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Supplementary Materials and Methods

Isolation and genome sequencing of Bifidobacterium asteroides and Gilliamella apicola.
Pure cultures of B. asteroides strains W8111 and W8102, and G. apicola strains W8127 and
W8131 were isolated from the guts of Apis mellifera collected in Jilin, China in July 2018 (Dataset
S1). The dissected guts were directly crushed in 19% (vol/vol) glycerol and frozen after sampling.
The glycerol stocks were plated on heart infusion agar supplemented with 5% (vol/vol)
defibrinated sheep’s blood (Solarbio, Beijing, China), incubated at 35°C under a CO2-enriched
atmosphere (5%). Genomic DNA was extracted using the CTAB buffer method as previously
described (1). Total genomic DNA was sequenced on the lllumina HiSeq platform from paired-
end libraries and then assembled with the SPAdes genome assembler version 3.0 (2). The
completeness of genomes was assessed by CheckM (version 1.0.12) (3). Whole-genome
average nucleotide Identity was calculated using FastANI (version 2.0) (4). The genomes were
annotated with the Prokka software version 1.14.0 (5). The genome assemblies were deposited
at DDBJ/EMBL/GenBank, and the accession numbers are all shown in Dataset S1.

Metagenome sequencing. Bees were collected from a single colony in New Haven, CT, USA in
April, 2012. Collected bees were put into 50-ml conical tube and placed on ice. The DNA was
prepared as described by Engel et al. (6) with some modifications. The whole guts of 20 bees
were dissected and placed in 1.5-ml tubes with 500 ul MgSO4 (10mM, pH 6.0) on ice. The guts
were then homogenized using a plastic pestle for 1 min. Gut homogenates of ~20 bees were
pooled in a 50-ml conical tube with 15 ml (final volume) of MgSO4 and were passed through a
100-pm filter. The replaced filter was then rinsed with 10 ml MgSOa4 by vortexing vigorously. The
rinse was passed through a 100-um filter again and was pooled to the main filtrate, with a total
combined volume of 25 ml. The sample was passed through 20- and 8-um filters in succession,
and was then centrifuged at 500xg, 4°C for 2 min. The supernatant was transferred to a new 50-
ml tube and centrifuged again at 1 700xg for 30 min. The pellet was resuspended in 1.6 ml
MgSQa4, and 200 pl of the suspension was put into a 1.5-ml tube with 600 pl Percoll solution
(80%). Then the samples were centrifuged at 17,000xg for 30 min. The interfaces between the
upper and lower layers were recovered into a new 1.5 ml tube and the total volume was brought
to 1.5 ml with MgSOa4. The tubes were centrifuged at 1,600xg for 5 min. The pellets were
resuspended in 240 pl TE buffer (pH 8.0) with 24 pl RDD buffer and 2.4 ul DNase | (Qiagen) and
incubated at 37°C for 30 min to digest free DNA. The DNase was inactivated by adding 24 pl of
EDTA (500 mM) and incubating at 25°C for 10 min. The mixtures were centrifuged at 1,600xg for
5 min.

DNA was then extracted by resuspending the pellets in 500 pl Buffer AG (Qiagen) and 500 pl
phenol:chloroform:isoamyl alcohol (25:24:1, vol/vol; pH 7.9; Ambion) in a 2-ml tube containing
500 pl of sterile zirconia beads @ 0.1 mm (BioSpec, Bartlesville, OK, USA). Cells were lysed by
running MO BIO Vortex Genie® for 3 min. Samples were centrifuged at 12,000xg for 5 min. The
supernatant was transferred to a clean 1.5-ml tube and mixed with 20 yl Proteinase K (Qiagen),
and incubated at 56°C for 30 min. After cooling at room temperature for 3 min, 5 ul RNase A
(Qiagen) was added, and incubated at 37°C for 30min. Samples were transferred to phase lock
gel with 400 pl Phenol:Chloroform:lsoamyl Alcohol, and centrifuged at 12,000xg for 5 min. The
supernatants were transferred to new 1.5-ml tubes. 50 ul sodium acetate (pH 5.2-5.5) and 500 pl
isopropanol was added, then mixed well. After centrifuging at 17,000xg for 30 min, the pellets
were washed twice with 70% ethanol. The DNA pellets were then dissolved in TE buffer (pH 8.0).
DNA samples were sent to the DOE Joint Genome Institute for metagenome sequencing. Two
libraries were constructed: a shotgun library with an insert size of 300 bp and a mate-pair library
with 4 kb spacing. Both libraries were sequenced on Illlumina HiSeq 2000 platform (2x150 paired
end), for a total of ca. 111 Gbp of nucleotide sequence data (65 and 46 Gbp from the shotgun
and mate-pair libraries, respectively). The metagenomic data were assembled with the JGI/LANL
pipeline using the MeGAMerge tool (7). The assembled sequences were submitted to the
Integrated Microbial Genomes and Microbiomes (IMG/M) system for comparative analysis, and
the annotation was performed using the DOE-JGI Metagenome Annotation Pipeline (8). The JGI
IMG accession number is 3300000333.



