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Supplementary Video 1 Movie corresponding to figure 2 in the main paper. Top left: Close-up views from the two high10

speed cameras. Top right: Neck diameters dx and dy in the two views during the pinch-off exhibit oscillations, while the11

averaged diameter follows the classic self-similar scaling. Bottom left: Velocity of the four measured thinning points. Bottom12

right: Difference ∆r = (dx − dy)/2 as a function of mean neck diameter.13

Supplementary Video 2 Movie corresponding to figure 3 A-B in the main paper. Top left: Close-up views from the two14

high speed cameras. A kink like structure becomes visible towards the end of the pinch-off. Top right: Neck diameters dx and15

dy in the two views during the pinch-off, together with the averaged diameter. Bottom left: Velocity of the four measured16

thinning points. Bottom right: Difference ∆r = (dx − dy)/2 as a function of mean neck diameter.17

Supplementary Video 3 Movie of one turbulent pinch-off with a persistent asymmetry in the neck shape until a kink18

structure forms. Top left: Close-up views from the two high speed cameras. Top right: Neck diameters dx and dy in the two19

views during the pinch-off, together with the averaged diameter. Bottom left: Velocity of the four measured thinning points.20

Bottom right: Difference ∆r = (dx − dy)/2 as a function of mean neck diameter.21

1. Experimental methods22

We provide here more details on the experimental setup, data acquisition and processing.23
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Fig. S1. (a) Sketch of the experimental setup. The turbulence tank consists of eight submerged pumps. (b) and (c) The horizontal and vertical components of the mean flow,
respectively, obtained by particle image velocimetry in the ε = 1500 cm2/s3 case. The needle is colored orange and the portion of the image in which the laser sheet is
blocked by the needle is colored grey. (d) and (e) The speed of the mean flow and the intensity of the fluctuations.

A. Experimental setup. The experiment is sketched in Figure S1 (a). Turbulence in the water is created by eight submerged24

pumps whose outlets are attached via flexible tubing to nozzles arranged at the vertices of a ∼ 28 cm cube and pointed towards25

the cube’s center (for the sake of simplicity these tubes are omitted from Figure S1) (a). Inspired by the work of Variano and26

Cowen (1) and Hwang and Eaton (2), this setup induces a largely homogeneous, isotropic flow in the cube center. A needle27

with inner diameter between 1.4 mm and 4.8 mm is fixed within the turbulence region and connected to an Alicat flow rate28

controller through which air is fed. The needle is typically positioned such that the mean vertical flow around its tip is slightly29

positive, which makes the neck region visible to the cameras in a large portion of the pinch-off events. Varying the needle size30

and turbulence dissipation rate, we record ∼ 300 cases of a bubble pinching-off in turbulence and ∼ 40 cases of pinch-off in a31

quiescent flow. We discard cases in which the neck region is not well-resolved in the view of either of the two cameras used, as32

well as ∼ 10 cases in which a thin air filament persists, and sometimes grows in width just before pinch-off, for far longer than33

is typical.34

B. Turbulence measurements. Particle image velocimetry (PIV) with a single camera is used to resolve the horizontal and35

vertical components of the flow u and w in a 3.8 cm× 2.3 cm region around the needle. For each ε level, ten high-speed movies36

0.8 s in duration, separated by 10 s, were obtained with a pixel size of 30 µm. The flowfield was resolved using PIVLab (3).37

First, the horizontal and vertical components of the mean flow U and V are obtained by averaging all realizations of the38

instantaneous flowfield, and are shown in Figure S1 (b) and (c) for the ε = 1500 cm2/s3 case. The needle is placed in a region39

of slightly-upwards mean flow, which increases the portion of pinch-off events in which the neck region is visible. Results from40

the lower and higher ε values look qualitatively similar but differ in magnitude.41

The mean flow speed
√

(U)2 + (W )2 is shown in Figure S1 (d) for the ε = 1500 cm2/s3 case. The intensity of the turbulence42

is characterized by the r.m.s. velocity fluctuations
√
u′2 + w′2, with u′ = u− U and w′ = w −W , which is shown in Figure S143

(c). The typical fluctuations are multiple times greater than the mean speed of the flow.44
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Fig. S2. Left, the compensated longitudinal structure function, (DLL(r)/C2)3/2/r, (markers) and the determined dissipation rates ε (dashed lines). Right, the integral of the
spatial autocorrelation used to determine the integral length scale Lint.

