Supplementary Material

Antimicrobial resistance genetic factor identification from whole-genome sequence data using deep feature selection

Jinhong Shi¹, Yan Yan¹, Matthew G. Links^{1,2}, Longhai Li³, Jo-Anne R. Dillon^{4,5}, Michael Horsch¹ and Anthony Kusalik^{1*}

*Correspondence: tony.kusalik@usask.ca ¹Department of Computer Science, University of Saskatchewan, 110 Science Place, S7N 5C9 Saskatoon, Canada Full list of author information is available at the end of the article

Section 1: Back-propagated Gradients in Neural Network Training for Feature Selection

It is an optimization problem to find the weights of a neural network by minimizing its cost function. A general form of cost functions can be written as a summation of loss function and regularized items [1]:

$$
J(w) = C(w) + \lambda_2 \sum_{i=1}^{p} \alpha_{2,i} |w_i|^2 + \lambda_1 \sum_{i=1}^{p} \alpha_{1,i} |w_i|
$$
 (1)

where

$$
C(w) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \sum_{j=1}^{p} x_{ij} w_j)
$$

is the loss function that measures the difference between true values and predictive values. The second item in Equation (1) is a generalized form of L_2 regularization and the third one is L_1 regularization. The parameters λ_1 and λ_2 control the strength of penalization on the magnitude of coefficients in the trained model. A larger λ leads to a less complex model, and thus L_1 and L_2 regularization is an effective way to prevent overfitting in large complex model training. Usually, $\lambda_1, \lambda_2 \in [0, 1]$ and $\alpha_{1,i}, \alpha_{2,i} \in [0, 1]$.

Gradient descent is a technique used to find the solution to the optimization problem in Equation (1). Taking the derivative of it, and we get

$$
\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} + 2\lambda_2 \alpha_{2,i} w_i + \lambda_1 \alpha_{1,i} sign(w_i)
$$

$$
= \frac{\partial C(w)}{\partial w_i} + 2\lambda_2 \alpha_{2,i} w_i \pm \lambda_1 \alpha_{1,i}
$$

For feature selection, the input features are divided into a candidate set \mathcal{C} , in which the weights of each feature are fixed to zero, and a selected set S , in which the weights of each feature are optimized during the training of the subnetwork with selected features in the input layer. Therefore, for each feature F_i in candidate set \mathcal{C} , its weight w_i is 0. Then we get

$$
\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} \pm \lambda_1 \alpha_{1,i} \tag{2}
$$

Notice that we replaced $sign(w_i)$ by ± 1 . Derivative is not defined for the absolute value function |x| at $x = 0$. However, here we mainly focus on which feature is to be selected so that Equation (1) is decreased the most when we adjust its weights away from 0 (adding it to S from C).

When $\lambda_1 \alpha_{1,i} \geq 0$, if

$$
\frac{\partial C(w)}{\partial w_i} > \lambda_1 \alpha_{1,i},
$$

then

$$
\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} + \lambda_1 \alpha_{1,i} > 0,
$$

and

$$
\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} - \lambda_1 \alpha_{1,i} > 0.
$$

Therefore, to decrease $J(w)$, we need to decrease w_i , so we will get $w_i < 0$. Similarly, if

$$
\frac{\partial C(w)}{\partial w_i} < -\lambda_1 \alpha_{1,i},
$$

then

$$
\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} \pm \lambda_1 \alpha_{1,i} < 0.
$$

In this case, to decrease $J(w)$, we need to increase w_i , so we will get $w_i > 0$. In summary, when

$$
|\frac{\partial C(w)}{\partial w_i}| > \lambda_1 \alpha_{1,i},
$$

we can decrease $J(w)$ by adjusting w_i away from zero, while if

$$
|\frac{\partial C(w)}{\partial w_i}| < \lambda_1 \alpha_{1,i},
$$

we can only increase $J(w)$ no matter how we adjust w_i away from zero. This is why when the regularization parameter λ_1 is large, L_1 regularization will result in a sparse model with many zero-valued weights. When only L_2 regularization is used, then Equation (2) becomes

$$
\frac{\partial J(w)}{\partial w_i} = \frac{\partial C(w)}{\partial w_i} \tag{3}
$$

In both Equation (2) and Equation (3), we can see that the larger the magnitude of $|\partial J(w)/\partial w_i|$, the more it will contribute to minimizing $J(w)$ by updating w_i from zero. This is why the norm of the back-propagated gradient for each feature in the candidate set can be used as the criterion for feature selection. DNP and grafting both used gradients in their feature selection algorithms [1, 2].

Figure 1: Illustration of how features are selected in DNP (deep neural pursuit).

Figure 2: Histogram of MIC Distribution of the Five Antibiotics

Figure 3: ROC curves and AUCs for the predicted resistance profiles for the five antibiotics under consideration using SNPs identified by AdaBoost.

Figure 4: ROC curves and AUCs for the predicted resistance profiles for the five antibiotics under consideration using SNPs identified by LASSO.

