SI Appendix

(A) Mutations in two independent *bbx4* alleles created by the CRISPR/Cas9 method. The DNA sequence alignment shows altered bases in two *bbx4* mutants. "-" in red indicates nucleic acid deletion.

(B) to (K) Hypocotyl phenotype and length of 4-d-old Col and two independent *bbx4* single mutant seedlings grown in darkness (B and C),W (13.24 μ mol/m²/s) (D and E), R (115.8 μ mol/m²/s) (F and G), B (3.88 μ mol/m²/s) (H and I) and FR (4.3 μ mol/m²/s) (J and K) light conditions. The unit of hypocotyl length is millimeters. Error bars represent SE ($n \ge 20$). Letters above the bars indicate significant differences (P < 0.05), as determined by one-way ANOVA with Tukey's post-hoc analysis. The experiments were performed three times with similar results. The graphs depict the results of one of three experiments.

(A) *BBX4* transcript levels in Col and *YFP-BBX4* transgenic seedlings grown in white light for four days, as determined by RT-qPCR. Error bars represent SD (n=3).

(**B**) YFP-BBX4 protein levels in *YFP*-tagged *BBX4* transgenic seedlings grown in white light for four days, as determined by immunoblot analysis.

(C) to (L) Hypocotyl phenotype and length of four-d-old Col and *YFP-BBX4* transgenic seedlings grown in darkness (C and D), W (13.24 μ mol/m²/s) (E and F), B (3.88 μ mol/m²/s) (G and H), R (115.8 μ mol/m²/s) (I and J) and FR (4.3 μ mol/m²/s) (K and L) light conditions. The unit of hypocotyl length is millimeters. Error bars represent SE ($n \ge 20$). Letters above the bars indicate significant differences (P < 0.05), as determined by one-way ANOVA with Tukey's post-hoc analysis. The experiments were performed three times with similar results. The graphs depict the results of one of three experiments.

Fig. S3. *PBC bbx4-1* shows similar hypocotyl phenotype with *PBC* grown in red light.

(A) and (B) The hypocotyl phenotype (A) and length (B) of four-d-old Col, bbx4-1, PBC(PHYB-CFP Col), $PBC \ bbx4-1$ seedlings grown in R (115.8 $\mu \text{mol/m}^2/\text{s}$) light. Error bars represent SE (n \geq 20). Letters above the bars indicate significant differences (P < 0.05), as determined by one-way ANOVA with Tukey's post-hoc analysis. The experiments were performed three times with similar results. The graphs depict the results of one of three experiments.

Fig. S4. BBX4 has intrinsic transcriptional activation activity.

(A) Transactivation activity analysis of full-length and various truncated BBX4 proteins in LexA yeast system. BD indicates LexA DNA-binding domain. Empty vector was used as the negative control.

(B) The GAL4 yeast two-hybrid assay showing that full-length BBX4 has self-activation on -Trp/-Leu/-His/-Ade plate.

Fig. S5. Immunoblot analysis showing the similar levels of BBX4-N and BBX4-C proteins in yeast cells.

Proteins were extracted from yeast cells transformed with various pairs of plasmids as indicated, and then immunobloted with monoclonal myc antibodies.

Fig. S6. The transcript levels of *BBX4* in Col, *YFP-BBX4* Col and *YFP-BBX4* phyB-9.

Seedlings were grown in the dark for 4d (Dark), then transferred into red light for 3h (Dark to Red), or grown in constant red light for 4d (Red). The expression levels were normalized to those of *PP2A*. Error bars represent SD (n = 3).

Fig. S7. BBX4 does not affect phyB nuclear bodies.

Subnuclear localisation of PHYB-CFP in hypocotyl cells of 4-d-old *PBC* and *PBC bbx4-1* seedlings grown in R (115.8 μ mol/m²/s) light.

Fig. S8. BBX4 is subjected to COP1-mediated degradation in darkness.

(A) Immunoblot analysis of YFP-BBX4 protein levels in 4-d-old dark-grown *YFP-BBX4* Col #6 transgenic seedlings treated with various concentrations (0, 50, 100, and 200 μ M) of MG132. Col treated with DMSO served as a negative control, and anti-actin served as a loading control.

(B) Analysis of YFP fluorescence signals in hypocotyls of *YFP-BBX4* Col #6, *YFP-BBX4 cop1-4* #6 and *YFP-BBX4 cop1-6* #6 seedlings grown in darkness for 4d. Bar = $100 \mu m$.

(C) Relative YFP fluorescence intensity in hypocotyls of *YFP-BBX4* Col #6, *YFP-BBX4 cop1-4* #6 and *YFP-BBX4 cop1-6* #6 seedlings grown in darkness for 4d. The corresponding fluorescence intensity was measured using Image J software and was compared between the overall signals from the images, as shown in (F). Error bars represent SE ($n \ge 10$).