The dissipation rate is calculated with the x-direction longitudinal structure function DLL(∆r) =45

(u′(x, z, t)− u′(x+ ∆r, z, t))2, averaged over x (once going from left-to-right in the image above, once going right-to-46

left), z (above the top of the needle), and t, in only the x-direction to calculate the dissipation rate. DLL is then compensated47

as (DLL(r)/C2)3/2/r, with C2 = 2.0 the Kolmogorov constant (4). The resulting curves and their maximum values are shown48

in Figure S2 (a). The three values of ε used in this study are approximately 600 cm2/s3, 1500 cm2/s3, and 5400 cm2/s3.49

Finally, the integral length scale is estimated by integrating the spatial autocorrelation function for the velocity fluctuations,50

Lint =
∫∞

∆r=0 u
′(x, z, t)u′(x+ ∆r, z, t)/u′(x, z, t)2d∆r. The resulting curves are shown in Figure S2. While the resolved field is51

not large enough to extract the asymptotic value of the integral, we can visually estimate that it is approximately Lint = 1.3 cm52

and not a strong function of ε.53

With ε calculated, the Kolmogorov microscale is defined as η = (ν3/ε)1/4, where ν is the kinematic viscosity of water. For54

the three increasing values of ε, the Kolmogorov microscale is 58 µm, 47 µm, and 34 µm. Similarly, the Taylor microscale is55

estimated as λ = (15(u′)2ν/ε)1/2, and for the three increasing values of ε is 1.7 mm, 1.7 mm, and 1.2 mm. This is comparable56

to the initial size of the neck as pinch-off begins, suggesting that the bubble is initially within the inertial subrange of the57

turbulence.58
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Fig. S3. Distributions of the velocity difference, ∆u′ = 〈u′(x+ ∆r)− u′(x)〉, over a range of spatial separations, ∆r (color-coded) going from 0.5mm to 2.0cm, for
each value of ε. Velocity fluctuations at the size of the neck never reach the magnitude of the neck collapse velocity, even in the tail of the distribution.

Figure S3 shows the distributions of velocity fluctuation ∆u′ = 〈u′(x + ∆r) − u′(x)〉 difference calculated over various59

spatial separations ∆r, for a range of spatial locations and for the whole time series. Even in the tails of the distributions,60

the turbulent velocity difference never reaches the large velocities associated with the appearance of the kink in the interface,61

which rules out the direct action of a turbulent eddy in the kink formation process.62

C. Imaging. The back-lit imaging of the pinch-off is done with two cameras, similar to (5, 6), which provide a measure of the63

neck’s asymmetry with views from two orthogonal angles. One camera (Phantom v2012) films at 1/∆t = 100 000 fps and a64

pixel size ∆x = 22 µm, while the other (Phantom VEO 440-L) films at 1/∆t = 24000 to 29 000 fps and ∆x = 29 µm. Due to65

hardware limitations, the VEO 440-L only resolves 48 to 64 pixels in the vertical direction, while the other camera resolves 32066

pixels vertically. The pinch-off time is identified independently from each recording as the first frame in which the neck is67
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visibly separated.68

D. Image processing and mapping to 3-D space. Movies of pinch-off are obtained in the laboratory-referenced x− z and y − z
planes. Two simultaneous images are shown in Figure S4 (a-b). As a first step in mapping 2-D imaged points to 3-D locations,
we identify the orientation of the bubble neck in each view, θx(t) and θy(t). θi is the angle of the bubble axis (measured from
the z axis to the i axis), determined by considering the line normal to the shortest line segment drawn across opposing sides of
the neck. θx(t) and θy(t) are then interpolated onto common t values and the orientation of the neck axis z′ relative to the
laboratory axes is calculated as

tan θ(t) =
√

tan2 θx(t) + tan2 θy(t), [1]
tanφ(t) = tan θx(t)/ tan θy(t), [2]

where θ is the angle from z to z′ and φ is the angle of the projection of z′ onto the x− y plane measured from the x axis. To69

account for an angular drift of the bubble in time due to the frozen turbulent flow while removing artifacts which complicate70

the angle detection close to pinch-off, we replace θ(t) and φ(t) with linear fits to their instantaneous data taken within71

