1 DESCRIPTION OF SUPPLEMENTARY FILES

- 2 *List of Supplementary datasets*
- **Supplementary dataset 1**: Supermatrix of 171 gene clusters
- 4 **Supplementary dataset 2**: Supermatrix of non-missing-gene dataset
- 5 **Supplementary dataset 3**: Supermatrix of high alignment quality dataset
- 6 Supplementary dataset 4: Supermatrix of dataset with strong phylogenetic signal (average
- 7 BP >= 60%)
- 8 **Supplementary dataset 5**: Supermatrix of dataset with strong phylogenetic signal (average
- 9 BP >= 70%)
- 10
- 11 *Relationship between genome ID code used in Supplementary datasets 1-5 and species name*

Genome ID Code	Species Name
a_7	Aplosporella prunicola
a_97	Pyrenophora tritici-repentis
a_105	Saitoella complicata
a_130	Agaricus bisporus bisporus H97
a_131	Agaricus bisporus burnettii JB137-s8
a_132	Amanita muscaria
a_133	Amanita thiersii
a_134	Auricularia subglabra
a_135	Bjerkandera adusta
a_136	Boletus edulis
a_137	Botryobasidium botryosum
a_138	Ceriporiopsis subvermispora
a_139	Cerrena unicolor
a_140	Coniophora puteana
a_141	Coprinopsis cinerea
a_142	Cronartium quercuum
a_143	Cryptococcus neoformans var neoformans JEC21
a_144	Cryptococcus neoformans var. grubii H99
a_145	Cryptococcus vishniacii
a_146	Dacryopinax sp. DJM 731 SSP1
a_147	Daedalea quercina
a_148	Dichomitus squalens
a_149	Dioszegia cryoxerica

a_150	Fistulina hepatica
a_151	Fomitiporia mediterranea
a_152	Fomitopsis pinicola
a_153	Galerina marginata
a_154	Ganoderma sp. 10597 SS1
a_155	Gloeophyllum trabeum
a_156	Gymnopus luxurians
a_157	Hebeloma cylindrosporum
a_158	Heterobasidion irregulare
a_159	Hydnomerulius pinastri
a_160	Hypholoma sublateritium
a_161	Jaapia argillacea
a_162	Laccaria amethystina
a_163	Laccaria bicolor
a_164	Laetiporus sulphureus
a_165	Malassezia globosa
a_166	Melampsora laricis-populina
a_167	Mixia osmundae
a_168	Neolentinus lepideus
a_169	Paxillus involutus
a_170	Paxillus rubicundulus
a_171	Phanerochaete carnosa
a_172	Phanerochaete chrysosporium
a_173	Phlebia brevispora
a_174	Phlebiopsis gigantea
a_175	Piloderma croceum
a_176	Piriformospora indica
a_177	Pisolithus microcarpus
a_178	Pisolithus tinctorius
a_179	Pleurotus ostreatus PC15
a_180	Pleurotus ostreatus PC9
a_181	Plicaturopsis crispa
a_182	Polyporus arcularius
a_184	Postia placenta MAD-698-R-SB12
a_185	Puccinia graminis
a_186	Punctularia strigosozonata
a_187	Rhodotorula graminis
a_188	Schizophyllum commune
a_189	Scleroderma citrinum
a_190	Sebacina vermifera
a_191	Serpula lacrymans S7.3
a_192	Serpula lacrymans S7.9
a_193	Serpula lacrymans-shastensis
a_194	Sphaerobolus stellatus
a_195	Sporobolomyces roseus

1.0		
	a_196	Stereum hirsutum
	a_197	Suillus luteus
	a_198	Trametes versicolor
	a_199	Tremella mesenterica
	a_200	Tulasnella calospora
	a_201	Ustilago maydis
	a_203	Wolfiporia cocos
	a_204	cryptococcus gattii r265
	a_205	cryptococcus gattii wm276
	a_206	Exobasidium vaccinii
	a_207	Malassezia sympodialis
	a_208	Pseudozyma antarctica
	a_209	Pseudozyma hubeiensis
	a_210	Sporisorium reilianum
	a_211	Tilletiaria anomala
	a_212	Atractiellales sp.
	a_213	Puccinia striiformis
	a_214	Agaricostilbum hyphaenes
	a_215	Heterogastridium pycnidioideum
	a_216	Naiadella fluitans
	a_217	Rhodotorula minuta
	a_218	Tritirachium sp. CBS 265.96
	a_219	Sporobolomyces linderae

- 2 List of Supplementary Tables
- **Table S1**: Information of 91 fungal genomes investigated in this study
- **Table S2**: Domain structure and conservation of 171 gene clusters
- **Table S3**: Enrichment analysis of functional categories of 78 gene clusters that have single-copy
- 6 orthologs in yeast genome
- **Table S4**: Approximately Unbiased test of relationships between the three subphyla
- **Table S5**: Other tests of relationships between the three subphyla using CONSEL
- **Table S6**: Gene cluster removal in the evaluation of potential sequence bias
- **Table S7**: Stability of relationships between the three subphyla in CVTree
- 12 Supplementary Figure Legends

