Supplementary Material

Antimicrobial resistance genetic factor identification from whole-genome sequence data using deep feature selection

Jinhong Shi¹, Yan Yan¹, Matthew G. Links^{1,2}, Longhai Li³, Jo-Anne R. Dillon^{4,5}, Michael Horsch¹ and Anthony Kusalik^{1*}

*Correspondence: tony.kusalik@usask.ca ¹Department of Computer Science, University of Saskatchewan, 110 Science Place, S7N 5C9 Saskatoon, Canada Full list of author information is available at the end of the article

Section 1: Back-propagated Gradients in Neural Network Training for Feature Selection

It is an optimization problem to find the weights of a neural network by minimizing its cost function. A general form of cost functions can be written as a summation of loss function and regularized items [1]:

$$J(w) = C(w) + \lambda_2 \sum_{i=1}^{p} \alpha_{2,i} |w_i|^2 + \lambda_1 \sum_{i=1}^{p} \alpha_{1,i} |w_i|$$
(1)

where

$$C(w) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \sum_{j=1}^{p} x_{ij} w_j)$$

is the loss function that measures the difference between true values and predictive values. The second item in Equation (1) is a generalized form of L_2 regularization and the third one is L_1 regularization. The parameters λ_1 and λ_2 control the strength of penalization on the magnitude of coefficients in the trained model. A larger λ leads to a less complex model, and thus L_1 and L_2 regularization is an effective way to prevent overfitting in large complex model training. Usually, $\lambda_1, \lambda_2 \in [0, 1]$ and $\alpha_{1,i}, \alpha_{2,i} \in [0, 1]$.

Gradient descent is a technique used to find the solution to the optimization problem in Equation (1). Taking the derivative of it, and we get

$$\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} + 2\lambda_2 \alpha_{2,i} w_i + \lambda_1 \alpha_{1,i} sign(w_i)$$
$$= \frac{\partial C(w)}{\partial w_i} + 2\lambda_2 \alpha_{2,i} w_i \pm \lambda_1 \alpha_{1,i}$$

For feature selection, the input features are divided into a candidate set C, in which the weights of each feature are fixed to zero, and a selected set S, in which the weights of each feature are optimized during the training of the subnetwork with selected features in the input layer. Therefore, for each feature F_i in candidate set C, its weight w_i is 0. Then we get

$$\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} \pm \lambda_1 \alpha_{1,i} \tag{2}$$

Notice that we replaced $sign(w_i)$ by ± 1 . Derivative is not defined for the absolute value function |x| at x = 0. However, here we mainly focus on which feature is to be selected so that Equation (1) is decreased the most when we adjust its weights away from 0 (adding it to S from C).

When $\lambda_1 \alpha_{1,i} \ge 0$, if

$$\frac{\partial C(w)}{\partial w_i} > \lambda_1 \alpha_{1,i},$$

then

$$\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} + \lambda_1 \alpha_{1,i} > 0,$$

and

$$\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} - \lambda_1 \alpha_{1,i} > 0.$$

Therefore, to decrease J(w), we need to decrease w_i , so we will get $w_i < 0$. Similarly, if

$$\frac{\partial C(w)}{\partial w_i} < -\lambda_1 \alpha_{1,i},$$

then

$$\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} \pm \lambda_1 \alpha_{1,i} < 0.$$

In this case, to decrease J(w), we need to increase w_i , so we will get $w_i > 0$. In summary, when

$$\left|\frac{\partial C(w)}{\partial w_i}\right| > \lambda_1 \alpha_{1,i},$$

we can decrease J(w) by adjusting w_i away from zero, while if

$$|\frac{\partial C(w)}{\partial w_i}| < \lambda_1 \alpha_{1,i},$$

we can only increase J(w) no matter how we adjust w_i away from zero. This is why when the regularization parameter λ_1 is large, L_1 regularization will result in a sparse model with many zero-valued weights. When only L_2 regularization is used, then Equation (2) becomes

$$\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} \tag{3}$$

In both Equation (2) and Equation (3), we can see that the larger the magnitude of $|\partial J(w)/\partial w_i|$, the more it will contribute to minimizing J(w) by updating w_i from zero. This is why the norm of the back-propagated gradient for each feature in the candidate set can be used as the criterion for feature selection. DNP and grafting both used gradients in their feature selection algorithms [1, 2].