∼ 2 ms ≤ (t0 − t) ≤∼ 8 ms, with these limits adjusted on a case-by-case basis. This assumes that the mean flow around the72

bubble is a rotational flow pivoting about the pinch-off point, and the pinch-off plane in which the neck sizes are tracked pivots73

accordingly. In some cases when the automated detection fails, the orientation of the bubble is imposed manually. The quality74

of the fit is verified visually by ensuring that the assumed neck axis is aligned with the bubble neck. θx and θy are the angles75

from the vertical axis to the red lines in Figure S4 (a-b).76
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C D

Fig. S4. Illustration of the neck detection and 3-D mapping method. (a-b) The images obtained from the two cameras. The pinch-off point is shown as the red dot. The
projection of the neck axis z′ on the resolved planes is shown as the red line, and the projections of the x′ and y′ axes are shown as the solid blue and green lines, respectively.
The insets show the gradient of the image along these two axes, and the dots correspond to the detected location of the two sides of the neck. The contours of the bubble are
shown in the laboratory coordinate system (x, y, z) in (c) and in the bubble neck coordinate system (x′, y′, z′) in (d). The dashed lines in (c) show the naive position of the
bubble contours before their depth is inferred.

The pinch-off locations in laboratory coordinates in the planar views, (cx,0, cz,0) and (cy,0, cz,0) are determined manually,77

which enforces that z = 0 corresponds to the same physical plane in each view. The pinch-off point (cx,0, cy,0, cz,0) is taken as78

the origin of both the laboratory and neck coordinate systems. The red dots in Figure S4 (a-b) show the pinch-off location in79

the two planes.80

To determine dx(t), the resolved neck diameter viewed from the x − z plane, we first use the bubble neck orientation
(θ(t), φ(t)) to infer the depth cy in the y-direction of any point (cx, cz) imaged on the bubble interface. As a best guess, we
choose cy which brings the point as close as possible to the bubble axis, z′. Given the depth of the point cy and a point at a
position z′ along the neck axis, the squared distance between the two points is

F = (∆x)2 + (∆y)2 + (∆z)2 [3]

=
(
cx − z′ sin θ cosφ

)2 +
(
cy − z′ sin θ sinφ

)2 +
(
cz − z′ cos θ

)2
. [4]

To find the minimum value of F we take the two partial derivatives,
∂F

∂z′
= −2

(
cx − z′ sin θ cosφ

)
sin θ cosφ− 2

(
cy − z′ sin θ sinφ

)
sin θ sinφ− 2

(
cz − z′ cos θ

)
cos θ, [5]

∂F

∂cy
= 2

(
cy − z′ sin θ sinφ

)
. [6]
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Setting both partial derivatives to 0 and solving the system of equations gives

z′ = c1 sin θ cosφ+ cz cos θ
sin2 θ cos2 φ+ cos2 θ

, [7]

cy = sin θ sinφ
sin2 θ cos2 φ+ cos2 θ

(c1 sin θ cosφ+ cz cos θ) . [8]

Similarly if we locate a point in the y − z plane and want to infer its position in the x direction, we now use the partial81

derivative82
∂F

∂cx
= 2

(
cx − z′ sin θ cosφ

)
[9]83

and obtain

z′ = cy sin θ sinφ+ cz cos θ
sin2 θ sin2 φ+ cos2 θ

, [10]

cx = sin θ cosφ
sin2 θ sin2 φ+ cos2 θ

(cy sin θ sinφ+ cz cos θ) . [11]

With the depth of each point in the image inferred, the 3-D locations (cx, cy, cz) in laboratory coordinates are transformed84

into points (cx′ , cy′ , cz′) in neck coordinates (x′, y′, z′) by rotating each an angular distance −θ(t) about the line parallel to85

φ(t) +π/2 going through the origin. The dashed blue curve in Figure S4 (c) shows the naive contour of the bubble in laboratory86

coordinates, in which all points obtained from the x− z plane view are assumed to fall on the y = 0 plane. The solid blue87

curve shows the contour with the y position inferred according to the method employed. The reconstruction in Figure S4 (d)88

shows the same bubble contours now in neck coordinates, where the vertical axis z′ is the axis of the bubble and the x′ and y′89

axes correspond to the solid blue and green lines shown in Figure S4 (a-b).90

The contours shown in Figure S4 are used solely for determining the orientation of the bubble and for visualization. To91

determine dx, the width of the bubble neck resolved in the x − z plane, we use a separate image gradient-based approach.92

