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Supplementary Information Methods 

Methods S1. Algorithm for determining growing season length. 

 

The length of the growing season (GS) was determined from thermal time calculated as the 

cumulative degree-days above 5 °C from day of year 32 onwards (1). Cumulative degree days 

plotted vs. day of year follow a sigmoid shape (Fig. S9A) in the climates of the biogeographic 

regions analyzed in this study. The first day of the GS corresponded to the inflexion point where 

the cumulative thermal degree days began to increase rapidly (blue dashed line in Fig. S8A). The 

end of the GS end was set by the second inflexion point where the accumulation of thermal 

degree days rapidly slowed (red dashed line in Fig. S9A). The start and end dates were 

determined by fitting three lines with the lowest mean squared error to the sigmoidal plot of 

degree days vs. day of year (solid black lines in Fig. S9A). The GS start day was at the 

intersection of the first two lines (blue circle in Fig. S9A) and the GS end day was at the 

intersection of the last two lines (red square in Fig. S9A). 

 

We tested the GS algorithm against gross primary productivity (GPP) from 11 sites of 

FLUXNEX 2015 dataset (http://fluxnet.fluxdata.org, Table S5). We used the daily data subsets 

(DD) of the FLUXNET 2015 sites. We used the mean daily temperature for the thermal degree-

day calculations. We used the daily gross primary productivity from the nighttime partitioning 

method, with the reference calculated from model efficiency (GPP_NT_VUT_REF variable from 

FLUXNET 2015). For each of the years from the selected dataset we calculated the start and end 

of the GS and the percent of GPP of the year that occurred during the GS length. The mean 

percent of total annual GPP that was within the GS length determined by this algorithm was 

77.1% for the 163 total years tested from all 11 sites. The percent GPP captured within the GS 

was highest for Morgan Monroe Sate Forest, Indiana, USA, with a mean of 91.8% for a 16 year 

period, and lowest for Metolious mature ponderosa pine stand, Oregon, USA, where only 51.0% 

of GPP was realized during the GS for a 13 record (Table S5). An example of how the GS start 

and end dates compare to GPP for years 200-2004 in Harvard Forest (42.5378 N, 72.1715 W, 340 

m above sea level) is shown in Fig. S9B. For Harvard Forest 87.1 % of annual GPP for 1991-

2012 period was captured by our GS algorithm. 

 

  

http://fluxnet.fluxdata.org/
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Fig. S1. Changes in growing season (GS) climatic conditions. Historic vs. future (A) mean GS 

temperature, (B) mean GS daytime atmospheric vapor pressure deficit (D), (C) mean GS daily 

precipitation, and (D) mean GS length. Regions: Mountain West, +; Pacific Northwest, square; 

Southeast, x; Boreal, circle. Scenarios: RCP4.5, grey (N=120); RCP8.5, black (N=120). 

Regressions (P<0.001), solid lines; 95% CIs, dash lines; 1:1, black dash-dot line. 
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Fig. S2. Metabolic stress for non-acclimated stands represented as percent decrease in 

assimilation weighted internal to ambient CO2 concentration ratio (Ci/Ca) for (A) RCP4.5 and (B) 

RCP8.5 scenarios. The drop in assimilation weighted Ci/Ca was larger for RCP8.5 scenario. 

Locations = 20; simulations per location = 6. 
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Fig. S3. Percent change in leaf are index (LAI) required for acclimation to ecohydrological 

equilibrium vs. the stress caused in the absence of such acclimation. (A) LAI change vs. mean 

PLCmax. (B) LAI change vs. maximum PLCmax. (C) LAI change vs. decrease in Ci/Ca (metabolic 

stress). Historic weather plus CO2 enrichment to RCP4.5 (∆Ca 4.5, blue downward circle, n=40) 

and RCP8.5 (∆Ca 8.5, green star, n=40) levels, future scenarios with both warming and Ca 

enrichment (∆Ca∆T 4.5, yellow circle, n=240; ∆Ca∆T 8.5, orange upward triangle, n=240), and 

warming only scenario (Ca at historic level) based on RCP4.5 (∆T 4.5, pink square, n=240) and 

RCP8.5 weather simulations (∆T 8.5, vermillion diamond, n=240). 