Table S1. Primers used in this study

Primer name	Primer sequences $(5' \rightarrow 3')$	Construct name
Plasmid	Underscored nucleotides indicate re	striction sites for
Constructs	cloning	
BBX4-attB1	GGGGACAAGTTTGTACAAAAAAG	pDONR223-BBX
	CAGGCTGGATGGCGTCGTCGTCA	4
	AGACTTTG	
BBX4-attB2	GGGGACCACTTTGTACAAGAAAG	
	CTGGGTGTCAGAAACTCGGAACA	
	ACACCGAA	
phyB-attB1	GGGGACAAGTTTGTACAAAAAAG	pDONR223-phyB
	CAGGCTGGATGGTTTCCGGAGTC	
	GGGGGTA	
phyB-attB2	GGGGACCACTTTGTACAAGAAAG	
	CTGGGTG	
	CTAATATGGCATCATCAGCATCAT	
PIF3-attB1	GGGGACAAGTTTGTACAAAAAAG	pDONR223-PIF3
	CAGGCTGGATGCCTCTGTTTGAGC	
	TTTTCAG	
PIF3-attB2	GGGGACCACTTTGTACAAGAAAG	
	CTGGGTG	
	TCACGACGATCCACAAAACTGAT	
BBX4-EcoRI	ATGGCCATGGAGGCCGAATTCAT	pGBKT7-BBX4
(F)	GGCGTCGTCGTCAAGACTTTG	
BBX4-BamHI	CCGCTGCAGGTCGACGGATCCTC	
(R)	AGAAACTCGGAACAACACCGAA	
BBX4N-EcoRI	ATGGCCATGGAGGCCGAATTCAT	pGBKT7-BBX4N
(F)	GGCGTCGTCGTCAAGACTTTG	
BBX4N-BamHI	CCGCTGCAGGTCGACGGATCCTT	
(R)	ATGGACCTACAGCGTCGTAG	
BBX4C-EcoRI	ATGGCCATGGAGGCCGAATTCAT	pGBKT7-BBX4C
(F)	GACGGAGACGCCAGCTGTGCA	
BBX4C-BamHI	CCGCTGCAGGTCGACGGATCCTC	
(R)	AGAAACTCGGAACAACACCGAA	
phyB-EcoRI (F)	GCCATGGAGGCCAGTGAATTCATG	pGADT7-phyB
	GTTTCCGGAGTCGGGGGTA	
phyB-BamHI	CAGCTCGAGCTCGATGGATCCCTA	
(R)	ATATGGCATCATCAGCATCAT	
PIF3-EcoRI (F)	GCCATGGAGGCCAGTGAATTCATG	pGADT7-PIF3
	CCTCTGTTTGAGCTTTTCAG	
PIF3-BamHI	CAGCTCGAGCTCGATGGATCCTCA	
(R)	CGACGATCCACAAAACTGAT	

CRISPR primers			
BBX4-DT1-Bs	ATATATGGTCTCGATTGCAGACGC	pCambia1300-At	
F	CGCGTTTCTCTGGTT	U6-26K-BBX4-cri	
BBX4-DT1-F0	TGCAGACGCCGCGTTTCTCTGGTT	sp1-CAS9-AtU6-2	
	TTAGAGCTAGAAATAGC	6K-BBX4-crisp2-	
BBX4-DT2-R0	AACCTGCGTTATGCGTCACGTGCA	CAS9	
	ATCTCTTAGTCGACTCTAC		
BBX4-DT2-Bs	ATTATTGGTCTCGAAACCTGCGTT		
R	ATGCGTCACGTGC		
Genotyping primers			
Crispr bbx4 seq(F)	ATCGCCACTTCCATAACACC		
Crispr bbx4 seq(R)	AGCTAAAAGCCACGAAGCAG		
phyB-9- seq(F)	TGCTGTTCAATCGCAGAAAC		
phyB-9- seq(R)	TCGCAGTGTGAGATCGAAAC		
pif3-1-seq(LP)	GATGTGGAAGAAGAATCAGGAGA		
pif3-1-seq(RP)	GTCGTTGTTTGATCTTTAGAACCAG		
cop1-6-seq(F)	GGCCACATGAGAAGAACCAGATT		
cop1-6-seq(R)	CACAGATTGAAAATCTGCAAGGC		
Real-time qPCR			
PP2A(F)	TATCGGATGACGATTCTTCGTGCAG		
PP2A(R)	GCTTGGTCGACTATCGGAATGAGAG		
BBX4(F)	ATGTGTAGAGGGTTTGAGAAAGA		
BBX4(R)	TGCGTCTGCCTCACAATACA		
PIL1(F)	AAATTGCTCTCAGCCATTCGTGG		
PIL1(R)	TTCTAAGTTTGAGGCGGACGCAG		
PIL2(F)	CACCTTTCATTCCAACGGAAA		
PIL2(R)	GCACGATGGAGGGACAGATT		
BBX23(F)	TCCAAAGACATCACCGAGTCG		
BBX23(R)	GTACCCTTTTCTCTCCTGGCAG		
XTR7(F)	CGGCTTGCACAGCCTCTT		
XTR7(R)	TCGGTTGCCACTTGCAATT		
bHLH87(F)	GAGCCCGATGCTGAGGCGATTG		
bHLH87(R)	CCCTTCTCTGTCTCGCTGCAACC		
SNRK2.5(F)	GCCAAAGGAGCTTACAGAGCCTGC		
SNRK2.5(R)	AGACGGAGCTGGATTCCTGGC		