First, we compute the gradient G(x, z) of the image (after applying a Gaussian blur with a standard deviation of 0.5 pixels)93

I(x, z), which is most intense at locations where the pixels change from light to dark abruptly (such as at the bubble interface).94

This is defined as95

G(x, z) =
√(

∂I

∂x

)2
+
(
∂I

∂z

)2
. [12]96

Then, the line through G corresponding to z′ = 0, that is, the pinch-off plane’s intersection with the x− z plane, is extracted.97

This is shown as the solid blue line in Figure S4 (a-b). The location of the two opposing sides of the neck are determined by98

finding the outermost suitable local maxima in the gradient of the image along this line, shown in the inset in Figure S4 (a-b).99

With these two points determined, the neck distance is determined as dx =
√

(cx′,r − cx′,l)2 + (cy′,r − cy′,l)2, (or equivalently100

dx =
√

(cx,r − cx,l)2 + (cy,r − cy,l)2 when transformed back into laboratory coordinates), where the subscripts l and r refer to101

the left and right sides of the neck. The z′ positions of the two points are identical and as such do not influence dx, since our102

neck detection imposes that the neck falls on the z′ = 0 plane. Occasionally, the neck position is corrected manually when the103

automated detection fails.104

A similar process is used to calculate dy as viewed from the y − z plane.105

The collapse rates of the two sides of the neck imaged in the x− z plane are v⊥,x,l = dcx′,l(t)/dt and v⊥,x,r = −dcx′,r(t)/dt,106

and those of the two sides of the neck imaged in the y − z plane are v⊥,y,l = dcy′,l(t)/dt and v⊥,y,r = −dcy′,r(t)/dt. The107

reported velocity curves are smoothed by applying a rolling median filter then a rolling mean filter to the raw data, where the108

window109

2. Additional experimental cases110

A. Pinch-off without background turbulence. Figure S5 shows one example of pinch-off recorded in a quiescent background.111

The α = 1/2 power-law scaling is observed.112
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Fig. S5. Pinch-off from a needle without turbulence. Left, a view of the bubble in the x− z plane just after pinch-off. Right, the tracked neck sizes and the α = 1/2 power law.

B. Cases involving neck shape oscillations. Figure S6 presents four cases in which oscillations of the neck shape whose period113

can be described by the collapse model of Schmidt et. al (6). Fits of the model to the experimental data (the dashed lines)114

involve specifying an offset about which the (dx − dy)/2 signal oscillates, which was not needed for the case shown in Figure 2115

in the paper.116

C. Cases in which d escapes self-similarity. Figure S7 and section C give five examples of cases in which the collapse escapes117

self-similarity before pinch-off. The collapse velocity of the four resolved points on the bubble neck is shown in the right of118

each figure.119
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Fig. S6. Four experimental cases in which the neck cross-section oscillates in shape during the pinch-off. Refer to Figure 2 in the main paper for a description of the data
presented. In some cases certain slices through the neck have been omitted when the bubble size is not completely resolved there due to the limited field of view in the y − z
plane. For all cases, dn = 2.7 mm, and clockwise from the top left, ε is 1500, 1500, 5400, and 1500cm2/s3.
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Fig. S7. Four cases in which a kink appears at the end and d escapes self-similarity, similar to those shown in Figure 3 in the paper. The kink formation time (as determined
from the images) is shown as the dashed orange line; this corresponds with the jump in velocity in a side of a neck. All cases have dn = 2.7 mm. From top to bottom, ε is 600,
5400, 600, and 1500cm2/s3.
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Fig. S8. See caption to Figure S7. Here, dn = 2.7 mm and ε = 1500 cm2/s3.
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D. Examples of the kink structure. The kink time is determined visually from the high-speed videos. Figure S9 shows snapshots120

of the developed kinks, taken 2/3 of the way between the kink formation and the final pinch-off.121

t0 tkink =  0.100 ms

t0 tkink =  0.280 ms

t0 tkink =  0.160 ms

t0 tkink =  0.190 ms

t0 tkink =  0.300 ms

t0 tkink =  0.080 ms

t0 tkink =  0.080 ms

t0 tkink =  0.270 ms

t0 tkink =  0.220 ms

t0 tkink =  0.140 ms

t0 tkink =  0.034 ms

t0 tkink =  0.120 ms

Fig. S9. Snapshots of the neck interface for a sample of 12 cases in which the kink, characterized by an abrupt change in curvature of the neck interface, was observed. The
visually-determined time of kink appearance t = t0 − tkink is shown above each set of images. For each case, the view near the neck region in the x− z and y − z planes
are shown at t ≈ t0 − tkink/3 to give a structure of the developed kink. Each image is 1.5mm wide.

