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Section 1: Back-propagated Gradients in Neural Network
Training for Feature Selection
It is an optimization problem to find the weights of a neural network by minimizing

its cost function. A general form of cost functions can be written as a summation

of loss function and regularized items [1]:

J(w) = C(w) + λ2

p∑
i=1

α2,i|wi|2 + λ1

p∑
i=1

α1,i|wi| (1)

where

C(w) =
1

m

m∑
i=1

(yi −
p∑

j=1

xijwj)

is the loss function that measures the difference between true values and predictive

values. The second item in Equation (1) is a generalized form of L2 regulariza-

tion and the third one is L1 regularization. The parameters λ1 and λ2 control

the strength of penalization on the magnitude of coefficients in the trained model.

A larger λ leads to a less complex model, and thus L1 and L2 regularization is

an effective way to prevent overfitting in large complex model training. Usually,

λ1, λ2 ∈ [0, 1] and α1,i, α2,i ∈ [0, 1].

Gradient descent is a technique used to find the solution to the optimization

problem in Equation (1). Taking the derivative of it, and we get

∂J(w)

∂wi
=
∂C(w)

∂wi
+ 2λ2α2,iwi + λ1α1,isign(wi)

=
∂C(w)

∂wi
+ 2λ2α2,iwi ± λ1α1,i

For feature selection, the input features are divided into a candidate set C, in which

the weights of each feature are fixed to zero, and a selected set S, in which the

weights of each feature are optimized during the training of the subnetwork with
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selected features in the input layer. Therefore, for each feature Fi in candidate set

C, its weight wi is 0. Then we get

∂J(w)

∂wi
=
∂C(w)

∂wi
± λ1α1,i (2)

Notice that we replaced sign(wi) by ±1. Derivative is not defined for the absolute

value function |x| at x = 0. However, here we mainly focus on which feature is to

be selected so that Equation (1) is decreased the most when we adjust its weights

away from 0 (adding it to S from C).
When λ1α1,i ≥ 0, if

∂C(w)

∂wi
> λ1α1,i,

then

∂J(w)

∂wi
=
∂C(w)

∂wi
+ λ1α1,i > 0,

and

∂J(w)

∂wi
=
∂C(w)

∂wi
− λ1α1,i > 0.

Therefore, to decrease J(w), we need to decrease wi, so we will get wi < 0. Similarly,

if

∂C(w)

∂wi
< −λ1α1,i,

then

∂J(w)

∂wi
=
∂C(w)

∂wi
± λ1α1,i < 0.

In this case, to decrease J(w), we need to increase wi, so we will get wi > 0. In

summary, when

|∂C(w)

∂wi
| > λ1α1,i,

we can decrease J(w) by adjusting wi away from zero, while if

|∂C(w)

∂wi
| < λ1α1,i,

we can only increase J(w) no matter how we adjust wi away from zero. This is

why when the regularization parameter λ1 is large, L1 regularization will result in a
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sparse model with many zero-valued weights. When only L2 regularization is used,

then Equation (2) becomes

∂J(w)

∂wi
=
∂C(w)

∂wi
(3)

In both Equation (2) and Equation (3), we can see that the larger the magnitude of

|∂J(w)/∂wi|, the more it will contribute to minimizing J(w) by updating wi from

zero. This is why the norm of the back-propagated gradient for each feature in the

candidate set can be used as the criterion for feature selection. DNP and grafting

both used gradients in their feature selection algorithms [1, 2].

Figure 1: Illustration of how features are selected in DNP (deep
neural pursuit).

Figure 1 Features in candidate set C are selected one by one based on the L2 norm of their back
propagated gradients. Once selected, the feature is removed from the candidate set C and added
to the selected set S.
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Figure 2: Histogram of MIC Distribution of the Five Antibiotics

Figure 2 Histograms of the MIC distribution for each antibiotic. The top row shows the
distribution of all MIC values for each antibiotic. The bottom row shows the distribution for PEN,
AZM and CFX with extremely high MIC values removed. The MIC distributions of TET and CIP
are added to the bottom row to fill it out. PEN, penicillin; TET, tetracycline; CIP, Ciprofloxacin;
AZM, azithromycin; CFX, cefixime.
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Figure 3: ROC curves and AUCs for the predicted resistance
profiles for the five antibiotics under consideration using SNPs
identified by AdaBoost.
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Figure 3 ROC curve and AUC for each antibiotic. CIP, Ciprofloxacin; TET, tetracycline; PEN,
penicillin; CFX, cefixime; AZM, azithromycin.

