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In the main text, we specified that the dynamics of the scalar field distribution, u = u(x, y, z, t),
are governed by the wave equation

∂2u

∂t2
− c2 · ∇2u = f (S1)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplacian operator. c = c(x, y, z) is the spatial distribution

of the wave speed and f = f(x, y, z, t) is a source term. As discussed in the main text, non-
linear materials have a wave speed which depends on the wave amplitude. Equation S1 can be
discretized in time using centered finite differences with a temporal step size of ∆t, after which
it becomes

ut+1 − 2ut + ut−1

∆t2
− c2 · ∇2ut = ft (S2)

Here, the subscript t is used to indicate the value of a scalar field at a given time step. To
connect Eq. S2 to the RNN update equations from Eq. 1 and 2, we exress this in matrix form
as [

ut+1

ut

]
=

[
2 +∆t2 · c2 · ∇2 −1

1 0

]
·
[
ut
ut−1

]
+∆t2 ·

[
ft
0

]
(S3)

Then, the update equation for the wave equation defined by Eq. S3 can be rewritten as

ht = A(ht−1) · ht−1 + P (i) · xt (S4)

yt =
∣∣∣P (o) · ht

∣∣∣2 (S5)

where we have defined A as the matrix appearing in Eq. (S3). The nonlinear dependence on
ht−1 is defined by the nonlinear wave speed described above.

An absorbing region is introduced to approximate an open boundary condition (35), corre-
sponding to the grey region in Fig. 2B. This region is defined by a damping coefficient, b(x, y),
which has a cubic dependence on the distance from the interior boundary of the layer. The scalar
wave equation with damping is defined by the inhomogeneous partial differential equation (36 )

∂2u

∂t2
+ 2b · ∂u

∂t
= c2 · ∇2u+ f (S6)

where u is the unknown scalar field, b is the damping coefficient. Here, we assume that b can
be spatially varying but is frequency-independent. For a time step indexed by t, Eq. S6 is
discretized using centered finite differences in time to give

ut+1 − 2ut + ut−1
∆t2

+ 2b
ut+1 − ut−1

2∆t
= c2∇2ut + ft (S7)

From Eq. S7, we may form a recurrence relation in terms of ut+1, which leads to the following

Section S1. Derivation of the wave equation update relationship



update equation

(
1

∆t2
+

b

∆t
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(
1

∆t2
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(S8)

Equation S8 therefore represents the discretized update equation for the scalar wave equation
with damping. In matrix form, we may express Eq. S8 as

[
ut+1

ut

]
=

[
2+∆t2·c2·∇2

1+∆t·b
−1−∆t·b
1+∆t·b

1 0

]
·
[
ut
ut−1

]
+∆t2 ·

[
ft
0

]
(S9)

which also has the same form as in Eq. 5 and 6 of the main text.

The results presented in the main text were obtained using a very general physical model for
the wave dynamics, where the field is assumed to be scalar and the hidden state to hidden
state nonlinearity originates from an intensity-dependent wave speed. In this section, we discuss
in more detail how the scalar wave results can be translated into various practical platforms,
in both optics and acoustics, using various materials as well as different forms of nonlinearity.
The key experimental considerations for a practical realization of the analog wave RNN are (1)
achieving a compact (wavelength-scale) physical footprint, (2) a physical medium into which
the physical weights can be patterned, and (3) a nonlinear material response which can be
achieved at reasonable signal energies, without requiring high power sources. We emphasize that
the introduction of a nonlinearity into the wave dynamics is critical to realizing the complex
information processing capabilities akin to a conventional RNN, allowing the wave dynamics to
extend beyond what is achievable with linear time-invariant system theory.

Optics

The most straightforward realization of the nonlinear wave speed in optical platforms is using
Kerr nonlinearity. Silicon (Si) and the family of chalcogenide glasses (e.g. As2S3) are two
widely used nonlinear optical materials for integrated platforms, with chalcogenide having one
of the highest damage thresholds. Such a high threshold allows for processing of sub-picosecond
laser pulses with peak powers on the order of 10-50 MW (37 ). A longer pulse duration in
such nonlinear materials will lead to irreversible damage and imposes an upper bound on the
pulse length which can be processed by the analog RNN. Such an ultra-fast optical analog
RNN with Kerr nonlinearity may be useful in a number of scientifically-relevant applications,
such as diagnostics and processing for ultrafast pulses in nonlinear spectroscopy and X-ray free
electron lasers (38 ). In such applications, the integration of conventional electronic processors
is extremely challenging due to the arrival rate of information as well as environmental factors.