Phylogenomic analyses and GH and PL family annotation. Phylogenomic trees for Gilliamella
and Bifidobacterium strains were generated from the concatenation of amino acid sequences of
106 and 101 bacterial core genes, respectively. TIGRFAM Hidden Markov Model (HMM) profiles
from the bacterial core gene set (GenProp0799) of each protein were used to query the genome
database (9), and sequences for the top hits were pulled using an in-house script. Sequences
were aligned with MAFFT (10), manually inspected, and trimmed using a BLOSUMG62 matrix in
BMGE (11). Maximum likelihood trees were constructed using the GTRCAT model in RAXML
(12). To describe the distribution of GH and PL families across bee gut bacterial genomes,
CAZymes of all bee gut bacterial genomes were annotated using the dbCAN2 server with the
HMMER search tool, which use the threshold of E-value <1e—15 and coverage >0.35 (Dataset
S2) (13). The taxon affiliations of the metagenomic CAZyme amino acid sequences were
analyzed through the IMG annotation pipeline, which queries them against the NCBI non-
redundant protein database with BLASTP (8).

Bacterial growth and in vitro / in vivo analyses of gene expression. B. asteroides strain
W8111 and W8102 were routinely grown on heart infusion agar plus 5% sheep blood in an
anaerobic chamber (2% Hz, 5% COz2, and 93% N2; Coy Laboratory Products, Grass Lake, MI,
USA). The ability of strain W8111 and W8102 to grow on pure carbohydrates was measured by
cultivation in modified MRS liquid medium (14) composed of (per liter) 2 g peptone, 1 g yeast
extract, 1 g polysorbate 80, 0.4 g NH4Cl, 0.2 g MgS04.7H20, 0.07 g MnCl2.4H20, 2 g KH2POs,
0.4 g L-cysteine hydrochloride, 0.1 g pyridoxine hydrochloride, 0.5 g pantothenic acid, 0.1 g
inositol, 0.01 g aminobenzoic acid, 0.02 g adenine. The medium was then loaded with sterilized
carbohydrate stocks of arabinan (CAS: 11078-27-6; Megazyme, Wicklow, Ireland), galactan
(CAS: 9037-55-2; Megazyme), beta-glucan (CAS: 9041-22-9; Megazyme), and xyloglucan (CAS:
37294-28-3; Megazyme) at different final concentrations according to the manuals. po-glucose (10
mM) was used as positive control. Cultures were inoculated with single colonies growing on heart
infusion agar plates, then incubated in the anaerobic chamber. Growth was determined
spectrophotometrically by measuring the optical density at 600 nm after 48 h of incubation.
Bacterial cells were then used for RNA extraction.

Microbiota-free and gnotobiotic bees were obtained as described by Zheng et al. (14) with
modifications. Late-stage pupae were removed manually from brood frames, and placed in sterile
plastic bins. The pupae emerged in an incubator at 35°C, humidity 50%. Newly emerged bees
were kept in axenic cup cages with sterilized sucrose syrup (0.5 M); however, pollen was
withheld, in order to ensure that the bees did not obtain any plant glycans. B. asteroides strains
W8111 and W8102, and G. apicola strains W8127 and W8131 were prepared in 20% glycerol
stock, frozen at —80°C. Bacterial cells from stocks were resuspended in 1x PBS at a final ODsoonm
of 1, and then supplemented with equal volume of sucrose solution (50%, wt/vol). For each setup,
20-25 microbiota-free bees were placed into one cup cage, and the bees were feeding on the
bacterial suspensions for 24h. Colonization levels were determined by colony-forming units from
dissected guts, as described by Kwong et al. (15). Then mono-inoculated bees were provided
sucrose (0.5 M) with or without sterile pollen, or one of the pure hemicelluloses (arabinan,
galactan, B-glucan, xyloglucan) or polygalacturonic acid (CAS: 9049-37-0; Megazyme) dissolved
in sucrose syrup. Bee guts were dissected 24 h after feeding with the substrates, and whole guts
were harvested for RNA extraction.

