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Supplementary Methods 
 
The Bayesian model used in this study was derived as follows. The generative model of 
an uncontrollable environment assumed by the Pavlovian system is given by: 
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where 𝜃" is the reward probability for stimulus s, 𝜃* is the mean of the prior, 𝜂* is a 
parameter controlling the dispersion of the prior, and r is the reward outcome on a 
particular trial (all reward outcomes are assumed to be independently and identically 
distributed). The generative model of a controllable environment assumed by the 
instrumental system is essentially the same, except conditioned on action, a: 
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For both systems, the posterior conditional on the stimulus-action-reward history 𝒟 is a 
Beta distribution with the same functional form as the prior, shown here for the 
Pavlovian system: 
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where m indexes the assumed environment (uncontrollable for the Pavlovian system, 
controllable for the instrumental system), 𝑁" is the number of times stimulus s was 
paired with reward, and 𝑇" is the number of times stimulus s was presented. The 
equations for the instrumental system are identical except for conditioning on both 
stimuli and actions. Through simple algebraic manipulation, the update for the posterior 
mean 𝜃D" can be expressed as a recursive learning rule (Eq. 2 in the main text). 
 
The posterior over generative models is given by: 
 
𝑃(𝑚 = 𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒|𝒟) ∝ 𝑃(𝒟|𝑚 = 𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒)𝑃(𝑚 = 𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒).  (4) 

 
The marginal likelihood is an integral over the latent parameters: 
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where B denotes the beta function. The beta function can be expressed recursively: 
 

𝐵(𝑥 + 1, 𝑦) = 𝐵(𝑥, 𝑦) Q
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(6) 
 

𝐵(𝑥, 𝑦 + 1) = 𝐵(𝑥, 𝑦) R
QFR

   
  

Applying these recursions to the log posterior odds over m, one obtains the update rule 
for L in the main text (Eq. 6). 
 
 
Supplementary Figures 

 
Supplementary Figure 1. Probability of Go response across trials for each experimental 
condition and stimulus, smoothed with a 5-trial moving average. Error bars show 
standard error of the mean. 
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Supplementary Figure 2. Go bias for Experiment 1 (N = 271) and Experiment 2 (N = 
183) when no subjects are excluded. For both experiments, there is a strong Go bias 
but no effect of controllability. Error bars show standard error of the mean. 
 
 

 
Supplementary Figure 3. Bias-variance analysis for purely Pavlovian (w = 1) and purely 
instrumental (w = 0) agents. Error bars show standard error of the mean. 
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Supplementary Table 
 
 Inverse 

temperature 
Prior mean 
(instrumental) 

Prior 
confidence 
(instrumental) 

Prior mean 
(Pavlovian) 

Prior 
confidence 
(Pavlovian) 

Experiment 1 11.3949  0.3774    33.3939     0.4848    34.4666 
Experiment 2 10.4635     0.2189    31.5312     0.4628 29.4448 

 
Supplementary Table 1. Average parameter estimates for the adaptive model. 


