Appendix: 2016 Schutt Air XP Pro v.1.0

Figures	2
Tables	2
Physical Measurement Comparison	4
Material Testing Validation	5
Component Testing Validation	. 11
Validation Test Overview	. 13
Correlation Analysis	. 19

Figures

Figure A1. Material testing validation for the thermoplastic outer shell
Figure A2. Visualizes the position of each type of foam tested relative to the helmet
Figure A3. Material testing validation for the foam
Figure A4. Material testing validation for the vinyl padding covering.
Figure A5. Material testing validation for the conical absorbers
Figure A6. Shows varying degrees of conical absorber buckling between the single cone compression test and the full-helmet 4.9 m/s frontal Hybrid III drop test. A) Single cone compression test at max deflection B) Compression of the conical absorbers at the start of the simulation C) Compression of the conical absorbers at 10 ms. Note that parts of the helmet have been visually hidden to highlight the conical absorber response
Figure A7. Material testing validation for the chinstrap
Figure A8. Component level testing validation for the facemask
Figure A9. Component level testing validation for the thermoplastic outer shell. The data begins after an initial preloading
Figure A10. Component level testing validation for the meso-scale padding. High rate 10 m/s filtered 10,000 Hz SAE ms
Figure A11. Fitting of helmet onto a HIII head form17
Figure A12. Visual heat map of first principle stress experienced by A) Thermoplastic outer shell, B) Conical absorbers, C) Foam, D) Chinstrap in the 6.1 m/s front boss pendulum impact
Figure A13. Histogram showing the distribution of CORA scores for each boundary condition setup by number of simulations for each range of CORA scores.
Tables
Table A1. Physical thickness of model components and a mass comparison between the modeland physical helmet.4
Table A2. Linear impactor (LI) validation tests. 13
Table A3. Drop tower (DI) validation tests with NOCSAE head form. 14
Table A4. Drop tower (DI) validation tests with HIII head form
Table A5. Pendulum impact (PI) validation tests. 16

Table A6. Breakdown of the various helmet components in terms of element type, size, and to element number.	tal 18
Table A7. CORA scores for the pendulum impact (PI) with hybrid III head form	19
Table A8. CORA scores for the linear impact (LI) with hybrid III head form	20
Table A9. CORA scores for the drop impact (DI) with NOCSAE head form.	21
Table A10. CORA scores for the drop impact (DI) with Hybrid III head form	21

Physical Measurement Comparison

Table A1. Physical thickness of model components and a mass comparison between th	ne
model and physical helmet.	

Component	Thickness (mm)	Measured Mass (kg)	Model Mass (kg)
Facemask	5.19 / 6.15	0.451	0.452
Outer Shell	Outer Shell 3.55		0.673
Conical Absorbers	1.09	0.281	0.292
Vinyl Foam Covering	0.50 / 0.60	0.203	0.26
Foams	7.5 – 11.9		
Chin Cup/Strap	2.00	0.062	0.035
Total	~	1.670	1.712

Material Testing Validation

Figure A1. Material testing validation for the thermoplastic outer shell.

Figure A2. Visualizes the position of each type of foam tested relative to the helmet.

Figure A4. Material testing validation for the vinyl padding covering.

Figure A5. Material testing validation for the conical absorbers.

Figure A6. Shows varying degrees of conical absorber buckling between the single cone compression test and the full-helmet 4.9 m/s frontal Hybrid III drop test. A) Single cone compression test at max deflection B) Compression of the conical absorbers at the start of the simulation C) Compression of the conical absorbers at 10 ms. Note that parts of the helmet have been visually hidden to highlight the conical absorber response.

Figure A7. Material testing validation for the chinstrap.

Component Testing Validation

Figure A9. Component level testing validation for the thermoplastic outer shell. The data begins after an initial preloading.

Figure A10. Component level testing validation for the meso-scale padding. High rate 10 m/s filtered 10,000 Hz SAE ms.