Antibiotic	MIC Interpretative Standards (ug/ml)						
			R	DS			
PEN	${}_{0.06}$	$0.12 \sim 1.0$	> 2.0				
TET	${}_{\leq 0.25}$	$0.5 \sim 1.0$	> 2.0				
CIP	${}_{0.06}$	$0.12 \sim 0.5$	>1.0				
AZM^*	≤ 1.0		> 2.0				
CFX^*	≤ 0.125			> 0.25			

Table 1 CLSI breakpoints for each antibiotic [3]

PEN, penicillin; TET, tetracycline; CIP, Ciprofloxacin; AZM, azithromycin; CFX, cefixime. $S = S$ usceptible, 1 $=$ Intermediate, R $=$ Resistant, DS $=$ Decreased Susceptibility [∗]The breakpoints for AZM and CFX are from Centers for Disease Control and Prevention, 2007 [4] and World Health Organization 2012 [5], respectively.

Table 2 Chromosomal loci associated with antimicrobial resistance to the five antibiotics in N. gonorrhoeae examined in this work [6–8]. Plasmid genes are also listed, but only for reference purposes.

Antibiotic AMR elements	CIP	AZM	TET	CFX	PEN	Mechanisms
gyrA	✓					
parC	✓					Antibiotic target alteration
rpsJ			✓			
penA				\checkmark	✓	
ponA				\checkmark	√	
23S rRNA		\checkmark				
norM	✓					
norM promoter	✓					Antibiotic efflux
mtrR		\checkmark	\checkmark	✓	\checkmark	
mtrR promoter		✓	\checkmark	\checkmark	✓	
macAB						
penB (porB)			✓	✓	\checkmark	Decrease in permeation across the outer membrane
penC (pilQ)				✓	✓	
erm(B, C, F) (plasmid)		✓				
ere(A, B) (plasmid)		√				Plasmid mediated resistances
mef (plasmid)		✓				
bla_{TEM} (plasmid)					✓	
tetM (plasmid)			✓			

The column "ID Range" lists the ranges of SNPs that fall in known AMR-associated genes (only) in our data. ID: ID of Identified SNP.

[∗]NGK RS01270: glutathione synthetase; NGK RS01275: diacylglycerol kinase (DagK); NGK RS09910: MULTISPECIES: HPr family phosphocarrier protein; NGK RS09915: PTS sugar transporter subunit IIA; NGK_RS09815: iron uptake system protein EfeO; NGK_RS09830: murein transglycosylase; NGK RS09405: competence protein ComE; NGK RS09440: inner membrane protein YpjD; NGK_RS08825: competence protein ComE; NGK_RS13555: hypothetical protein, partial; NGK_RS11800: hemoglobin-haptoglobin-utilization protein; NGK_RS11805: DUF560 domain-containing protein; NGK_RS07930: lactoferrin/transferrin family TonB-dependent receptor; NGK_RS07935: transferrin-binding protein-like solute binding protein; NGK_RS08865: MULTISPECIES: P-II family nitrogen regulator; NGK_RS13375: hypothetical protein; NGK_RS07950: Fic family protein; NGK_RS08005: prephenate dehydratase; NGK_RS08015: membrane protein; NGK RS10625: MULTISPECIES: RNA polymerase-binding protein DksA; NGK RS10660: competence protein ComE.

	Method	DNP-	AdaBoost	LASSO
Drug		AAP		
CIP		2		
TET				
PEN		2		
CFX				2
AZM				

Table 4 Numbers of SNPs identified by DNP-AAP, LASSO, and AdaBoost which occur in known AMR determinants listed in Table 2.

Author details

 1 Department of Computer Science, University of Saskatchewan, 110 Science Place, S7N 5C9 Saskatoon, Canada. $^{-2}$ Department of Animal & Poultry Science, University of Saskatchewan, 51 Campus Drive, S7N 5A8 Saskatoon, Canada. ³ Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, S7N 5E6 Saskatoon, Canada. ⁴ Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, S7N 5E5 Saskatoon, Canada. ⁵ Vaccine and Infectious Disease Organization – International Vaccine Center, 120 Veterinary Rd, S7N 5E3 Saskatoon, Canada.

References

- 1. Perkins, S., Lacker, K., Theiler, J.: Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research 3, 1333–1356 (2003)
- 2. Liu, B., Wei, Y., Zhang, Y., Yang, Q.: Deep neural networks for high dimension, low sample size data. In: Sierra, C. (ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence: 19-25 August 2017; Melbourne, pp. 2287–2293 (2017)
- 3. Public Health Agency of Canada: National Surveillance of Antimicrobial Susceptibilities of Neisseria Gonorrhoeae Annual Summary 2014. http://healthycanadians.gc.ca/publications/
- drugs-products-medicaments-produits/2014-neisseria/alt/surveillance-gonorrhoeae-2014-eng.pdf
- 4. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/data/hus/hus07.pdf
- 5. World Health Organization: Global Action Plan to Control the Spread and Impact of Antimicrobial Resistance in Neisseria Gonorrhoeae. http://apps.who.int/iris/bitstream/10665/44863/1/9789241503501_eng.pdf
- 6. Harrison, O.B., Clemence, M., Dillard, J.P., Tang, C.M., Trees, D., Grad, Y.H., Maiden, M.C.J.: Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. Journal of Infection 73(6), 578–587 (2016)
- 7. Eyre, D.W., De Silva, D., Cole, K., Peters, J., Cole, M.J., Grad, Y.H., Demczuk, W., Martin, I., Mulvey, M.R., Crook, D.W., Walker, A.S., Peto, T.E.A., Paul, J.: WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J Antimicrob Chemother 72, 1937–1947 (2017)
- 8. Unemo, M., Shafer, W.M.: Genomic analyses of antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clinical Microbiology Reviews 27(3), 587–613 (2014)