	-0.0103	0.5108	0.8772	
	0.0051	0.6254	0.9000	
GBM: 300, 5	-0.0009	0.6548	0.9022	0.1287
	-0.0062	0.6121	0.8902	
	0.0044	0.6975	0.9143	
GBM: 300, 10	0.0021	0.8318	0.9058	0.0372
	-0.0039	0.7710	0.8947	
	0.0081 🥒	0.8927	0.9170	
GBM: 500, 1	-0.0026	0.5545	0.8894	0.2107
	-0.0101	0.5000	0.8781	
	0.0050	0.6090	0.9008	
GBM: 500, 5	-0.0029	0.5980	0.9030	0.1710
	-0.0060	0.5759	0.8912	
/-	0.0002	0.6202	0.9148	
GBM: 500, 10	0.0003	0.7133	0.9098	0.0903
	-0.0057	0.6624	0.8990	
	0.0063	0.7642	0.9206	
RF: 100, 1	-0.1254	2.5742	0.8937	2.4894
	-0.1941	1.5825	0.8781	
	-0.0567	3.5659	0.9093	0.0040
RF: 100, 5	-0.0299	1.0137	0.9320	0.0048
	-0.0567	0.7609	0.9208	
DE. 400 40	-0.0031	1.2666	0.9433	0 0005
RF: 100, 10	-0.0201	0.8447	0.9336	0.0285
	-0.0412	0.6690	0.9226	
DE. 200 4	0.0010	1.0204	0.9445	0.0040
KF: 300, 1	-0.1293	2.0387	0.9059	2.6942
	-0.19/3	1.00/9	0.0914	
DE- 300 5	-0.0013	3.0190	0.9203	0.0052
NF. 300, 3	-0.0314 0.0502	1.UJUO 0.7006	0.3311 0.0262	0.0053
	-0.0000	U.1020 1 2000	0.9202	
	-0.0040	1.2909	0.9401	

RF: 300, 10	-0.0204	0.8343	0.9367	0.0315
	-0.0395	0.6773	0.9263	
	-0.0012	0.9913	0.9470	
RF: 500, 1	-0.1401	2.8162	0.9129	3.3062
	-0.2170	1.6982	0.8993	
	-0.0632	3.9342	0.9266	
RF: 500, 5	-0.0304	1.0242	0.9348	0.0048
	-0.0552	0.7896	0.9238	
	-0.0057	1.2588	0.9459	
RF: 500, 10	-0.0215	0.8494	0.9379	0.0265
	-0.0419	0.6824	0.9277	
	-0.0012	1.0165	0.9481	

Supplementary Table P: Hazard ratios (95% CIs) from Cox models developed on training data. See Supplementary Table A for variable definitions.

	Model 1 (ACC)	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)
age sex	1.10 (1.09, 1.10) 0.65 (0.57, 0.73)	1.10 (1.09, 1.11) 0.65 (0.58, 0.74)	1.10 (1.09, 1.11)	1.10 (1.09, 1.10) 0.65 (0.57, 0.73)	1.10 (1.09, 1.11) 0.65 (0.58, 0.74)	1.10 (1.09, 1.10) 0.61 (0.54, 0.70)
black	1.14 (0.99, 1.32)	1.14 (0.99, 1.32)	1.15 (0.99, 1.33)	1.14 (0.99, 1.32)	1.11 (0.97, 1.29)	1.10 (0.99, 1.29)
hispanic	0.69 (0.58, 0.81)	0.69 (0.58, 0.82)	0.69 (0.58, 0.82)	0.69 (0.58, 0.82)	0.70 (0.59, 0.83)	0.64 (0.58, 0.77)
total_chol	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)
hdl	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	1.00 (1.00, 1.01)	1.00 (1.00, 1.00)
sbp	1.00 (1.00, 1.01)	1.00 (1.00, 1.01)	1.00 (1.00, 1.01)	1.00 (1.00, 1.01)	1.01 (1.00, 1.01)	1.00 (1.00, 1.01)
bpmeds	1.19 (1.08, 1.30)	1.19 (1.09, 1.30)	1.19 (1.09, 1.30)	1.19 (1.09, 1.31)	1.18 (1.07, 1.29)	1.21 (1.09, 1.33)
dm	1.46 (1.29, 1.65)	1.46 (1.29, 1.65)	1.45 (1.29, 1.64)	1.46 (1.29, 1.65)	1.45 (1.28, 1.63)	1.40 (1.29, 1.59)
tob	1.91 (1.61, 2.27)	1.89 (1.59, 2.25)	1.88 (1.59, 2.23)	1.91 (1.61, 2.26)	1.84 (1.55, 2.18)	1.84 (1.59, 2.19)
hei		1.00 (0.99, 1.01)				
ahei			1.00 (0.99, 1.00)			
mds				1.05 (1.00, 1.10)		
dash					0.99 (0.98, 0.99)	
milk_g						1 (1, 1)
cream_g						1 (0.99, 1)
miik_desse						1 (1, 1)
rt_g abaaaa a						1 (1 1)
cneese_g						1(1, 1) 1(0.00, 1.01)
hoof a						1 (0.99, 1.01)
beel_g						1 (1, 1)
lamb a						1 (1, 1)
noultry a						1 (1, 1)
organ mea						1 (1, 1)
ta						. (., .)
fish a						1 (0.99, 1)
meat nonm						1 (1, 1)
eat q						. (., .)
protein fro						1 (1, 1)
zen g						
eggs g						1 (1, 1)
egg_mixtur						1 (1, 1)
e_g						
egg_sub_g						0.99 (0.99, 1)
legumes_g						1 (1, 1)
nuts_g						1 (1, 1)
seeds_g						1 (0.99, 1.01)
flour_mix_						0.22 (0, ∞)
g						
bread_yeas						1 (1, 1)
t_g						
bread_quic						1 (1, 1)
k_g						
						1 (1, 1)
pastries_g						