RNA of pure bacterial cultures and of whole bee guts was extracted using the Quick-RNA
MiniPrep kit (Zymo Research, Irvine, CA, USA). cDNA was synthesized from 1 ng of each RNA
sample using the HiScript® 11l 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China) with
random hexamer primers from the kit. Quantitative PCR was performed using the ChamQ™
Universal SYBR® gPCR Master Mix (Vazyme) on the QuantStudio™ 1 real-time PCR system
(Applied Biosystems) in a standard 96-well block (20 pl reactions; 40 cycles of denaturation at
95°C for 15 seconds, annealing/extension and plate read at 60°C for 60 seconds). The primers
are listed in Table S2, and recA served as a reference gene. Relative expression was analyzed
using the 224CT method (16). Three technical replicates for each sample were performed on the
same plate. RNA samples that were not reverse transcribed served as negative controls.



Metabolomics. The concentrations of galacturonic-acid in whole gut of bees mono-colonized
with G. apicola strains W8127 and W8131 were identified using the D-Glucuronic/D-Galacturonic
Acid Assay Kit (Megazyme). Metabolomic profiles of gut homogenates of bees mono-colonized
with B. asteroides strains W8111 and W8102 were identified as described in Zheng et al. (14)
with some modifications. As described above, microbiota-free bees were mono-colonized with B.
asteroides strain W8111 and W8102, respectively. The mono-colonized bees were then fed with
arabinan, galactan, or xyloglucan for 24h. Individual bee guts were homogenized in 50yl distilled
water. The homogenates were then centrifuged (2,500%g, 5 min) and filtered through 0.22-pum
membrane. Six biological replicates of each group were shipped on dry ice to Novogene
Cooperation (Beijing, China) for metabolomics analysis.

The gut homogenate supernatant was resuspended with prechilled 80% methanol and 0.1%
formic acid. The samples were incubated on ice for 5 min and then were centrifuged at 12,000xg,
4°C for 5 min. The supernatant was diluted to final concentration containing 60% methanol by
LC-MS grade water. The samples were subsequently transferred to a fresh Eppendorf tube with
0.22 um filter and then were centrifuged at 15,000%g, 4°C for 10 min. Finally, the filtrate was
injected into the LC-MS/MS system analysis. LC-MS/MS analyses were performed using a
Vanquish UHPLC system (Thermo Fisher) coupled with an Orbitrap Q Exactive™ HF mass
spectrometer (Thermo Fisher). Samples were injected onto an Hyperil Gold column (100%2.1
mm, 1.9 ym) using a 16-min linear gradient at a flow rate of 0.2 mL/min. The eluents for the
positive polarity mode were eluent A (0.1% FA in Water) and eluent B (Methanol). The eluents for
the negative polarity mode were eluent A (5 mM ammonium acetate, pH 9.0) and eluent B
(Methanol). The solvent gradient was set as follows: 2% B, 1.5 min; 2-100% B, 12.0 min; 100% B,
14.0 min;100-2% B, 14.1 min; 2% B, 16 min. Q Exactive™ HF mass spectrometer was operated
in positive/negative polarity mode with spray voltage of 3.2 kV, capillary temperature of 320°C,
sheath gas flow rate of 35 arb and aux gas flow rate of 10 arb.