Validation Test Overview

Con	mpact figuration	Evaluation Criteria					
	Impact Velocity [m/s]	Force versus Time	L Acce vers	inear eleration sus Time	Angular Velocity	Simulation	Experiment
A	5.5 7.4 9.3	Contact Force (Impact direction)	Head CG (XYZ)	Impactor (Impact direction)	Head CG (XYZ)		Budden and
AP	5.5 7.4 9.3	Contact Force (Impact direction)	Head CG (XYZ)	Impactor (Impact direction)	Head CG (XYZ)		and the second
В	5.5 7.4 9.3	Contact Force (Impact direction)	Head CG (XYZ)	Impactor (Impact direction)	Head CG (XYZ)		
С	5.5 7.4 9.3	Contact Force (Impact direction)	Head CG (XYZ)	Impactor (Impact direction)	Head CG (XYZ)		
D	5.5 7.4 9.3	Contact Force (Impact direction)	Head CG (XYZ)	Impactor (Impact direction)	Head CG (XYZ)		
F	5.5 7.4 9.3	Contact Force (Impact direction)	Head CG (XYZ)	Impactor (Impact direction)	Head CG (XYZ)		
R	5.5 7.4 9.3	Contact Force (Impact direction)	Head CG (XYZ)	Impactor (Impact direction)	Head CG (XYZ)	E Contraction	
UT	5.5 7.4 9.3	Contact Force (Impact direction)	Head CG (XYZ)	Impactor (Impact direction)	Head CG (XYZ)		

Table A2. Linear impactor (LI) validation tests.

Impact Configuration		Evaluation Criteria				
	Drop Height [ft]	Force versus Time	Linear Ac versu	Linear Acceleration Simulation Experime		Experiment
Back*	1.6 2.6 4.6 7.0	Contact Force (XZ)	Head CG (X)	Carriage Acc. Z		
Front	1.6 2.6 4.6 7.0	Contact Force (XZ)	Head CG (XZ)	Carriage Acc. Z		
Mask*	1.6 2.6 4.6	Contact Force (XZ)	Head CG (X)	Carriage Acc. Z		
Side	1.6 2.6 4.6 7.0	Contact Force (XZ)	Head CG (YZ)	Carriage Acc. Z		
Тор	1.6 2.6 4.6 7.0	Contact Force (XZ)	Head CG (XZ)	Carriage Acc. Z		

 Table A3. Drop tower (DI) validation tests with NOCSAE head form.

lm Config	pact juration	Evaluation Criteria					
	Drop Height [ft]	Force versus Time	Linear Ac versu	celeration s Time	Simulation	Experiment	
Back	1.6 4.6 7.0	Contact Force (XZ)	Head CG (XYZ)	Carriage Acc. Z			
Front	1.6 4.6 7.0	Contact Force (XZ)	Head CG (XYZ)	Carriage Acc. Z			
Side	1.6 4.6 7.0	Contact Force (XZ)	Head CG (XYZ)	Carriage Acc. Z			
Тор	1.6 4.6 7.0	Contact Force (XZ)	Head CG (XYZ)	Carriage Acc. Z			

 Table A4. Drop tower (DI) validation tests with HIII head form.

Impact Configuration			Evaluati					
	Impact Velocity [m/s]	Force versus Time	Linear Acceleration versus Time		Angular Velocity	Simulation		
	3.0	Contact	Hoad					
Front	4.6	Force (Impact		(Impactor direction)	Head CG (XYZ)	TUS		
	6.1	direction)		unection)	direction)			
Front Boss	3.0	Contact Force (Impact direction)	Contact	Hood				
	4.6			(Impactor direction)	Head CG (XYZ)			
	6.1		(XYZ)					
	3.0	Contact Force (Impact direction)		la constante de				
Side	4.6		Force (Impact	Force (Impact	Head CG (XY7)	CG (Impactor Hea CG (Impact (X XXZ) direction	Head CG (XYZ)	
	6.1		direction)	direction				
	3.0	Contact	Contact Hand Inconstant	Impactor	Head CG (XYZ)			
Back	4.6	Force (Impact		(Impactor direction)				
	6.1	direction)	(X12)	direction)				

 Table A5. Pendulum impact (PI) validation tests.

Figure A11. Fitting of helmet onto a HIII head form.

С

Figure A12. Visual heat map of first principle stress experienced by A) Thermoplastic outer shell, B) Conical absorbers, C) Foam, D) Chinstrap in the 6.1 m/s front boss pendulum impact.

Table A6. Breakdown of the various helmet components in terms of element type, size, andtotal element number.

Component	Element Type	Element Edge Length (Approx.)	# Elements
Facemask	1D Beam	10 mm	202
Helmet Shell	2D Quad	3 mm	22,418
Conical Absorbers	Conical Absorbers 2D Quad 1 mm		225,673
Vinyl Covering	2D Quad	3.5 mm	12,926
Foams	Foams 3D Hexahedral		13,284
Chin Cup	Chin Cup 2D Quad 3 mm		780
Chin Strap 2D Quad / 1D Beam		3.1 mm / single beam	870 / 4
Full Helmet			276,157

*Vinyl covering shares coincident nodes with underlying foam.