Figure 1: Illustration of how features are selected in DNP (deep neural pursuit).

Figure 2: Histogram of MIC Distribution of the Five Antibiotics

Figure 3: ROC curves and AUCs for the predicted resistance profiles for the five antibiotics under consideration using SNPs identified by AdaBoost.

Figure 4: ROC curves and AUCs for the predicted resistance profiles for the five antibiotics under consideration using SNPs identified by LASSO.

Antibiotic	MIC Interpretative Standards (ug/ml)						
	S	I	R	DS			
PEN	≤ 0.06	$0.12 \sim 1.0$	≥ 2.0				
TET	≤ 0.25	$0.5 \sim 1.0$	≥ 2.0				
CIP	≤ 0.06	$0.12\sim 0.5$	≥ 1.0				
AZM*	≤ 1.0		≥ 2.0				
CFX*	≤ 0.125			≥ 0.25			

Table 1 CLSI breakpoints for each antibiotic [3]

PEN, penicillin; TET, tetracycline; CIP, Ciprofloxacin; AZM, azithromycin; CFX, cefixime. S = Susceptible, I = Intermediate, R = Resistant, DS = Decreased Susceptibility *The breakpoints for AZM and CFX are from Centers for Disease Control and Prevention,

2007 [4] and World Health Organization 2012 [5], respectively.

Table 2 Chromosomal loci associated with antimicrobial resistance to the five antibiotics in N. *gonorrhoeae* examined in this work [6–8]. Plasmid genes are also listed, but only for reference purposes.

Antibiotic AMR elements	CIP	AZM	TET	CFX	PEN	Mechanisms
gyrA	✓					
parC	 ✓ 					Antibiotic target alteration
rpsJ			 ✓ 			
penA				\checkmark	✓	
ponA				~	✓	
23S rRNA		 ✓ 				
norM	√					
norM promoter	 ✓ 					Antibiotic efflux
mtrR		 ✓ 	 ✓ 	~	✓	
mtrR promoter		 ✓ 	 ✓ 	\checkmark	✓	
macAB		 ✓ 				
penB (porB)			~	~	\checkmark	Decrease in permeation across the outer membrane
penC (pilQ)				\checkmark	\checkmark	
erm(B, C, F) (plasmid)		✓				
ere(A, B) (plasmid)		~				Plasmid mediated resistances
mef (plasmid)		 ✓ 				
bla_{TEM} (plasmid)					✓	
tetM (plasmid)			✓			

Table 3	SNPs identified for	resistance to	CIP, CFX,	PEN, TET,	, and AZM by	DNP-AAP.
Annotat	ions are from NCBI					