Section S2. Realistic physical platforms and nonlinearities 



Additionally, a potential advantage of sub-ps optical analog RNNs is that the training process
for the RNN will not need to access regions of the device parameter space with ultra-narrowband
(high-Q) spectral features because the relative signal bandwidths of sub-ps pulses are large. In
contrast, an optical analog RNN for processing optical carriers broadened by GHz-rate electro-
optic modulators will likely be required to operate in the parameter space associated with
sub-GHz, or even sub-MHz, spectral features in order to effectively learn features found in such
narrowband signals.

An alternative optical nonlinearity which could be used to construct an analog RNN is
saturable absorption. Such a nonlinear response consists of an intensity-dependent absorp-
tion/damping, which is mathematically defined as

b(u) =
b0

1 +
(

u
uth

)2 (S10)

where b0 and uth are the saturable absorption strength and threshold, respectively. An example
of the saturable absorption response is plotted in Fig. S1. One potential realization of this
effect involves the patterning of graphene or other absorptive 2D materials on top of the linear
optical circuit etched into a dielectric such as silicon. An advantage of saturable absorption over
the Kerr effect is that the resulting nonlinear response can be observed at input powers on the
mW scale (39 ), making saturable absorption a promising candidate for use in optical analog
RNNs. On the other hand, the main disadvantage of saturable absorption is that it inevitably
introduces power loss into the system, which could potentially degrade the signal to noise ratio
(SNR) at the detectors in a large-scale analog RNN. Because the complexity of the analog RNN
is directly related to its physical footprint, this may limit the expressive capability of an RNN
using this form of nonlinearity. However, if we assume a saturable absorption threshold intensity
of 0.5 MW/cm2 for graphene (39 ), a structure that is 10λ wide [the y-extent of the structure in
Fig. 2(D)] at an operating wavelength of λ = 1550 nm, and an out-of-plane thickness of 1 µm,
this situation would require an input power of 77 mW to achieve the intensity threshold across
the input facet of the analog RNN. This nonlinear threshold is orders of magnitude lower than
that of the Kerr effect, making saturable absorption an appealing nonlinearity for the analog
RNN.

As an example, we numerically demonstrate a version of the wave RNN with saturable
absorption. The training results for this system are shown in Fig. S2(A) and (B), where we
observe that this form of nonlinearity can also perform well on the vowel classification task
from the main text, achieving a training and testing classification accuracy of 95.5% ± 1.4%
and 90.3% ± 6.4%, respectively. These accuracies are comparable to those of the analog RNN
with a nonlinear wave speed as shown in Fig. 3 of the main text. We note however, that the
saturable absorption nonlinearity results in a larger variance in the accuracy on the testing set
over the 5 cross validated training runs. The increase in variance could be due to variations
in the peak signal amplitudes of the various vowel recordings, even though we normalize all
recordings to have equal time-integrated power. Essentially, some vowel samples may not be
“loud” enough to overcome the damping and, thus, are nearly completely absorbed before they
reach the detectors.

In terms of the device’s physical footprint, although we have considered a 2D simulation,
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, for the parameters b 0 = 1.0 and uth = 1.0 in Eq. S10,

indicating the nonlinear dependence of the damping parameter, b on the wave amplitude, u.

the physics observed in such systems translates well to planar integrated optical circuits. In
such 3D devices, confinement of light in the out-of-plane direction can be achieved using index
confinement. We note that similar planar optical circuits produced via inverse-design techniques
have been previously demonstrated experimentally (24 ).

Acoustics

An acoustic or elastic wave implementation of the wave RNN has several advantages over op-
tical platforms in terms of the availability of off-the-shelf components and nonlinear material
responses, which can be much stronger. Moreover, the typical operating frequencies used in
acoustic signal processing are also orders of magnitude smaller than typical optical carrier fre-
quencies. This, in turn, naturally leads to much larger relative signal bandwidths and eliminates
the requirement of realizing ultra-narrowband spectral features in the parameter space of the
analog RNN. An acoustic version of the analog RNN could utilize off-the-shelf freespace ultra-
sonic transducers and receivers in conjunction with a 3D-printed or laser-cut polymer. Many
polymers can exhibit a slower sound speed than in air (22 ), as is the case in the system demon-
strated in the main text. However, we emphasize that a lower sound speed in the printed material
is not a fundamental requirement for the RNN. In principle, so-called hard material sidewalls
could also be utilized, similarly to the structures of previously demonstrated acoustic metama-
terials (40 ), where c > 2000 m/s. It’s also worth pointing out that sub-wavelength 3D-printed
inclusions could be treated via an effective medium theory in order to achieve a range of sound
speeds. This approach would offer interesting opportunities for non-binarized implementations
of the analog RNN.