Correlation Analysis

Pendulum Impact (PI)							
CORA	Carriage_Accel	Accel	Ang_Vel	Total			
Front_1	0.821	0.756	0.543	0.706			
Front_2	0.629	0.695	0.647	0.657			
Front_3	0.535	0.649	0.646	0.610			
Front_Boss_1	0.758	0.582	0.720	0.687			
Front_Boss_2	0.778	0.645	0.833	0.752			
Front_Boss_3	0.662	0.603	0.753	0.672			
Back_1	0.804	0.822	<mark>0.836</mark>	<mark>0.820</mark>			
Back_2	0.946	0.894	0.868	0.902			
Back_3	0.860	0.780	0.894	0.845			
Side_1	0.839	0.815	0.865	0.840			
Side_2	_2 0.922 0.8		0.906	0.907			
Side_3	0.926	0.871	0.904	0.900			
				<mark>0.775</mark>			

Table A7. CORA scores for the pendulum impact (PI) with hybrid III head form.

	Linear Impact (LI)							
CORA	Carriage_Accel	Head_Lin_Accel	Head_Ang_Vel	Force	Total			
AP_5	0.862	0.741	0.707	0.726	0.759			
AP_7	0.757	0.721	0.832	0.755	0.766			
AP_9	0.882	0.793	0.832	0.852	0.840			
A_5	0.864	0.805	0.676	0.792	0.784			
A_7	0.917	0.761	0.720	0.816	0.804			
A_9	0.567	0.775	0.689	0.777	0.702			
B_5	0.930	0.866	0.821	0.719	0.834			
B_7	0.917	0.865	0.874	0.741	0.850			
B_9	0.933	0.862	0.881	0.787	0.866			
C_5	0.871	0.835	0.740	0.866	0.828			
C_7	0.869	0.818	0.738	0.822	0.812			
C_9	0.872	0.812	0.724	0.825	0.808			
D_5	0.825	0.779	0.896	0.665	0.791			
D_7	0.831	0.784	0.905	0.655	0.794			
D_9	0.728	0.789	0.875	0.663	0.764			
F_5	0.645	0.673	0.641	0.728	0.672			
F_7	0.838	0.671	0.668	0.783	0.740			
F_9	0.649	0.796	0.724	0.676	0.711			
R_5	0.865	0.804	0.687	0.772	0.782			
R_7	0.861	0.791	0.738	0.780	0.793			
R_9	0.825	0.813	0.790	0.812	0.810			
UT_5	0.750	0.752	0.821	0.679	0.750			
UT_7	0.766	0.769	0.760	0.660	0.739			
UT_9	0.588	0.768	0.769	0.694	0.705			
					0.779			

 Table A8. CORA scores for the linear impact (LI) with hybrid III head form.

Drop Impact NOCSAE (DI)					
CORA	Carriage_Accel	Accel	Force	Total	
Front_1	0.980	0.820	0.838	0.879	
Front_2	0.899	0.829	0.789	0.839	
Front_3	0.854	0.850	0.798	0.834	
Front_4	0.882	0.805	0.827	0.838	
Top_1	0.753	0.531	0.712	0.665	
Top_2	0.689	0.626	0.508	0.608	
Top_3	0.816	0.633	0.711	0.720	
Top_4	0.872	0.618	0.789	0.759	
Side_1	0.889	0.567	0.810	0.755	
Side_2	0.956	0.719	0.871	0.848	
Side_3	0.973	0.702	0.906	0.860	
Side_4	0.954	0.625	0.864	0.814	
				0.785	

Table A9. CORA scores for the drop impact (DI) with NOCSAE head form.

Table A10. CORA scores for the drop impact (DI) with Hybrid III head form.

Drop Impact Hybrid III (DI)					
CORA	Carriage_Accel	Accel	Force	Total	
Front_1	0.851	0.808	0.805	0.821	
Front_3	0.897	0.837	0.911	0.882	
Front_4	0.911	0.774	0.885	0.857	
Back_1	0.808	0.578	0.689	0.692	
Back_3	0.752	0.648	0.680	0.693	
Back_4	0.691	0.669	0.728	0.696	
Top_1	0.665	0.539	0.551	0.585	
Top_3	0.790	0.600	0.597	0.662	
Top_4	0.697	0.573	0.654	0.641	
Side_1	0.682	0.588	0.614	0.628	
Side_3	0.798	0.576	0.725	0.699	
Side_4	0.726	0.534	0.704	0.654	
	0.709				

CORA Score Distribution

Figure A13. Histogram showing the distribution of CORA scores for each boundary condition setup by number of simulations for each range of CORA scores.