Ciprofloxacin (CIP)							
ID Range	ID	AAP	Genes	Annotations	Reported		
[18797, 18817]	18799	0.658	gyrA	DNA gyrase subunit A	√		
[4309, 4366]	4363	0.536	parC	DNA topoisomerase IV subunit A	✓		
	5087	0.506		*intergenic between NGK_RS01270 and NGK_RS01275			
	5075	0.497	NGK_RS01270	glutathione synthetase			
	33843	0.463		*intergenic between NGK_RS09815 and NGK_RS09830			
	20553	0.478	NGK_RS00430	sugar transporter			
	2285	0.477	NGK_RS00430	RNA-binding protein			
	34301	0.475	NGK_RS09920	hypoxanthine-guanine phosphoribosyltransferase			
	16353	0.447	NGK_RS04915	conjugative coupling factor TraD, PFGI-1 class			
			1	Cefixime (CFX)			
	31799	0.423		*intergenic between NGK_RS09405 and NGK_RS09440			
[28398, 28481]	28431	0.419	penA	penicillin-binding protein 2	 ✓ 		
[28398, 28481]	28418	0.406	penA	penicillin-binding protein 2	✓		
[29209 29491]	29914	0.402	nonA	nenicillin hinding protein 2			
[28398, 28481]	28428	0.382	penA	penicillin-binding protein 2			
[20050, 20401]	29915	0.376	penn	*intergenic between NGK_RS08825 and NGK_RS13555	l i		
	29916	0.370		*intergenic between NGK_RS08825 and NGK_RS13555			
[28398, 28481]	28427	0.368	penA	penicillin-binding protein 2	✓		
[28398, 28481]	28429	0.367	penA	penicillin-binding protein 2	√		
				Penicillin (PEN)			
	38424	0.344	NGK_RS11280	CRISPR-associated protein Cas4			
	33601	0.342	NGK_RS09760	Opacity protein opA54			
	18799	0.330	gyrA	DNA gyrase subunit A			
	29502	0.322	NGK_RS08530	monofunctional biosynthetic peptidoglycan transglycosylase			
[2749-2763]	29504	0.251	NGK_K306550	penicillin-binding protein 1A			
[2145, 2100]	35095	0.219	NGK_RS10250	adhesin MafA	l i		
	10120	0.213	NGK_RS03045	hypothetical protein			
	40335	0.204		*intergenic between NGK_RS11800 and NGK_RS11805			
	6817	0.203	NGK_RS01835	23S rRNA pseudouridine(1911/1915/1917) synthase RluD			
				Tetracycline (TET)			
	27095	0.470		*intergenic between NGK_RS07930 and NGK_RS07935			
	21468	0.205	NGK_RS06540	DUF3037 domain-containing protein			
[37926, 37927]	37927	0.196	rpsJ	30S ribosomal protein S10	✓		
	29960	0.159	NCK PS10000	Tintergenic between NGK_RS13555 and NGK_RS08865			
	40041	0.150	NGK_RS10900	TonB-dependent receptor			
	21467	0.121	NGK_RS06540	DUF3037 domain-containing protein			
	9785	0.120	NGK_RS02995	PBSX family phage terminase large subunit			
	9787	0.120	NGK_RS02995	PBSX family phage terminase large subunit			
	18761	0.119	NGK_RS05725	MULTISPECIES: Fe-S cluster assembly transcriptional			
	I	I	1	Azithromycin (AZM)	1		
	27421	0.424		*intergenic between NGK_RS13375 and NGK_RS07950			
	27690	0.420	NCK PEODICO	Intergenic between NGK_RS08005 and NGK_RS08015			
	30059	0.300	NCK PS10F00	isitu tamiiy transposase			
	36810	0.294	14/01/21/21/200	*intergenic between NGK RS10625 and NGK RS10660			
	30434	0.278	NGK_RS08975	DUF1132 domain-containing protein			
	21513	0.269	NGK_RS06565	MULTISPECIES: hypothetical protein			
	39676	0.266	NGK_RS11620	homoserine kinase			
	36809	0.258		*intergenic between NGK_RS10625 and NGK_RS10660			
1	29095	0.254	NGK_K508360	I WILLISPECIES: phosphatidyigiycerophosphatase A	1		

The column "ID Range" lists the ranges of SNPs that fall in known AMR-associated genes (only) in our data. ID: ID of Identified SNP.

