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Supplementary Methods 

 

In addition to the bagging classifier, we explored various alternative machine learning 

approaches for the classification of sleep stages, including hyperplane separation, deep learning, 

and probabilistic, sequence-based classification. These models and their formulation are as 

follows: 

 

 Support Vector Machine (SVM): SVMs are often used for classifying multi-dimensional 

data and while providing resistance to overfitting. These models can efficiently perform 

linear or non-linear hyperplane separation. For sleep stage classification, we tuned 

hyperparameters of a traditional SVM using leave-one-out cross validation. These 

parameters included C (soft margin constant), 𝛾 (kernel coefficient), kernel type (radial 

basis function [RBF] or polynomial [poly]), and degree (degree for polynomial kernel). 

To obtain initial estimates of the parameters, various sets were tested in a nested loop to 

find an optimal combination (C = [0.0001, 0.001, 0.01, 0.1, 1];  𝛾 = [0.0001, 0.001, 0.01, 

0.1, 1]; kernel = [RBF, poly]; degree = [2,3,4,5,6] for polynomial kernel only). Initial 

estimates were chosen as the parameters that maximized average accuracy from the cross 

validation. Final parameters were selected by repeating this process to fine-tune the initial 

estimates and are given in Supplementary Table 1. 

 

 Convolutional Neural Network (CNN): As a deep learning approach, the CNN does not 

require engineered features but rather learns from the signal data itself. Recently, neural 

networks have been used to automatically score data obtained from the PSG, with 

accuracies approaching that of a trained technician1. The CNN was trained using the 



filtered sensor data instead of the pre-computed signal features used for the bagging 

classifier. The CNN consisted of pairs of convolutional layers and max pooling layers, 

followed by pairs of fully connected layers and dropout layers, before a final fully 

connected layer providing the output staging classification probabilities (Supplementary 

Figure 1). This architecture was adapted from previous work using similar sensor data to 

classify motor symptoms in Parkinson’s disease2. 

 

We used a randomized bootstrapping method to tune and select the CNN 

hyperparameters, including the filter and kernel size for the convolutional layers, the 

number of neurons for fully connected layers, the pool size of the max pooling layers, 

and the batch size. Class weights were fixed as inversely proportional to the number of 

instances, such that the majority class was weighted as 1.0, and classes with fewer 

instances were weighted more heavily. In the parameter tuning process, model 

performance was computed using a random selection of the hyperparameters and a 

random subset of the subjects. Five subjects were used in each subset, with four subjects 

in the training set and the fifth subject to test the network. For each random set of 

parameters, five different subsets of subjects were tested, with the model performance 

metrics (validation loss, validation accuracy, and balanced accuracy) averaged over each 

random set. Final network parameters were selected after testing 500 random sets, as 

those that maximized the average balanced accuracy and minimized the average 

validation loss. The final tuned parameters for each resolution of the CNN are given in 

Supplementary Table 1. 

 



 Sequence-Based Classifiers: We also used this dataset with sequence-based classifiers, 

specifically a Hidden Markov Model (HMM) and a Long Short-Term Model (LSTM). 

We expected sequence-based classifiers to be suitable for the challenge of sleep 

classification due to the cyclical nature of sleep stages. The HMM was trained using the 

20 most important features, as determined from a random forest classifier. PSG sleep 

stage scores from all subjects were used to pre-compute the transition matrix and start 

probability for the HMM, while the covariance and average value matrices were 

computed from the sensor features at each sleep stage. The LSTM was trained using three 

time-distributed convolutional layers for feature extraction, followed by three LSTM 

layers. This architecture was adapted from a previous study by Bresch et al.3 classifying 

sleep using a single EEG sensor. The convolutional layers for processing of ECG signals 

followed the structure used by these authors for the initial processing of EEG sensor data. 

We concatenated the ECG outputs with flattened outputs of time-distributed versions of 

the same accelerometer and temperature data-processing layers used in our CNN. This 

vector was then input into a series of LSTM layers, again following the structure in 

Bresch et al. The final parameters for each resolution of the LSTM are given in 

Supplementary Table 1. 