  



 

 

7 

 

 
 

Fig. S4. Growing season temperature increment (∆T) versus percent change in acclimated (A) 

tree leaf area (LA), (B) maximum carboxylation rate at 25 ºC (Vmax25), (C) leaf area index (LAI), 

and (D) basal area index (BAI). Emission scenarios: RCP4.5 (grey circles) and RCP8.5 (black 

triangles). Black dash-dot lines, no change reference; solid grey lines, RCP4.5 regressions (95% 

CIs grey dashed lines); solid black lines, RCP8.5 regressions (95 % CIs black dashed lines). All 

regressions were significant (P<0.01; n=240). 
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Fig. S5. Acclimated leaf area index (LAI), above ground biomass (AGB) and maximum 

carboxylation rate per ground area (Vmax25/GA, an estimate of nitrogen requirements) for different 

weather and ambient CO2 concentration (Ca) scenarios. (A,B) Historic vs. future LAI, (C,D) 

AGB, and (E,F) Vmax25/GA for (A,C,E) RCP4.5 and (B,D,F) RCP8.5 projections. Treatments: Ca-

enrichment only (∆Ca, historic weather plus future Ca, blue for RCP4.5 and green for RCP8.5); 

Ca-enrichment plus warming (∆Ca∆T, future weather and future Ca, yellow for RCP4.5 and 

orange for RCP8.5); and warming only (future weather with historic Ca, ∆T, pink for RCP4.5 and 

vermillion for RCP8.5). Regions: Mountain West, +; Pacific Northwest, square; Southeast, x; and 

Boreal, circle. Solid lines: linear regressions; dashed lines: 95% confidence intervals; black dash-

dot line: 1:1 relationship; ∆Ca (n=40), ∆Ca∆T (n=240) and ∆T (n=240). 
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Fig. S6. Location of the 20 sites selected for this study from the four biogeographical regions: 

Boreal (green circle, n=4); Mountain West (vermillion upward triangle, n=6); Pacific Northwest 

(blue square, n=4); Southeast (pink downward triangle, n=4). 
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Fig. S7. Earth System Models (ESMs) selection based on mean annual precipitation (MAP) 

percent change and mean annual temperature (MAT) delta change for future (years 2070-2099) 

versus historic (years 1976-2005) periods. (A) Mean MAP and MAT across the 20 sites for the 30 

ESMs evaluated for RCP4.5 and (B) RCP8.5 emission scenarios. The 30 ESMs (black crosses) 

and 6 models selected for this study (color circles) are represented in each panel. Based on their 

delta MAT and percent change in MAP models were characterized as Warm-Dry (ACCESS1-0), 

Warm-Wet (CanESM2), Mean-1 (NorESM1-M), Mean-2 (CESM1-CAM5), Cool-Dry (GFDL-

ESM2M) and Cool-Wet (MRI-CGCM3). 
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Fig. S8. Percent change in mean annual precipitation (MAP) and delta change in mean annual 

temperature (∆MAT) for each biogeographical region and both emission scenarios. The 30 Earth 

System Models (black crosses) and 6 selected models for this study (color circles) are represented 

in each panel. Rows (top to bottom): Boreal, Mountain West, Pacific Northwest, and Southeast. 

Columns (left to right): RCP4.5 and RCP8.5 emission scenarios. 
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Fig. S9. Algorithm based on cumulative thermal degree days above 5 ºC for determining the start 

and end of the growing season (GS). (A) Cumulative degree days (grey line) for year 2000 GS at 

Harvard Forest and the GS start (dashed blue line) and end (red dashed line) days. The GS start 

and end days are determined by finding the intersections (blue circle and red square) between the 

three solid black lines that minimize the mean squared root error between the measured degree 

days and the line fit. (B) GS start (dashed blue lines) and end (dashed red lines) days calculated 

with the algorithm shown in panel A for growing seasons of years 2000-2004 versus gross 

primary productivity (GPP) from the FLUXNET 2015 Harvard Forest DATASET 

(https://doi.org/10.18140/flx/1440071). The algorithm captures the season when Harvard Forest is 

physiologically active. 
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Additional Datasets (separate files) 
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Dataset S2 (pnas201913072_s3_s1o1jh.xlsx). Earth System Models evaluated and selected for 

the simulations 

Dataset S3 (pnas201913072_s4_s1o1jh.xlsx). Species traits used for parameterizing the forest 
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Dataset S4 (pnas201913072_s5_s1o1jh.xlsx). Climatic variables from the reference periods used 

for stand acclimation 

Dataset S5 (pnas201913072_s6_s1o1jh.xlsx). FLUXNET 2015 datasets used for testing the 

growing season length algorithm 
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Dataset S6. Hourly weather data used for running the simulations 

Dataset S7. Main model output data from the 30 yr simulations 

Additional Codes (separate files, Figshare DOI: 10.6084/m9.figshare.8805110) 

Code S1. Gain-Risk model code in C++ 
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