
1 Supplemental methods 

 Vaccine Details 
NYVAC is a combination of two attenuated vaccinia viruses, one NYVAC-HIV-PT1 contained DNA 

expressing HIV clade C ZM96 gp140 and the other NYVAC-HIV-PT4 contained DNA expressing clade 

C ZM96 Gag, ZM96 gp120 and a CN54 Pol-Nef fusion construct and two clade C gp120 proteins with 

MF59 adjuvant (Tartaglia et al., 1992). NYVAC was administered intramuscularly as 1mL, each at a 

concentration of 5 x 106 PFU/mL, of NYVAC-HIV-PT1 and NYVAC-HIV-PT4. The trivalent bare DNA 

plasmid, administered at a volume of 1mL and concentration 4mg/mL, also expressed the clade C ZM96 

Gag, ZM96 gp120 and a CN54 Pol-Nef fusion construct. It was developed at the Dale and Betty Bumpers 

Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National 

Institutes of Health (NIH) (Bethesda, MD, USA). AIDSVAXⓇ, is a bivalent gp120 glycoprotein, 

containing sequences of the MN and A244 HIV-1 strains, currently developed by Global Solutions for 

Infectious Diseases. It is administered intramuscularly at a volume of 1ml and concentration of 300 

mcg/ml along with 600mcg Alum/ml Aluminum hydroxide gel adjuvant. 

 Microbial DNA Extraction 
Rectal secretion samples were extracted along with the antibody samples from rectal wecks as described 

previously [3]. Briefly, weck cell sponges rinsed three times with extraction buffer (1X PBS (Invitrogen 

10010-023), Protease inhibitor (Sigma 539131), and 0.25% bovine serum albumen (Sigma A8412)) 

which was removed from the filter after each rinse by centrifugation on a spin-X filter at 16000 x g. The 

MoBio Bacteremia kit was used to extract DNA from the rinse solution. 



 Processing of sequence data 
Microbial 16S V3-V4 amplicon data were processed and analyzed using a series of BASH scripts and 

Python Jupyter Notebooks containing R code that are available at 

(https://github.com/cramjaco/Nyvac_096_Microbiome). Briefly, samples were demultiplexed and 

barcodes and primers removed in QIIME1. Sequence variant (SV) assignment was carried out using an 

adaptation of the DADA2 pipeline for 454 data (https://benjjneb.github.io/dada2/faq.html#can-i-use-

dada2-with-my-454-or-ion-torrent-data, see Supplemental methods). SVs were named with DADA2’s 

taxonomic identification functions and a phylogenetic tree of SVs from within all samples was generated 

in the R environment (v. 3.4.1) using the phangorn package [4]. For the purposes of this analysis, we 

removed 31 SVs that were unidentified to the Phylum level, 7 SVs from phyla that were found in the data 

set fewer than 20 times each (Verrumicrobia, Tenericutes, Elusimicrobia and Synergistetes), and 386 SVs 

that were present in fewer than 10% of the samples. 

To test the association of microbial subpopulations with immunogenicity and vaccine response, we 

clustered the 16S SVs at multiple levels of phylogenetic relatedness. Because of the inconsistencies 

observed with taxonomic classification algorithms [5], we avoided a taxonomic approach to phylogenetic 

clustering, instead using the phylogenetic diversity based on multiple sequence alignment of the complete 

set of SVs in this study. We created a set of clusters with the goal of approximating the degree of 

granularity that would be achieved by clustering at the commonly accepted phylogenetic levels (e.g. 

Phylum, Class), while allowing our groups to be independent of any taxonomic classification algorithm.  

Operationally, phylogenetic clustering was performed by (1) identifying the number of unique taxa that 

were predicted to be present at each taxonomic level (e.g. Phylum, Class) according to DADA2’s 

implementation of RDP’s naive Bayesian classifier [6], (2) performing agglomerative clustering on the 

phylogenetic tree of SV sequences to create the number of groups identified at each of those taxonomic 
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levels, and (3) naming the resulting phylogenetic groups according to the highest taxonomic level shared 

by SVs within that group. 

 Global Tests 
In two versions of this analysis, immunological variables were “median-split” and treated as a binary 

variable, and secondarily box-cox transformed. This same kernel regression method was used to compare 

Jensen-Shannon divergence to each of the BAMA measurements. To perform this analysis, Jensen-

Shannon distance matrix was derived from community structure data that had been agglomerated to each 

taxonomic level (Supplement Section 1.3). MiRKAT was then provided a list of kernels, each one 

representing distance matrices from communities aggregated to different levels. Then for each variable of 

interest, MiRKAT calculated kernel regression p-values for each level of taxonomic agglomeration. For 

the of Jensen-Shannon kernel regression tests of different taxonomic agglomerations, MiRKAT calculated 

an omnibus p-value, which determines whether a family of related tests shows significance overall. We 

performed logistic regression of MDS1, the major component of weighted UniFrac variability, against 

both the median split transformed values (respectively) of each IgG and IgA. As a secondary analysis, we 

performed linear regression of MDS1 against the box-cox transformed measurements. For all analyses, 

we report coefficients and McFadden’s R2 values for the linear and logistic regression approaches, but not 

for the kernel regression approach, which reports p-values but not coefficients. 

Species richness was estimated with the breakaway package. We used breakaway’s betta function to 

examine the relationship between richness and median split and box-cox transformed immunogenicity 

measurements. We also examined whether richness was associated with unifrac distance, again using the 

MiRKAT package; or to MDS1, using breakaway’s betta function. 



 Local Regression Tests 
For each immunologic variable that was found to be statistically significant under the global test, we 

performed (at each agglomeration level) logistic regression of each taxon’s centered log-ratio (clr) 

transformed relative abundance against median split immunological measurements. Multiplicity 

adjustment to control the false-discovery rate (FDR) was performed using the Benjamini and Holchberg 

method [7], but implemented by the q-value R package [1] across all taxa for each immune variable at 

each level of agglomeration. We identified which taxonomic agglomeration level - immunologic variable 

combinations were associated with some FDR < 0.2. These local associations are intended to be 

descriptive, and even with FDR < 0.2, we do not mean to imply that any specific association is 

statistically significant. 

 Statistical associations between Family level groups, 
and between Families and Immune variables: 

Because the local tests identified that family level groups had more statistically significant interactions 

than groups at other levels (see Results Section 2.4), subsequent analysis focused on family level patterns. 

We report which family level taxa are associated, via logistic regression with each immunologic variable 

that relates to community structure via the global kernel regression tests. Gp120 binding IgG; which 

associated more strongly with community structure when it was treated as a discrete (Table 1), rather than 

a continuous (Table S2) variable; was also treated as a continuous variable, box-cox transformed, and 

linearly regressed against species abundances. 

To understand how these local associations related to microbial community structure patterns, we 

investigated whether those taxa that were associated with immunological variable abundance were also 

associated with each other. The proportionality method [8], was used to test for statistical associations 

between family level groups, while accounting for compositionality of the groups. We examined whether 



these co-occurring families were systematically related to relationships between the taxa and immune 

measurements. 
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