3. Numerical simulations122

For the numerical simulations, the Basilisk solver (7–9) is used in three dimensions to solve the nonlinear incompressible123

Navier-Stokes equations in two phases with surface tension, where a momentum-conserving volume-of-fluid advection scheme124

is used to reconstruct the liquid-gas interface. Octree-type adaptive mesh refinement is used in order to minimize the125

computational requirements, and the refinement criteria are chosen so that maximum resolution is achieved on the bubble126

neck only in the final stages of pinch-off. In the simulations, the full bubble shapes are initialized in a quiescent medium, and127

the ratio between the liquid density ρ1 and gas density ρ2 is ρ1/ρ2 = 850; the corresponding viscosity ratio is µ1/µ2 = 5.12.128

The simulations do not include gravity and hence neglect buoyant effects. We consider three simulations, an axi-symmetric129
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Fig. S10. Numerical convergence for the 3D axisymmetric case. The two highest resolution cases are shown and exhibit both the self-similar pinch-off process, the higher
resolution achieving a thinner neck as expected.

configuration, used to validate the numerical approach, and axi-symmetric configuration with small elliptical perturbation on130

the neck, to reproduce the neck oscillation observed experimentally, and finally an asymmetric configuration to reproduce the131

escape from self-similarity behavior.132

We define the cylindrical interface profile of the axisymmetric bubble,133

r̂(θ) = − sin(θ)(1 + bP2(cos θ)), ẑ(θ) = cos(θ)(1 + aP2(cos θ)), [13]134

where P2(x) is the second-order Legendre polynomial, θ ∈ [0, π) is the polar angle, and a = 0.5, b = 1.8 produces an axisymmetric135

initial bubble with a neck prior to pinch-off. This configuration is inspired by earlier work from Lister (10), showing that such136

axi-symmetric initial shape lead to self-similar collapse of the bubble, independently of the particular values of the coefficient a137

and b which set the dumbbell shape.138

The typical initial neck radius r0 obtained with this initialization is related to the maximum bubble dimension D0 by139

r0/D0 = 1/30. The domain length is set to L0 = 1.2D0. The liquid phase sets the mass scale through its density ρ1,140

and a timescale through surface tension γ such that t̃ =
√
ρ/(γr3

0). The kinematic viscosity is set to ν1 = 3.2 × 10−2r2
0/t̃,141

corresponding to a Laplace number of La = 2r0γ/(ρ1ν
2
1 ) = 2× 105, which is similar to that of water-air interfaces at millimetre142

length scales.143

The neck sizes are extracted from the simulations by exporting the bubble interface as an .stl file and taking a slice through144

the pinch-off plane, yielding a set of line segments defining the intersection of the bubble interface and this plane. dx is the145

maximum of the x values of the endpoints of these segments minus the minimum of the x values, and dy is calculated in the146

same way.147

Grid convergence is achieved with respect to the neck thinning rate at times leading up to pinch-off, according to tests148

performed on the three-dimensional axisymmetric cases. Resolutions of ∆x = L0/2l with l = 13, 14 are tested for the149

three-dimensional case. The mesh adaptive refinement criterion is set so that the neck diameter is resolved with 6 − 10150

points throughout the pinch-off process. Thus the effective resolutions l = 13, 14 allow for the final neck to represented at151

approximately 250, 450 times thinner than the initial neck, with the highest resolution reached close to pinch-off. Figure S10152

shows the neck thickness profiles for these cases, with the pinch-off time calculated as the time at which the neck diameter153

reaches 3∆x. For each case, the two curves are indistinguishable for most of the pinch-off process, and only diverge slightly154

from each other at around 10−5 to 10−4 time units before pinch-off when they reach their respective maximum resolutions.155