The raw data files generated by UHPLC-MS/MS were processed using the Compound Discoverer
3.0 (Thermo Fisher) to perform peak alignment, peak picking, and quantitation for each
metabolite. The main parameters were set as follows: retention time tolerance, 0.2 minutes;
actual mass tolerance, 5 ppm; signal intensity tolerance, 30%; signal/noise ratio, 3; minimum
intensity, 100000. Peak intensities were normalized to the total spectral intensity. The normalized
data was used to predict the molecular formula based on additive ions, molecular ion peaks, and
fragment ions. Peaks were then matched with the mzCloud (https://www.mzcloud.org/) and
ChemSpider (http://www.chemspider.com/) database to obtained the accurate qualitative and
relative quantitative results. Metabolomics data analysis was performed using MetaboAnalyst 4.0
(17) as described in Zheng et al. (14). Briefly, raw peak intensity data were filtered using
interquartile range approach and normalized with the options: normalization by the sum, logarithm
transformation, and auto scaling. The fold change (W8111/W8102) of mono-colonized bees was
calculated based on the normalized data and the significance were calculated using the t-test.
The dataset was then subjected to a partial least square discriminant analysis (PLS-DA). 95%
confidence interval ellipses (based on the standard deviation for each PC) were used to visually
support the significance of each dataset cluster.
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Fig. S1. (A) Full phylogenetic tree of the Bifidobacterium genus based on the whole-genome
sequences using the maximume-likelihood algorithm. (B) Average nucleotide identity values of B.
asteroides strains.
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Fig. S2. Phylogenetic tree of genes belonging to GH43 family encoded in genomes of
Bifidobacterium species. Sequences of strains from honey bees (orange) and from bumble bees
(blue) are indicated as colored branches. Black branches are selected reference sequences. The
number of subfamilies is shown next to the clusters. Circles indicate node bootstrap support
(0>85%; #=100%, 1,000 replicates)
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Fig. S7. Full phylogenetic tree of Gilliamella strains based on concatenated amino acid
sequences. The bootstrap values are shown next to the nodes.
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Fig. $8. Maximum-likelihood trees of the amino acid sequences of PL1, PL9, and GH31 from Gilliamella strains and from bacteria representing the
top blast-hits in public databases.
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Table S1. Comparison of the two metagenomic datasets for gut microbiota of Apis mellifera.

This study Engel et al., 2012
GOLD ID in IMG Database Gs0067856 Gp0053272
Collection location New Haven, CT, USA  Tucson, AZ, USA
Collection date April, 2012 October, 2010
Sequencing platform lllumina HiSeq lllumina GAllIx
Number of raw data bases 111 Gbp 8 Gbp
Number of contigs 407,877 54,505
Number of protein-coding genes 614,276 125,637
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Table S2. Primers used for g°PCR analysis in this study.

Target strain Target gene Forward/Reverse  Sequence (5'-3)
Bifidobacterium asteroides W8111 GH31 F TTCTGGCCAGATCCCGTCAGCA
R TCTTCGCCGTGGTCTGCTCGTA
GH43-12 F CCGACTTCCGCTGTACCTTC
R CAGGTTCCACCGACAGATCC
GH42 F TCGTTGCCAGCCTGATTCAT
R CGGTGAACGATTTCGGCAAG
GH43-4-1 F CAGGACGATGACCGAACGAT
R GCGCCTGACGTCTACTACAA
GH43-26 F TGCTCTCCAAGCCCGAATAC
R GAGGCCGAGTAGGTCAGGTA
GH43-4-2 F CGATGCGCTCTTGTTCGATG
R CCTAGCGACCAGAGGTAGGT
GH43-27 F CTCTACAGCGACGGGTCCAC
R TTCTGGAGAGACCAGGCTGA
recA F ATGTCGAATTCGGCCACCTT
R CATCCGCCGTATCCAGACTC
Gilliamella apicola W8127 PLA1 F CCATGTTAATTGGGCACAGTG
R TCGTGGAGCTCGCTGAGTAA
PL9 F CGGACCTGAAGTGGATGGTA
R GCTGGTTGCGGTTCACTTCT
PL22 F GGTTGGTCGATCGTGATGGTA
R AAGCAAGTCCTGATCCATCTG
GH28 F CAGTCCACCCAATGGAGTCA
R ACCCGCTTTAATTGCGATGC
recA F CGGCTAAACTAGGTGTGCAAG
R TGCCGCTACTGAGTCAACAA




Dataset S1 (separate file). The list of genomes of bacterial isolates from the gut of honey bee
and bumble bee.

Dataset S2 (separate file). CAZyme annotation of the bacterial genomes isolated from the guts
of honey and bumble bees.

Dataset S3 (separate file). The list of genes for amino acid synthesis in the genome of the bee
gut isolates.
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