Figure 4: ROC curves and AUCs for the predicted resistance
profiles for the five antibiotics under consideration using SNPs
identified by LASSO.
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Figure 4 ROC curve and AUC for each antibiotic. CIP, Ciprofloxacin; TET, tetracycline; PEN,
penicillin; CFX, cefixime; AZM, azithromycin.



Shi et al. Page 6 of 8

Table 1 CLSI breakpoints for each antibiotic [3]

Antibiotic
MIC Interpretative Standards (ug/ml)

S I R DS

PEN ≤ 0.06 0.12 ∼ 1.0 ≥ 2.0

TET ≤ 0.25 0.5 ∼ 1.0 ≥ 2.0

CIP ≤ 0.06 0.12 ∼ 0.5 ≥ 1.0

AZM∗ ≤ 1.0 ≥ 2.0

CFX∗ ≤ 0.125 ≥ 0.25

PEN, penicillin; TET, tetracycline; CIP, Ciprofloxacin; AZM, azithromycin; CFX, cefixime.
S = Susceptible, I = Intermediate, R = Resistant, DS = Decreased Susceptibility
∗The breakpoints for AZM and CFX are from Centers for Disease Control and Prevention,
2007 [4] and World Health Organization 2012 [5], respectively.

Table 2 Chromosomal loci associated with antimicrobial resistance to the five antibiotics in N.
gonorrhoeae examined in this work [6–8]. Plasmid genes are also listed, but only for reference
purposes.

AMR elements
Antibiotic

CIP AZM TET CFX PEN Mechanisms

gyrA X

Antibiotic target alteration
parC X

rpsJ X

penA X X

ponA X X

23S rRNA X

norM X

Antibiotic efflux
norM promoter X

mtrR X X X X

mtrR promoter X X X X

macAB X

penB (porB) X X X
Decrease in permeation across the outer membrane

penC (pilQ) X X

erm(B, C, F) (plasmid) X

Plasmid mediated resistances
ere(A, B) (plasmid) X

mef (plasmid) X

blaTEM (plasmid) X

tetM (plasmid) X
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Table 3 SNPs identified for resistance to CIP, CFX, PEN, TET, and AZM by DNP-AAP.
Annotations are from NCBI.

Ciprofloxacin (CIP)

ID Range ID AAP Genes Annotations Reported

[18797, 18817] 18799 0.658 gyrA DNA gyrase subunit A X
[4309, 4366] 4363 0.536 parC DNA topoisomerase IV subunit A X

5087 0.506 ∗intergenic between NGK RS01270 and NGK RS01275
5075 0.497 NGK RS01270 glutathione synthetase
34282 0.483 ∗intergenic between NGK RS09910 and NGK RS09915
33843 0.482 ∗intergenic between NGK RS09815 and NGK RS09830
20553 0.478 NGK RS00430 sugar transporter
2285 0.477 NGK RS00430 RNA-binding protein
34301 0.475 NGK RS09920 hypoxanthine-guanine phosphoribosyltransferase
16353 0.447 NGK RS04915 conjugative coupling factor TraD, PFGI-1 class

Cefixime (CFX)

31799 0.423 ∗intergenic between NGK RS09405 and NGK RS09440

[28398, 28481] 28431 0.419 penA penicillin-binding protein 2 X
[28398, 28481] 28418 0.406 penA penicillin-binding protein 2 X

29914 0.402 ∗intergenic between NGK RS08825 and NGK RS13555
[28398, 28481] 28417 0.382 penA penicillin-binding protein 2 X
[28398, 28481] 28428 0.382 penA penicillin-binding protein 2 X

29915 0.376 ∗intergenic between NGK RS08825 and NGK RS13555
29916 0.370 ∗intergenic between NGK RS08825 and NGK RS13555

[28398, 28481] 28427 0.368 penA penicillin-binding protein 2 X
[28398, 28481] 28429 0.367 penA penicillin-binding protein 2 X

Penicillin (PEN)