  



Supplementary Figures 

 

 

Supplementary Figure 1: Convolutional neural network architecture. The neural network 

incorporates raw data from the 3 sensor modalities in the proposed sensor system. The 

accelerometer and ECG data follow the same architecture in parallel to each other. The skin 

temperature data, with a notably lower sampling frequency, was incorporated downstream of the 

accelerometer and ECG data. The architecture starts with a series of convolutions with a filter 

size of 16 and a kernel of 32 for the first, and a filter size of 32 and a kernel of 16 for the second. 

Each convolutional layer is followed by a max pooling layer, with pool sizes of 4 and 6, 

respectively. The outputs of this are then flattened to prepare for the fully connected layers. First, 

the accelerometer and ECG are passed through a dense fully connected layer with 512 neurons 

and a rectified linear unit (ReLU) activation function. The two paths are then combined with an 

averaging merge layer, resulting in one output of size 512. The temperature data passes through 

2 fully connected layers with 8 then 4 neurons, resulting in an output of size 4. The temperature 

and accelerometer/ECG tensors are then concatenated, resulting in an output of size 516. This is 

then passed through 2 more dense fully connected layers with 32 neurons and a ReLU activation 

function, each followed by a dropout layer to combat overfitting, wherein a specified proportion 

(0.5 in this case) of the neurons are silenced. The final layer is a softmax activation function 

dense fully connected layer with number of neurons matching the number of sleep stages, giving 

a final prediction of sleep stage.  



   

Supplementary Figure 2: Average performance of personal models. Confusion matrices 

obtained from bagging classifiers (130 trees) trained and tested on each subject separately via 20-

fold cross validation, then averaged across subjects. Personal models exhibit a marked 

improvement in class recall over population models at the 4-stage resolution. 

 

 

  



 
 

Supplementary Figure 3: Imbalance of sleep stages for algorithm training. Number of 30-

second clips for each sleep stage contained in the dataset for model training and testing (10,067 

clips total). NREM1 = Stage 1 sleep; NREM2 = Stage 2 sleep; SWS = Slow Wave Sleep (Stage 

3 and 4 sleep); REM = Rapid Eye Movement. 

  



Supplementary Tables 

 

 

Supplementary Table 1. Hyperparameters for Support Vector Machine (CNN) and 

Convolutional Neural Network (CNN) models. 

 

Model Method 2-stage 3-stage 4-stage 

SVM 

Tuned  

 

(Leave-One-Out 

Cross Validation) 

C = 0.069 

𝛾 = 0.055 

kernel = RBF 

C = 0.057 

𝛾 = 0.05 

kernel = RBF 

C = 0.048 

𝛾 = 0.057 

kernel = RBF 

CNN 

Selected 

 

(Inversely 

proportional to 

number of 

instances in class) 

Class weights 

𝑤Wake = 7.5 

𝑤Sleep = 1.0 

 

 

Class weights 

𝑤Wake = 6.4 

𝑤NREM = 1.0 

𝑤REM = 5.7 

 

Class weights 

𝑤Wake = 4.2 

𝑤Light = 1.0 

𝑤Deep = 2.0 

𝑤REM = 3.7 

Tuned 

 

(Random 

bootstrapping) 

 Filter size 1 = 2 

 Kernel size 1 = 8 

 Filter size 2 = 8 

 Kernel size 2 = 16 

 No. neurons = 16 

 Pool size 1 = 16 

 Pool size 2 = 8 

 Batch size = 10 

 Filter size 1 = 2 

 Kernel size 1 = 16 

 Filter size 2 = 32 

 Kernel size 2 = 16 

 No. neurons = 32 

 Pool size 1 = 2 

 Pool size 2 = 8 

 Batch size = 20 

 Filter size 1 = 4 

 Kernel size 1 = 8 

 Filter size 2 = 4 

 Kernel size 2 = 4 

 No. neurons = 128 

 Pool size 1 = 4 

 Pool size 2 = 16 

 Batch size = 40 

LSTM 

Selected 

 

(Adapted from 

previous 

publication1) 

