
Supplementary to ‘Data-driven acceleration of

photonic simulations’

Rahul Trivedi1,2,*, Logan Su1, Jesse Lu2, Martin F. Schubert2, and Jelena Vuckovic1

1E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
2X, Mountain View, CA 94043, USA

*rtrivedi@stanford.edu

1 Data-driven GMRES

By following the same steps as in GCROT (Generalized Conjugate Residual with inner Orthogonalization
adn outer Truncation), an efficient update rule can be developed for the data-driven GMRES iteration (de-
fined by Eq. 3 of the main text). In this section, we provide more details on the derivation of this update rule.

Notation and prelimnaries:

1. The system of equations being solved will be denoted by Af = b, with f being the unknown vector
being solved for. We also denote by D the size of the system of equations i.e. A ∈ CD×D and f, b ∈ CD.
It will be assumed that A is invertible.

2. Given the vectors v1, v2 . . . vN with which GMRES has to be accelerated (which are assumed to be
linearly independent, but not necessarily orthogonal), we will denote by V the matrix that is formed
with these vectors as its columns. Note that V ∈ CD×N and span(v1, v2 . . . vN) = range(V).

3. Kn(A, b) will denote the Krylov subspace of dimensionality n that is generated by the matrix A and
the vector b: Kn(A, b) = span(b, Ab,A2b . . . An−1b).

4. Ã and b̃ are defined by:

Ã = P⊥(Av1, Av2 . . . AvN)A (1a)

b̃ = P⊥(Av1, Av2 . . . AvN)b (1b)

where P⊥(Av1, Av2 . . . AvN) is the operator projecting a vector out of span(Av1, Av2 . . . AvN). For
convenience, we will denote this operator by just P⊥. We note that, in general, Ã is not sparse even
if A is sparse, but for small N multiplication of Ã with a vector can be computed efficiently by first
multiplying the vector by A, followed by projecting the resulting vector out of span(Av1, Av2 . . . AvN).

5. To conveniently work with P⊥, we perform an incomplete QR decomposition on the matrix AV to
obtain an orthogonal matrix C ∈ CD×N and an upper triangular matrix R ∈ CN×N : AV = CR. It
then immediately follows that P⊥ = I−CC†. Moreover, it is also convenient to precompute and store
R−1 (Note that if A is invertible, and v1, v2 . . . vN are linearly independent then R is invertible).

Arnoldi iteration: The ith iteration of data-driven GMRES approximates the solution to Af = b with fi,
where fi is given by:

fi = argmin
f∈range(V)⊕Ki(Ã,b̃)

||Af − b||2 (2)

1

One of the key ingredients of the GMRES iteration is the Arnoldi iteration which generates an orthonormal
basis for the Krylov subspace Ki+1(Ã, b̃) from the orthonormal basis for the Krylov subspace Ki(Ã, b̃).
Denoting the orthonormal basis for Ki(Ã, b̃) by {q1, q2 . . . qi}, note that span(q1, q2 . . . qi, Ãqi) = Ki+1(Ã, b̃).
Therefore, qi+1 can be computed by orthonormalizing Ãqi against {q1, q2 . . . qi}:

qi+1 =
vi+1

||vi+1||
, where vi+1 = Ãqi −

i∑
j=1

(q†j Ãqi)qj (3)

In our implementation, we assume q1 = b̃/||b̃||, and use Eq. 3 to generate q2, q3 . . . and so on. Note that
qi ⊥ span(Av1, Av2 . . . AvN) ∀ i, or equivalently C†Qi = 0 ∀ i. Denoting by Qi the matrix formed with
the vectors q1, q2 . . . qi as its columns (Qi ∈ CD×i), the Arnoldi iteration can be expressed as the following
relationship between Qi+1 and Qi:

ÃQi = Qi+1Hi,i+1 =⇒ AQi = Qi+1Hi,i+1 + CC†AQi (4)

where Hi,i+1 ∈ C(i+1)×i is an upper Hessenberg matrix defined by:

Hi,i+1 =

q†1Ãq1 q†1Ãq2 q†1Ãq3 . . . q†1Ãqi
||v2|| q†2Ãq2 q†2Ãq3 . . . q†2Ãqi

0 ||v3|| q†3Ãq3 . . . q†3Ãqi
0 0 ||v4|| . . . q†4Ãqi
...

...
...

. . .
...