The exponents on the curves match the expected theoretical and experimental result with α = 0.5. The axisymmetric case is156

shown in Figure S11(a)-(d). These results are in excellent agreement with the theoretical prediction and earlier numerical work157

(10–12).158

Now, we introduce corrections to the initial shape. Using Cartesian coordinates, non-axisymmetric corrections can be159

introduced,160

x(φ, θ) = r̂(θ) cosφ(1 + e) + T0z
2
0

z(φ, θ)2 + z2
0
, y(φ, θ) = r̂(θ) sinφ(1− e), z(θ) = ẑ(θ). [14]161

where φ ∈ [0, 2π) is the azimuthal angle. Recall, the axisymmetric bubble corresponds to T0 = z0 = e = 0; a bubble with a162

slight elliptical eccentricity sets e = 0.1; and the non-axisymmetric case uses the tilt parameter T0 = 0.7 and z0 = 0.5, e = 0.163

The axisymmetric case is shown in Figure S11(a)-(d), the elliptic in (e)-(h), and the tilted non-axisymmetric case in (i)-(l).164

The times of each snapshot vary but show in sequence the initial, early, late, and pinch-off stages for each case. In each case,165
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. S11. Snapshots of pinch-off process for various bubble geometries and initial conditions: (a)-(d) axisymmetric (two-dimensional), (e)-(h) axisymmetric (three-dimensional),
(i)-(l) elliptical, (m)-(p) tilted non-axisymmetric.
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the entire bubble evolves during the simulation; while the neck thins, the lobes of the bubble become more bulbous. In the case166

of the non-axisymmetric case, the asymmetry in the curvature is apparent and influences strongly the pinch-off process, as167

described in the main paper.168

For the elliptic case, the neck sizes dx and dy are shown in the left of Figure S12 (in blue and green) along with the average169

neck size (in red) which follows a power-law with d = (t0 − t)0.53 for much of the collapse. The oscillation signal (dx − dy)/2 is170

shown on the right, along with a fit to the model described by eq. 1 in the main paper. The oscillatory behavior observed171

experimentally is reproduced qualitatively, with good agreement between the numerical data and theoretical model.172
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Fig. S12. The simulated neck collapse when starting with an elliptical shape.

In addition to the base non-axisymmetric case with T0 = 0.7, we include cases with T0 = 0.7, 0.8, 0.9, 1 in order to determine173

the effect of the degree of asymmetry in the initial condition on the kink formation diameter d̄k. For the case T0 = 1, we set174

b = 1.85. For these cases the maximum resolution is l = 12 but the refinement criterion is tuned to allow for an effective175

resolution of 8− 14 cells on the neck or greater throughout the pinch-off process to obtain better resolution of the neck at the176

moment of kink formation. We verify convergence separately for these cases with an additional simulation for T0 = 0.8 at177

l = 14 which was restarted prior to kink formation from an l = 10 simulation, in Figure S13, showing close comparison for neck178

asymmetry (left) and neck growth rate (right) with respect to neck size close to pinch-off.179
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Fig. S13. Numerical convergence for the T0 = 0.8 asymmetric case, comparing a case with l = 12 (black) and l = 14, which is initialized at a certain point into a l = 10
simulation. Left shows the neck asymmetry (dx − dy)/2 as a function of the average neck size d, both taken in the z = 0 plane. Right shows the collapse rate−dd/dt
against the neck size d. The point of kink formation is denoted by the dashed line.
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4. Statistics of kink formation180

The parameter space for the experiments is shown in Figure S14, which lists the number of experiments considered at each181

condition. Since the bubble is pinned to a fixed needle before pinch-off, turbulent motions at scales much larger than the bubble182

(of typical velocity u′rms) sweeping past the needle induce stresses stretching the bubble that are balanced by surface tension at183

a scale lstretch = σ/(ρu′2rms), which spans from 0.4dn to 5dn. This length scale is also set by the turbulence and surface tension,184

so that there is a strong correlation between lstretch ∼ ε−2/3 and the Hinze scale dH ∼ ε−2/5 as shown on the left in Figure S14.185

We expect the role of the large-scale motions characterized by lstretch to be primarily to deform the bubble as a whole, while186

turbulent motions at the neck scale are responsible for the neck-scale deformations. The parameter space is also shown in187

terms of the ratio between the needle size and the Taylor microscale of the turbulence λ in the right of Figure S14.188
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Fig. S14. Left, the parameter space of all the experiments run in terms of the needle size dn divided by lstretch = σ/(ρu′2rms) and dH = (σ/ρ)3/5ε−2/5/2. The number
of experiments considered at each condition is shown in cyan. In addition to the data shown on the plot, at least three runs were conducted without turbulence for each needle
size. Right, the parameter space in terms of the dn/dH and dn/λ, where λ is the Taylor microscale of the turbulence.