 Filter size 1 = 8 

 Kernel size 1 = 8 

 Filter size 2 = 16 

 Kernel size 2 = 8 

 Filter size 3 = 32 

 Kernel size 3 = 8 

 Pool size (1,2,3) = 8 

 LSTM 1 = 64 

 LSTM 2 = 64 

 LSTM 3 = 2 

 Filter size 1 = 8 

 Kernel size 1 = 8 

 Filter size 2 = 16 

 Kernel size 2 = 8 

 Filter size 3 = 32 

 Kernel size 3 = 8 

 Pool size (1,2,3) = 8 

 LSTM 1 = 64 

 LSTM 2 = 64 

 LSTM 3 = 4 

 Filter size 1 = 8 

 Kernel size 1 = 8 

 Filter size 2 = 16 

 Kernel size 2 = 8 

 Filter size 3 = 32 

 Kernel size 3 = 8 

 Pool size (1,2,3) = 8 

 LSTM 1 = 64 

 LSTM 2 = 64 

 LSTM 3 = 4 

 

C: penalty of error term; 𝛾: kernel coefficient; RBF: radial basis function; 𝑤i: weight for class i  



Supplementary Table 2. Performance comparison of population-based machine learning 

models, with average balanced accuracy and 95% confidence intervals.  

 

Model 2-stage 3-stage 4-stage 

Random class 

selection 
0.50 0.33 0.25 

Bagging 
0.82 

[0.75-0.90] 

0.62 

[0.55-0.70] 

0.47 

[0.43-0.52] 

SVM 
0.76 

[0.70-0.83] 

0.56 

[0.50-0.63] 

0.45 

[0.39-0.51] 

CNN 
0.68 

[0.59-0.78] 

0.42 

[0.37-0.47] 

0.27 

[0.24-0.31] 

HMM 
0.45 

[0.42-0.48] 

0.35 

[0.26-0.44] 

0.21 

[0.17-0.25] 

LSTM 0.50* 0.33* 0.25* 

 

*
 The LSTM exclusively predicted sleep stages to be that of the previous class 

(did not deviate from the original Wake stage).



Supplementary Table 3. Additional wearable sensor studies not included in comparison to proposed system performance.  

 

Study 
Sensor 

Modalities 
Subjects Sleep Stage Resolution Models Best accuracy 

Yuda et al. 

(2017)4 
ACT; ECG 289 

 REM. vs. Wake 

 NREM vs. 

REM/Wake 

Multivariate logistic 

regression 

 REM. vs.  

Wake: 74.5% 

 NREM vs. 

REM/Wake: 75.8% 

Sano et al. 

(2014)5 

ACC; 

TEMP; Skin 

Conductance 

15 Wake vs. Sleep SVM, k-NN 

74% 

(including EEG 

features increases 

accuracy to 85%)* 

Singh et al. 

(2016)6 
ECG 20 REM vs. NREM SVM 76.3% 

Yeo et al. 

(2017)7 
ACC 36 

 Wake 

 Light 

(NREM1+NREM2) 

 Deep (NREM3) 

 REM 

K Star, Bagging, 

Random committee, 

Random subspace, 

Random forest 

 Wake: >90% 

 Light: >80% 

 Deep: >90% 

 REM: >90% 

Ebrahimi et al.  

(2015)8 
ECG 30 

Wake vs. Light vs. 

Deep vs. REM 

SVM with recursive 

feature elimination 
89.32% 

De Zambotti et 

al. (2019)9  

PPG; ACC; 

Gyroscope; 

TEMP 

41 

Wake vs. Light 

(NREM1) vs. Deep 

(NREM2+NREM3) vs. 

REM 

Proprietary algorithm 

by ŌURA Ring (Oulu, 

Finland) 

 Wake: 48% 

 Light: 65% 

 Deep: 51% 

 REM: 61% 

Beattie et al. 

(2017)10 
PPG; ACC 60 

Wake vs. Light 

(NREM1+NREM2) vs. 

Deep (NREM3) vs. 

REM 

Linear discriminant 

classifier, Quadratic 

discriminant classifier, 

Random forest, SVM 

 Wake: 69.3% 

 Light: 69.2% 

 Deep: 62.4% 

 REM: 71.6% 
 

* Sensitivity/Specificity not reported for inclusion in Table 3 of the main text. 

 

ACT = actigraphy; ECG = electrocardiography; ACC = accelerometry; TEMP = Skin temperature; PPG = plethysmography; 

SVM = support vector machine; k-NN = k-nearest neighbor. 
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