Environ Health Perspect

DOI: 10.1289/EHP5688

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Association between Heat Exposure and Hospitalization for Diabetes in Brazil during 2000–2015: A Nationwide Case-Crossover Study

Rongbin Xu, Qi Zhao, Micheline S.Z.S. Coelho, Paulo H.N. Saldiva, Sophia Zoungas, Rachel R. Huxley, Michael J. Abramson, Yuming Guo, and Shanshan Li

Table of Contents

Table S1. ICD-10 codes of different types of diabetes mellitus with different complications.

Table S2. Comparison of daily mean temperature between case days and controls days that included in analyses.

Table S3. The association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and diabetes hospitalization at lag0-3 days.

Table S4. The association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and diabetes hospitalization, stratified by diabetes subtypes, and by sex, age, region, and complications.

Table S5. Results of sensitivity analysis by changing maximum lag of daily mean temperature from three to seven days and df of lag days from three to four.

Table S6. Results of sensitivity analysis by adjusting for relative humidity using data of 193 cities.

Table S7. Sensitivity analyses by changing the definition of hot season.

Table S8. The association between temperature and hospitalization for diabetes in different seasons.

Figure S1. Time-series plot of daily mean temperature in a selected city (São Joaquim) during the hot season between 2000 and 2015.

Figure S2. The linearity of the relationship between daily mean temperature during the hot seasons and diabetes hospitalization at the national level, modelled by a distributed lag non-linear model with nature cubic spline of df=3 for both temperature and lag.

Figure S3. The lag pattern across 0-3 lag days of the association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and diabetes hospitalization (odds ratios with 95% CI), stratified by sex and age group.

Figure S4. The lag pattern across 0-3 lag days of the association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and diabetes hospitalization (odds ratios with 95% CI), stratified by regions.

Figure S5. The lag pattern across 0-3 lag days of the association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and diabetes hospitalization (odds ratios with 95% CI), stratified by complications.

Figure S6. The association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and diabetes hospitalization (odds ratios with 95% CI), stratified by diabetes subtype and by region.

Figure S7. The association between heat exposure (every 5°C increase in daily mean temperature during the hot season) and diabetes hospitalization (odds ratios with 95% CI), stratified by diabetes subtype and by complication.