In terms of a nonlinear material response, many fluids, particularly those with embedded gas
bubbles (e.g. carbonated water), exhibit a strongly nonlinear response. This effect is captured
through a Taylor expansion of the fluid’s equation of state, which defines the relationship between
pressure, density, and entropy (20 ). A common approach for modeling such effects is using the
nonlinear acoustic Westervelt equation (41 ), which includes several terms in addition to the ones

Fig. S1. Saturable absorption response
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The mean (sold line) and standard deviation (shaded region) of the (A) cross entropy loss and
(B) prediction accuracy over 30 training epochs and 5 folds of the dataset, which consists of
a total of 279 total vowel samples of male and female speakers. The parameters used for the
saturable absorption (Eq. S10) in these results are b0 = 0.1 and uth = 2.5× 10−4, while a batch
size of 15 samples was used during training.

in the linear wave dynamics defined by Eq. S6. Typically, nonlinear fluids exhibit a second-order
nonlinear response (20 ), where c(u) ∼ u, which is different from the third-order nonlinearity we
use in the main text, but is qualitatively similar. The Westervelt equation also includes a term
that accounts for thermoviscous damping, which introduces a frequency-dependent attenuation.
One potential route towards including such nonlinearities into an experimental realization of
the RNN would be to infiltrate a 3D-printed linear structure with a highly nonlinear fluid.
Although, this approach would be different from the system considered in the main text, in
terms of which material includes a nonlinear response, it would represent a practical realization
of the analog RNN. A non-freespace platform for implementing the RNN would be to use elastic
Lamb waves or surface waves on patterned slabs. The features of such systems could be defined
lithographically and nonlinearities could again be achieved by infiltrating the patterned linear
material with a nonlinear fluid.

In summary, this section shows that there are several realistic pathways for implementing
the wave-based RNN described in the main text, including the nonlinearities.

In this section we discuss, in detail, the linear operators, P (i) and P (o), that define the injection
and measurement locations within the domain of the wave equation. We start from the vectors
ut and ft, that are discretized and flattened vectors from the field distribution ut and ft. Then,
we define the linear operators, M (i) andM (o), each column of which define the respective spatial
distributions of the injection and measurement points in this flattened basis. With this, we can
write the injection of the input vector, xt as a matrix-vector multiplication

∆t2ft ≡M (i) · xt (S11)

Fig. S2. Cross-validated training results for an RNN with a saturable absorption nonlinearity.

Section S3. Input and output connection matrices 



Similarly, as the output of the RNN at each time step is given by an intensity measurement
of the scalar fields, we may express this in terms of the flattened scalar field as

yt = M (o)T · ut2 (S12)

As the wave equation hidden state, ht is defined as the concatenation of ut and ut−1, we define
the following matrices for convenience, as they only act on the ut portion of ht

P (i) ≡
[
M (i)



]
(S13)

P (o) ≡ [M (o)T , ] (S14)

where  is a matrix of all zeros. These matrices are used in the injection and measurement
stages of the scalar wave update equations of the main text and thus serve a similar role to the
W (x) and W (y) matrices of the traditional RNN in Eqs. 1 and 2. However, unlike W (x) and
W (y), these matrices are fixed and not trainable parameters. In our numerical implementation,
the operation of ∇2 on a spatially discretized wave field, ut is computed using the convolution
operation, defined mathematically as

∇2ut =
1

h2

0 1 0
1 −4 1
0 1 0

 ∗ ut (S15)

where h is the step size of the spatial grid.

In this section, we compare the performance of the wave RNN to that of a conventional RNN,
as defined by Eq. 1 and Eq. 2. In the conventional RNN, the number of trainable parameters
is determined by the size of the hidden state, Nh, where the model is parameterized by three
matrices W (x),W (h), and W (y) of size [Nh × 1], [Nh ×Nh], and [3×Nh], respectively. We
selected Nh = 70 and Nh = 100, which correspond to a total number of free parameters in the
RNN of 5250 and 10500, respectively. This RNN model was implemented and trained using the
pytorch framework. In Table S1 we compare the final prediction accuracy of the conventional
RNN on the vowel recognition task to the wave RNN, where we observe that the conventional
RNN can achieve a performance comparable to that of the wave RNN. However, the conventional
RNN is very sensitive to the total number of trainable parameters. For a similar number of
trainable parameters to that of the wave RNN, the conventional RNN achieves approximately
6% lower classification accuracy. However, when the number of free parameters is increased
to about twice that of the wave RNN, the accuracy is higher by approximately 3 %. We note
that it may be possible to achieve higher accuracy in more advanced recurrent models such as
the long short-term memory (LSTM) (42 ) or gated recurrent unit (GRU) (43 ) architectures.
However, a detailed exploration of these models is outside the scope of the current study.