For peer revi

	Model 1 (ACC)	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)
pancakes_ q						1 (1, 1)
pastas_g						1 (1, 1)
grain_mix_						1 (1, 1)
g meat sub						0.78 (0, ∞)
g citrus a						1 (1 1)
fruit_dried_						1 (1, 1.01)
g fruit_other_						1 (1, 1)
g fruit_juice_						1 (1, 1)
g fruit_baby_						0.84 (0, ∞)
g potatoes_g						1 (1, 1)
veg_darkgr een g						1 (1, 1)
veg_deepy						1 (1, 1.01)
tomatoes_g						1 (1, 1)
g						1 (1, 1)
veg_meat_ g						1 (1, 1)
veg_mixtur e_g						1 (1, 1)
fats_g oils q						1 (1, 1.01) 1 (0.98, 1.01)
salad_dres						1 (1, 1.01)
sweets_g						1 (1, 1)
ohol_g						1 (1, 1)
bev_alcono l_g						1 (1, 1)
water_g kcal						1 (1, 1) 1 (1, 1)
protein_g						1.01 (1, 1.02)
fiber q						0.96(0.95, 0.97)
fat_g						0.99 (0.97, 1.01)
fat_sat_g						1.19 (1.07, 1.32) 0.96 (0.93, 1)
g						
fat_poly_g cholesterol						0.97 (0.94, 0.99) 1 (1, 1)
_mg vite mg						0.99 (0.98, 1.01)
vita_mg betacaro_m						1 (1, 1)
cg						. (., .)
vitb1_mg vitb2_mg						0.92 (0.78, 1.10) 1.02 (0.87, 1.19)
niacin_mg						0.98 (0.96, 0.99)
folate mcg						1 (1, 1)
vitb12_mcg						1 (0.99, 1.02)
vitc_mg calcium m						1 (1, 1) 1 (1, 1)
g phosphoru						1 (1 1)
s_mg						1 (1, 1)
magnesium _mg						1 (1, 1)
iron_mg zinc_mg						1.01 (1, 1.03) 1.01 (1, 1.01)
copper_mg						0.93 (0.84, 1.03)
sodium_mg						1 (1, 1)
potassium_ mg						1 (1, 1)
selenium_ mcg						1 (0.99, 1)
-						

3		Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
4	theobromin	(ACC)	(+HEI)	(+AHEI)	(+MDS)	(+DASH)	<u>(+AII)</u> 1 (1, 1)
5	e_mg						
6	alcohol_gm sfa 40 gm						1.01 (1, 1.01) 1.31 (0.69, 2.47)
7	sfa_60_gm						0.67 (0.24, 1.81)
8	sfa_80_gm sfa_100_g						1.17 (0.53, 2.60) 0.67 (0.22, 2.05)
9	m						0.01 (0.22, 2.00)
10	sfa_120_g m						0.88 (0.77, 1.01)
11	sfa_140_g						0.76 (0.57, 1.01)
12	m sfa 160 g						0.85 (0.76, 0.94)
13	m						0.00 (0.70, 0.04)
14	sfa_180_g						0.86 (0.75, 0.98)
15	mfa_161h_						0.85 (0.66, 1.09)
16	gm mfa 161o						1.06 (1.02, 1.10)
17	gm						
18	mfa_201_g m						1.32 (1.03, 1.69)
19	mfa_221_g						0.34 (0.13, 0.90)
20	m pfa 182 q						1.07 (1.04, 1.11)
21	m						
22	pta_183_g m						0.80 (0.68, 0.95)
23	pfa_184_g						5.67 (0.15, 211.03)
24	m pfa 204 g						1.02 (0.29, 3.64)
25	m						
26	pta_205_g m						0.99 (0.21, 4.69)
27	pfa_225_g						0.63 (0.01, 55.24)
28	m pfa 226 q						1.45 (0.40, 5.24)
29	m						
30	water_yest erdav gm						1 (1, 1)
31				6			
32							
33							
34	Sunnleme	antary Tab	A O. Relativ	o influences	of variables in	hest nerforn	ning GBM

Supplementary Table Q: Relative influences of variables in best performing GBM models in training set from each modeling approach. See Supplementary Table A for variable definitions.