*NGK_RS01270: glutathione synthetase; NGK_RS01275: diacylglycerol kinase (DagK); NGK_RS09910: MULTISPECIES: HPr family phosphocarrier protein; NGK_RS09915: PTS sugar transporter subunit IIA; NGK_RS09815: iron uptake system protein EfeO; NGK_RS09830: murein transglycosylase; NGK_RS09405: competence protein ComE; NGK_RS09440: inner membrane protein YpjD; NGK_RS08825: competence protein ComE; NGK_RS13555: hypothetical protein, partial; NGK_RS11800: hemoglobin-haptoglobin-utilization protein; NGK_RS11805: DUF560 domain-containing protein; NGK_RS07930: lactoferrin/transferrin family TonB-dependent receptor; NGK_RS07935: transferrin-binding protein-like solute binding protein; NGK_RS08865: MULTISPECIES: P-II family nitrogen regulator; NGK_RS13375: hypothetical protein; NGK_RS07950: Fic family protein; NGK_RS08005: prephenate dehydratase; NGK_RS08015: membrane protein; NGK_RS10625: MULTISPECIES: RNA polymerase-binding protein DksA; NGK_RS10660: competence protein ComE.

Method Drug	DNP- AAP	AdaBoost	LASSO
CIP	2	1	1
TET	1	1	1
PEN	2	1	1
CFX	1	1	2
AZM	1	0	0

 Table 4
 Numbers of SNPs identified by DNP-AAP, LASSO, and AdaBoost which occur in known

 AMR determinants listed in Table 2.

 Table 5
 AUC for logistic regression classifiers built using the top SNPs identified by DNP-AAP, LASSO, and AdaBoost.

Drug	Method	DNP- AAP	AdaBoost	LASSO
CIP		0.994	0.992	0.988
TET		0.969	0.921	0.852
PEN		0.974	0.995	0.962
CFX		0.976	0.959	0.952
AZM		0.949	0.974	0.961

Author details

¹Department of Computer Science, University of Saskatchewan, 110 Science Place, S7N 5C9 Saskatoon, Canada. ² Department of Animal & Poultry Science, University of Saskatchewan, 51 Campus Drive, S7N 5A8 Saskatoon, Canada. ³ Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, S7N 5E6 Saskatoon, Canada. ⁴ Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, S7N 5E5 Saskatoon, Canada. ⁵ Vaccine and Infectious Disease Organization – International Vaccine Center, 120 Veterinary Rd, S7N 5E3 Saskatoon, Canada.

References

- 1. Perkins, S., Lacker, K., Theiler, J.: Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research 3, 1333–1356 (2003)
- Liu, B., Wei, Y., Zhang, Y., Yang, Q.: Deep neural networks for high dimension, low sample size data. In: Sierra, C. (ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence: 19-25 August 2017; Melbourne, pp. 2287–2293 (2017)
- 3. Public Health Agency of Canada: National Surveillance of Antimicrobial Susceptibilities of *Neisseria Gonorrhoeae* Annual Summary 2014. http://healthycanadians.gc.ca/publications/
- drugs-products-medicaments-produits/2014-neisseria/alt/surveillance-gonorrhoeae-2014-eng.pdf
- 4. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/data/hus/hus07.pdf
- World Health Organization: Global Action Plan to Control the Spread and Impact of Antimicrobial Resistance in Neisseria Gonorrhoeae. http://apps.who.int/iris/bitstream/10665/44863/1/9789241503501_eng.pdf
- Harrison, O.B., Clemence, M., Dillard, J.P., Tang, C.M., Trees, D., Grad, Y.H., Maiden, M.C.J.: Genomic analyses of *Neisseria gonorrhoeae* reveal an association of the gonococcal genetic island with antimicrobial resistance. Journal of Infection **73**(6), 578–587 (2016)
- Eyre, D.W., De Silva, D., Cole, K., Peters, J., Cole, M.J., Grad, Y.H., Demczuk, W., Martin, I., Mulvey, M.R., Crook, D.W., Walker, A.S., Peto, T.E.A., Paul, J.: WGS to predict antibiotic MICs for *Neisseria gonorrhoeae*. J Antimicrob Chemother **72**, 1937–1947 (2017)
- Unemo, M., Shafer, W.M.: Genomic analyses of antimicrobial resistance in *Neisseria gonorrhoeae* in the 21st century: past, evolution, and future. Clinical Microbiology Reviews 27(3), 587–613 (2014)