38424 0.344 NGK RS11280 CRISPR-associated protein Cas4

33601 0.342 NGK RS09760 Opacity protein opA54
18799 0.330 gyrA DNA gyrase subunit A
29502 0.322 NGK RS08530 monofunctional biosynthetic peptidoglycan transglycosylase
29504 0.251 NGK RS08530 monofunctional biosynthetic peptidoglycan transglycosylase

[2749, 2763] 2755 0.236 ponA penicillin-binding protein 1A X
35095 0.219 NGK RS10250 adhesin MafA
10120 0.213 NGK RS03045 hypothetical protein
40335 0.204 ∗intergenic between NGK RS11800 and NGK RS11805
6817 0.203 NGK RS01835 23S rRNA pseudouridine(1911/1915/1917) synthase RluD

Tetracycline (TET)

27095 0.470 ∗intergenic between NGK RS07930 and NGK RS07935

21468 0.205 NGK RS06540 DUF3037 domain-containing protein
[37926, 37927] 37927 0.196 rpsJ 30S ribosomal protein S10 X

29960 0.159 ∗intergenic between NGK RS13555 and NGK RS08865
37300 0.150 NGK RS10900 methionyl-tRNA formyltransferase
40041 0.131 NGK RS11710 TonB-dependent receptor
21467 0.121 NGK RS06540 DUF3037 domain-containing protein
9785 0.120 NGK RS02995 PBSX family phage terminase large subunit
9787 0.120 NGK RS02995 PBSX family phage terminase large subunit
18761 0.119 NGK RS05725 MULTISPECIES: Fe-S cluster assembly transcriptional

regulator IscR

Azithromycin (AZM)

27421 0.424 ∗intergenic between NGK RS13375 and NGK RS07950

27690 0.420 ∗intergenic between NGK RS08005 and NGK RS08015
30659 0.300 NGK RS09100 IS110 family transposase
36328 0.294 NGK RS10580 pilus assembly protein
36810 0.290 ∗intergenic between NGK RS10625 and NGK RS10660
30434 0.278 NGK RS08975 DUF1132 domain-containing protein
21513 0.269 NGK RS06565 MULTISPECIES: hypothetical protein
39676 0.266 NGK RS11620 homoserine kinase
36809 0.258 ∗intergenic between NGK RS10625 and NGK RS10660
29095 0.254 NGK RS08360 MULTISPECIES: phosphatidylglycerophosphatase A

The column “ID Range” lists the ranges of SNPs that fall in known AMR-associated genes (only) in
our data. ID: ID of Identified SNP.
∗NGK RS01270: glutathione synthetase; NGK RS01275: diacylglycerol kinase (DagK);
NGK RS09910: MULTISPECIES: HPr family phosphocarrier protein; NGK RS09915: PTS sugar
transporter subunit IIA; NGK RS09815: iron uptake system protein EfeO; NGK RS09830: murein
transglycosylase; NGK RS09405: competence protein ComE; NGK RS09440: inner membrane protein
YpjD; NGK RS08825: competence protein ComE; NGK RS13555: hypothetical protein, partial;
NGK RS11800: hemoglobin-haptoglobin-utilization protein; NGK RS11805: DUF560
domain-containing protein; NGK RS07930: lactoferrin/transferrin family TonB-dependent receptor;
NGK RS07935: transferrin-binding protein-like solute binding protein; NGK RS08865:
MULTISPECIES: P-II family nitrogen regulator; NGK RS13375: hypothetical protein; NGK RS07950:
Fic family protein; NGK RS08005: prephenate dehydratase; NGK RS08015: membrane protein;
NGK RS10625: MULTISPECIES: RNA polymerase-binding protein DksA; NGK RS10660:
competence protein ComE.
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Table 4 Numbers of SNPs identified by DNP-AAP, LASSO, and AdaBoost which occur in known
AMR determinants listed in Table 2.

Drug
Method DNP-

AAP
AdaBoost LASSO

CIP 2 1 1

TET 1 1 1

PEN 2 1 1

CFX 1 1 2

AZM 1 0 0

Table 5 AUC for logistic regression classifiers built using the top SNPs identified by DNP-AAP,
LASSO, and AdaBoost.

Drug
Method DNP-

AAP
AdaBoost LASSO

CIP 0.994 0.992 0.988

TET 0.969 0.921 0.852

PEN 0.974 0.995 0.962

CFX 0.976 0.959 0.952

AZM 0.949 0.974 0.961
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