We show in Figure S15 the dn/dH dependence of the power-law exponents α obtained by fitting a power-law collapse to the189

mean neck diameter. This contains the same data as is aggregated into a single distribution in Figure 4 in the main paper.190

The distributions are all centered near α = 1/2, with the spread of exponent values increasing as the turbulence parameter is191

increased.192

0.2 0.3 0.4 0.5 0.6 0.7 0.8 [-]

0

1

2

3

4

5

6

7

PD
F 

(
) [

-]

dn/dH [-]
[0.000, 0.543)
[0.543, 1.086)
[1.086, 1.629)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
dn/dH [-]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

st
d(

) [
-]

dn [ m]
1370
1600
1800
2160
2692
3430
4800

 [cm2/s3]
0
605
1496
5385

Fig. S15. The effect of dn/dH on the measured power-law exponent. The distribution of α values fit to the data, binned by dn/dH, is shown on the left. The standard deviation
of α for each experimental condition is shown on the right.

The maximum neck asymmetries reported for the experiments in the main paper are measured in the range when the neck193

size is smaller than dn/3 and, for the cases that kink, greater than dk. This maximum asymmetry tends to increase with the194

needle size and the turbulence dissipation rate, as is evidenced in Figure S16, which shows the distributions of the maximum195

asymmetries measured at each experimental condition.196

The larger this asymmetry is, the more likely a kink is to form. Figure S17 shows the likelihood of a kink forming given197

the measured maximum asymmetry for each needle. This plot confirms that the correlation between neck asymmetry and198
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Fig. S16. The distribution of maximum neck asymmetries |dx − dy|/2 observed for each combination of dn and ε. This metric of the neck deformation tends to increase as
either parameter is increased. The raw distributions are shown with the symbols and faint lines; Gaussian fits are shown in the thicker lines.

kink formation persists even after the needle size is controlled for. As additional evidence, we consider that the normalized199

covariance between max|dx − dy|/2 and dk, plotted in Figure 3 in the main paper, is 0.748. We then calculate the normalized200

covariance between the two parameters within each experimental condition defined by ε and dn, and find that the mean of all201

these normalized covariances is 0.523, with the standard deviation being 0.208. Thus, after controlling for the two independent202

variables in our experiment, there is a positive correlation between the neck asymmetry and kink formation size.203
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Fig. S17. The likelihood of a resolvable kink occurring given the needle size and the maximum asymmetry observed. Data is shown for individual needles as the colored lines,
and for all the data as the black line.

In the paper, we characterize the point of kink formation by the size of the neck when the first indication of the kink is204

observed, dk. Another possible choice would have been to report t0 − tk, the time of the kink formation before pinch-off.205

However, this value is set by both the point into the collapse at which the kink forms and the speed of the kinked collapse,206

making dk a more straightforward metric. Figure S18 shows the high correlation between dk and t0 − tk. The data can be207

described by a power law fit, (t0 − tk) ∝ d
1.38
k . The data is in close agreement with the capillary time at the kink scale,208

τcap,k =
√
ρ(dk/2)3/(2πσ), which is shown as the red dashed line.209

The distribution of kink sizes and kink times is shown for various bins of dn/dH in Figure S19. As it is increased, the kinks210

tend to appear earlier on and are larger.211
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Fig. S18. The kink time against the kink size. The colors and markers correspond to ε and dn, respectively, as indicated in Figure S14. The fit line shown in green is
(t0 − tk) ∼ d1.38

k , which is close to the capillary time given the kink size, shown as the dashed red line.

16 of 18 Daniel J. Ruth, Wouter Mostert, Stéphane Perrard, and Luc Deike



10 4 10 3

t0 tk [s]

101

102

103

104

PD
F 

[1
/s

]

dn/dH
[0.271, 0.723)
[0.723, 1.176)
[1.176, 1.628)
all data

10 4 10 3

dk [m]

102

103

PD
F 

[1
/m

]
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