1	Figure S1: Distribution of peptide length of 171 gene clusters.
2	Figure S2: Functional categories of 171 gene clusters. (a-c) Bar chart of GO annotation in the
3	domain of Biological Process, Cellular Component and Molecular Function. SeqNr denotes the
4	number of sequences which have annotated hits in the nr database.
5	Figure S3: ML phylogeny of 91 fungal genomes using 171 single-copy gene clusters. This tree
6	is constructed using $LG+G+I+F$ model. Values on branches denote bootstrap support.
7	Figure S4: NJ phylogeny of 91 fungal genomes using 171 single-copy gene clusters. This tree is
8	constructed using JTT+ G model. Values on branches denote bootstrap support.
9	Figure S5: MP phylogeny of 91 fungal genomes using 171 single-copy gene clusters. Tree
10	searching method used here is Subtree-Pruning-Regrafting. Values on branches denote bootstrap
11	support.
12	Figure S6: Bayesian phylogeny of 91 fungal genomes using 171 single-copy gene clusters. This
13	tree is constructed using WAG+ I + G model. Values on branches denote posterior probability.
14	Figure S7: Full majority rule consensus tree of 91 fungal genomes. This tree is consensus of
15	phylogeny showed in Figure S3-S6.
16	Figure S8: ML phylogeny derived from the non-missing-gene dataset. This tree is constructed
17	using $LG+G$ model. Values on branches denote bootstrap support.
18	Figure S9: ML phylogeny derived from the high alignment quality dataset. This tree is
19	constructed using $LG+G+I+F$ model. Values on branches denote bootstrap support.
20	Figure S10: ML phylogeny derived from the dataset with strong phylogenetic signal (average
21	BP >= 60%). This tree is constructed using LG+ G + I + F model. Values on branches denote
22	bootstrap support.

Figure S11: ML phylogeny derived from the dataset with strong phylogenetic signal (average

BP > =70%). This tree is constructed using LG+*G*+*I*+*F* model. Values on branches denote
bootstrap support.

Figure S12: Distribution of indices that indicate sequence bias. (a) Density plot of average upper 3 quartile of LB score of gene clusters. Here threshold = 60 represent a stringent criterion. (2) 4 5 Density plot of average upper quartile of LB score of gene clusters. Here threshold = 70represent a loose criterion. (c) Density plot of standard deviation of LB score of gene clusters 6 (threshold = 50). (d) Density plot of R^2 of linear regression between patrixtic and uncorrected 7 distances of gene clusters. Here threshold = 0.65 represent a stringent criterion. (e) Density plot 8 of R^2 of linear regression between patrictic and uncorrected distances (threshold = 0.3) of gene 9 clusters. Here threshold = 0.3 represent a loose criterion. (f) Density plot of slope of the linear 10 regression between patristic and uncorrected pairwise distances (threshold = 0.1) of gene 11 clusters. 12 Figure S13: ML phylogenies derived from datasets after removal of gene clusters that 13

potentially introduce sequence bias. All trees were constructed using LG+G+I+F model. Values 14 on branches denote bootstrap support. (a) Phylogeny derived from the dataset by discarding gene 15 clusters with high mean value of LB score (threshold = 60). (b) Phylogeny derived from the 16 17 dataset by discarding gene clusters with high mean value of LB score (threshold = 70). (c) Phylogeny derived from the dataset by discarding gene clusters with high standard deviation of 18 LB score (threshold = 50). (d) Phylogeny derived from the dataset by discarding gene clusters 19 20 with high mean value of LB score (threshold = 70) or high standard deviation of LB score (threshold = 50). (e) Phylogeny derived from the dataset by discarding gene clusters with low 21 22 slope value (threshold = 0.1). (f) ML phylogeny derived from the dataset by discarding gene clusters with low R^2 value (threshold = 0.3). (g) Phylogeny derived from the dataset by 23

5

- 1 discarding gene clusters with low R^2 value (threshold = 0.65). (h) Phylogeny derived from the
- 2 dataset by discarding gene clusters with low R^2 value (threshold = 0.3) or low slope value
- 3 (threshold = 0.1). (i) Phylogeny derived from the dataset by discarding gene clusters with low R^2
- 4 value (threshold = 0.65) or low slope value (threshold = 0.1). (j) Phylogeny derived from the
- 5 dataset by discarding gene clusters with low R^2 value (threshold = 0.65) or high mean value of
- 6 LB score (threshold = 60) or low slope value (threshold = 0.1).
- 7 Figure S14: Full CVTree of 91 fungal genomes using their whole-gene repertoires.