	Model 1 (ACC)	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)	
age	19.89	30.33	5.59	2.93	29.70	19.25	
sex	2.26	1.81	0.28	0.50	1.43	0.17	
black	2.13	0.61	0.02	0.02	0.70	0.01	
hispanic	0.98	0.68	0.05	0.02	0.71	0.01	
total chol	23.61	15.16	17.43	16.56	13.43	2.14	
hdl	18.18	11.00	2.62	36.47	12.00	2.80	
sbp	24.06	20.79	23.02	41.44	19.09	2.56	
bpmeds	3.47	3.11	3.11	0.12	3.94	0.49	
dm	2.08	1.53	0.12	0.05	1.64	0.27	
tob	3.32	0.68	45.83	0.26	0.81	0.02	
hei		14.30					
ahei			1.92				
mds				1.63			
dash					16.54		
iron mg						10.86	
legumes g						8.42	
sweets a						6.55	
pastries g						5.75	
pork a						4.33	
vita mg						3.86	
sfa 80 gm						2.99	
cholesterol						1.95	
water_yest						1.22	
copper_mg						1.00	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

	Model 1 (ACC)	Model 2 (+HEI)	Model 3 (+AHEI)	Model 4 (+MDS)	Model 5 (+DASH)	Model 6 (+All)
fats_g	· ·			· ·		0.97
vite_mg						0.76
k_g						0.70
calcium_m g						0.67
mfa_201_g m						0.66
vitb12_mcg sfa_140_g						0.65 0.65
m betacaro_m						0.61
cg mfa 161o						0.56
gm carb q						0 54
kcal mfa 161h						0.51
gm						0.30
g						0.47
veg_other_ g						0.46
selenium_ mcg						0.45
zinc_mg vitb1 mg						0.44 0.43
pfa_183_g m						0.41
sfa_180_g						0.39
sfa_120_g						0.39
magnesium						0.38
_mg alcohol_gm						0.38
nuts_g vitc_mg						0.38 0.37
fiber_g phosphoru						0.37 0.37
s_mg fat poly g						0.35
potassium_ mg						0.35
salad_dres						0.34
vitb6_mg						0.34
bev_nonalc						0.33
onol_g fruit_other_						0.32
g sodium_mg						0.32
pancakes_ g						0.31
protein_g pfa 205 q						0.30 0.30
m poultry a						0.29
sfa_160_g						0.29
pfa_182_g						0.28
milk_g						0.28
folate_mcg fat_mono_						0.28 0.28
g cheese_g						0.26
milk_desse rt_g						0.26
pfa_204_g m						0.26
niacin_mg theobromin						0.24 0.21
e_mg						0.20
μασιασ_Υ						0.20

3		Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
4 -	nfa 226 a	(ACC)	(+HEI)	(+AHEI)	(+MDS)	(+DASH)	(+All)
5	m						0.20
6	veg_darkgr						0.19
7	een_g bev alcoho						0.19
8	l_g						
0	tomatoes_g						0.18
10	crackers q						0.16
10	vitb2_mg						0.16
11	sfa_100_g						0.15
12	sfa 60 gm						0.14
13	pfa_225_g						0.14
14	m mfa 221 a						0.14
15	m						0.14
16	egg_mixtur						0.14
17	e_g fruit iuice						0 14
18	g						0.11
10	citrus_g						0.12
20	veg_aeepy ellow a						0.12
20	cream_g						0.12
21	organ_mea						0.11
22	v_y potatoes g						0.11
23	cereals_g						0.10
24	meat_nonm eat g						0.09
25	seeds_g						0.08
26	water_g						0.06
27	grain mix						0.05
28	g						
29	lamb_g pfa_184_g						0.05
30	m						0.04
31	meat_ns_g						0.03
37	eggs_g protein fro						0.03
22	zen_g						
24	oils_g fruit_dried						0.02
34	g						0.02
35	egg_sub_g						0.01
36	flour_mix_						0.00
37	meat_sub_						0.00
38	g fruit habu						0.00
39	a						0.00
40	veg_meat_						0.00
41	g vea mixtur						0.00
42	e_g						
43							
44							
45							

BMJ Open

Page 63 of 64