The conventional RNN and the wave RNN have a number of qualitative differences which we
now discuss in more detail. First, in the conventional RNN, the trainable parameters are given
by the elements of the weight matrices. In the case of the wave RNN, we choose to use the wave

Section S4. Comparison of wave RNN and conventional RNN 



Model Nonlinearity # parameters Accuracy

Training Testing

Wave Equation linear wave speed 4200 93.1% 86.6%

nonlinear wave speed 4200 92.6% 86.3%

saturable damping 4200 95.5% 90.3%

Conventional RNN linear 5250 78.8% 79.4%

leaky ReLU 5250 82.6% 80.2%

linear 10500 88.9% 88.2%

leaky ReLU 10500 89.4% 89.4%

The saturable damping nonlinearity is described in detail in the next section.

speed, c(x, y, z), defined on a discretized grid to define the set of trainable parameters, because
a specific distribution of c can be physically implemented after the training process. Moreover,
while the free parameters of the conventional RNN define a matrix which is multiplied by the
input, output, and hidden state vectors, in the wave RNN, the free parameters are multiplied
element-wise with the hidden state, which limits the influence of each individual parameter over
the full dynamics of information within the hidden state. For a given amount of expressive
power, the size of the hidden state in the wave equation must arguably be much larger than that
of the conventional RNN. The reason for this is that the amount of information which can be
encoded into the spatial distribution of ut is constrained by the diffraction limit for waves. Thus,
it follows that a single element from the hidden state of a conventional RNN may be analogous
to several grid cells in the scalar wave equation. Furthermore, the discretized wave equation
update matrix, A, is sparse and only contains non-zero values around its main diagonal, which
physically corresponds to a neighbor-to-neighbor coupling between spatial grid cells (through
the Laplacian operator). Due to this form of coupling, information in a given cell of ut will take
many time steps before interacting with information stored in distant cells, as determined by the
wave velocity and the physical distance between them. The presence of this form of causality
practically means that one must wait longer for a full ‘mixing’ of information between cells in
the domain, suggesting that in the our numerical simulations, a larger number of time steps may
be needed as compared to the typical RNN.

Finally, the form of nonlinearity used in the wave RNN is conceptually distinct from that used
in the conventional RNN, which involves the application of the nonlinear function, σ(h)(·), as in
Eq. 1. In the wave RNN, nonlinearity is provided by making the wave velocity, c, or damping,
b, to be dependent on the instantaneous wave intensity ut

2, i.e. c = c
(
ut

2
)
, or b = b

(
ut

2
)
.

With this addition, the update matrix of Eq. 5, A = A(ht−1), becomes a function of the
solution at that time step, making the dynamics nonlinear. Nonlinearity is introduced into the
output of the wave system (yt) through a measurement the wave intensity, which involves a
squaring operation. The practical realization of material nonlinearities is discussed in detail in
the supplementary materials section 2.

Table S1. Comparison of a scalar wave model and a conventional RNN on a vowel 
 task. 

recognition



In this section we discuss how we create realistic distributions of material with a binarized
c(x, y) distribution using filtering and projection schemes during our optimization. Rather than
updating the wave speed distribution directly, we instead update a design density ρ(x, y), which
describes the density of material in each pixel. To create a structure with larger feature sizes, a
low pass spatial filter can be applied to ρ(x, y) to created a filtered density

ρ̃(x, y) =

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

 ∗ ρ(x, y) (S16)

For binarization of the structure, a projection scheme is used to recreate the final wave speed
from the filtered density. We define ρ̄(x, y) as the projected density, which is created from ρ̃(x, y)
as

ρ̄i =
tanh (βη) + tanh (β [ρ̃i − η])

tanh (βη) + tanh (β [1− η])
(S17)

Here, η is a parameter between a value of 0 and a value of 1 that controls the mid-point of the
projection, typically 0.5, and β controls the strength of the projection, typically around 100.
The distribution of ρ̄ varies between 0 and 1. Finally, the wave speed can be determined from
ρ̄ as

c(x, y) = (c1(x, y)− c0(x, y))ρ̄+ c0(x, y) (S18)

where c0 and c1 are the background and optimized material wave speed, respectively.

Section S5. Binarization of the wave speed distribution 
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