0 0 0 . . . ||vi+1||

(5)

Calculating fi: Consider now solving the optimization problem in Eq. 2. Since the optimization variable f
is in the space range(V)⊕Ki(Ã, b̃), it can be expressed as:

f = V R−1x + Qiy (6)

where x ∈ CN and y ∈ Ci. Thus, it follows that:

||Af − b||2 = ||AV R−1x + AQiy − b||2

=

∣∣∣∣∣∣∣∣[C Qi+1]

[
I C†AQi

0 Hi,i+1

] [
x
y

]
− b

∣∣∣∣∣∣∣∣2 (7)

wherein we have used AV = CR and Eq. 4. Note that since C and Qi+1 are independently orthogonal matrix,
and C†Qi+1 = 0, it follows that [C Qi+1] is an orthogonal matrix. Eq. 7 can now be further simplified to:

||Af − b||2 =

∣∣∣∣∣∣∣∣ [I C†AQi

0 Hi,i+1

] [
x
y

]
−
[
C†b

Q†i+1b

] ∣∣∣∣∣∣∣∣2 + ||(I− CC† −Qi+1Q
†
i+1)b||2 (8)

Therefore, fi = V R−1xi + Qiyi, where

xi, yi = argmin
x,y

∣∣∣∣∣∣∣∣ [I C†AQi

0 Hi,i+1

] [
x
y

]
−
[
C†b

Q†i+1b

] ∣∣∣∣∣∣∣∣2 (9)

We have thus reduced the problem of calculating fi, which was a constrained least squares problem, to an
unconstrained least squares problem (Eq. 9) of size i + N , which can be solved numerically (e.g. using QR
factorization).

2

(a) (b) (c)

(d) (e)

Figure 1: Performance of the different preconditioners described in section 2 on the evaluation dataset.
(a) Jacobi preconditioner, (b) Gauss-Siedel preconditioner, (c) preconditioner from ref. [17] of main text (d)
Symmetric over-relaxation (SOR) preconditioner for different relaxation parameter ω and (e) Incomplete LU
preconditioner for different drop tolerances.

2 Benchmarks for data-free preconditioners

Here we present the results of applying some data-free preconditioners on the simulation problem. Given a
left preconditioner PL and a right preconditioner PR, the system of equations being solved is transformed
from Af = b to A′f ′ = b′ where:

A′ = PLAPR, b′ = PLb and f ′ = P−1R f (10)

We study the following four preconditioners:

1. Jacobi preconditioner : The Jacobi preconditioner [1] is given by:

PL = D(A)−1 and PR = I (11)

where D(A) is a diagonal matrix formed from the diagonal entries of the matrix A. The performance
of Jacobi preconditioner on the evaluation dataset is shown in Fig. 1(a).

2. Gauss-Siedel preconditioner : The Gauss-Siedel preconditioner is given by:

PL = [D(A) + L(A)]−1 and PR = I (12)

where L(A) is a strictly lower-triangular matrix formed by the elements of A below the main diagonal.
Note that application of this preconditioner requires the solution a lower triangular system of equations.
The performance of the Gauss-Siedel preconditioner on the evaluation dataset is shown in Fig. 1(b).

3. Preconditioner from ref. [17] : This preconditioner is specific to Maxwell’s equations. PR and PL are
diagonal matrices constructed from the grid spacing (including the complex stretching due to PMLs)
in the simulation domain. Details of this preconditioner can be found in ref. [17] for main text. The
performance of this preconditioner on the evaluation dataset is shown in Fig. 1(c).

3

4. Symmetric over-relaxation (SOR) preconditioner : The SOR preconditioner [1] is given by:

PL = [D(A) + ωL(A)]−1 and PR = I (13)

where L(A) is a strictly lower-triangular matrix formed by the elements of A below the main diagonal
and ω is a tunable parameter (referred to as the relaxation parameter) in the preconditioner which
can be between 0 to 2. Note that the SOR preconditioner for ω = 1 is identical to the Gauss-Siedel
preconditioner. Additionally, application of the SOR preconditioner requires the solution of a lower
triangular system of equations. The performance of the SOR preconditioner on the evaluation dataset
is shown in Fig. 1(d) — we see that the best performance of SOR preconditioner on our dataset is
achieved for ω = 1.25.

5. Incomplete LU : This preconditioner seeks an upper and lower triangular matrix, U and L such that
the product LU is approximately equal to the matrix A [1]. The preconditioner is then given by:

PL = U−1L−1 and PR = I (14)

The deviation of the LU from A is controlled with a drop tolerance parameter — a larger drop tolerance
implies a faster computation of L and U but a worse approximation to A and therefore a less useful
preconditioner. The performance of incomplete LU preconditioner on the evaluation dataset is shown
in Fig. 1(e) for drop tolerances of 0.1, 0.01 and 0.001.

References

[1] Yousef Saad. Iterative methods for sparse linear systems, volume 82. siam, 2003.

4

