Supplemental figures and tables for

Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2

Jin Wang^{1*}, Pingjun Zhu^{1*}, Ruibing Li¹, Jun Ren^{2,3#}, Yingmei Zhang^{2,3#}, Hao Zhou^{1,2#}

¹Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China; ²Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College

of Health Sciences, Laramie, WY 82071 USA

³Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China 200032

Running title: BI1 attenuates AKI-related mitochondrial damage

*The first two author contributed equally to this article.

[#]Correspondence to:

Dr. Jun Ren (E-mail: jren@uwyo.edu), Dr. Yingmei Zhang (E-mail: zhangym197951@126.com) or Dr. Hao Zhou (E-mail: zhouhao301@outlook.com) Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA. Tel: (307) 766-6131; Fax: (307) 766-2953 Supplemental Figure 1: BI1 modulates IRI-related renal damage. A-B. HK2 cells were transfected with siRNA against BI1 (BI1-si) and Control siRNA (Ctrl-si). Then, western blot was used to detect the expression of BI1. C. Primary tubule cells were isolated from $BI1^{TG}$ and WT mice. The mimicked IRI (mIRI) model was employed through rotenone (10 mM) in glucose-free DMEM for 3-h followed by 3-h full culture medium incubation. Then, cell viability was determined using MTT assay. D-E. RNA was isolated from mIRI-treated cells and transcriptions of Ccl2 and IL-6 were used to evaluate tubule damage. Experiments were repeated for at least three times and data are shown as mean \pm SEM (n = 6 mice or 3 independent cell isolations per group). *p<0.05.

Supplemental Figure 1

Supplemental Figure 2: Mitochondrial homeostasis is sustained in response to BI1 overexpression under kidney IRI. A-B. The transcription of mitochondrial DNA was determined via qPCR. C-D. ELISA was used to analyze the activity of mitochondrial respiratory complex I and II. E-F. *In vitro*, RNA was isolated from cells and levels of PGC1a and Sirt3 were measured via qPCR. G. Mitochondrial morphology was observed using electron microscope. Yellow arrows demonstrated elongated mitochondrial tubules and red arrows indicated swollen mitochondria with fractured cristae. H. Proteins were isolated from tubule cells after *in vitro* mIRI and level of mitochondrial apoptosis was determined using Western blotting. Experiments were repeated for at least three times and data are shown as mean \pm SEM (n = 6 mice or 3 independent cell isolations per group. *p<0.05.

Supplemental Figure 3: BI1 induces PHB2 localization into mitochondria. A. RNA was isolated from IRItreated kidneys and transcription of PHB2 was determined using qPCR. **B-C.** Western blotting for PHB2 in BII^{TG} and WT mice under IRI. **D.** Myc-labelled PHB2 mutants lacking N domain (Myc-PHB2 Δ N) or Cterminal domain (Myc-PHB2 Δ C) were infected into HK2 cells. Then, cell viability was determined via MTT assay. **E.** Caspase-9 activity was measured to evaluate the influence of PHB2 mutants on mitochondrial function. **F.** *In vitro*, siRNA against BI1 (BI1-si) and control siRNA (Ctrl-si) were transfected into primary tubule cells and then the transcription of PHB2 was determined via qPCR. Experiments were repeated for at least three times and data are shown as mean \pm SEM (n = 6 mice or 3 independent cell isolations per group). *p<0.05.

Supplemental Figure 4: PHB2 is required for BI1-mediated mitochondrial protection. A. Prior to mIRI challenge, HK2 cells were transfected with HA-BI1 and its mutants (HA-BI1 Δ C and HA-BI1 Δ N). Subsequently, mitochondrial DNA transcription was detected using qPCR. B-C. ELISA was used to analyze the activity of mitochondrial respiratory complex I and II. Experiments were repeated for at least three times and data are shown as mean ± SEM (n = 3 independent cell isolations per group). *p<0.05.

Supplemental Figure 4

Supplemental Figure 5 Mitochondria-localized PHB2 accounts for BI1-mediated mitochondrial protection. A-B. Myc-labelled PHB2 mutants (Myc-PHB2 Δ PHB, Myc-PHB2 Δ C, Myc-PHB2 Δ N) were infected into HK2 cells. HA-BI1 or vector were constructed into HK2 cells prior to mIRI challenge. Subsequently, mitochondrial DNA copy and transcription were detected using qPCR. C-D. ELISA was used to analyze the activity of mitochondrial respiratory complex I and II. Experiments were repeated for at least three times and data are shown as mean \pm SEM (n = 3 independent cell isolations per group). *p<0.05.

Supplemental Figure 6: PHB2 knockdown abolishes BI1-induced renoprotection. A. Primary tubule cells, isolated from WT and $BI1^{TG}$ mice, were transfected with BI-si and Ctrl-si. Cell viability was determined using MTT assay. B. LDH release assay was used to measure cell death. C-D. RNA was isolated and transcriptions of Ccl2 and IL-6 were determined using qPCR. Experiments were repeated for at least three times and data are shown as mean \pm SEM (n = 3 independent cell isolations per group). *p<0.05.

Supplemental Table 1 Patient demographics for AKI (-) and AKI (+) patients.

Patients characteristics	AKI (-) patients (n=27)	AKI (+) patients (n=28)
Age (range)	70 (43-87)	73 (45-86)
Sex	Male (n=18)	Male (n=21)
Comorbidities		
Hypertension (n)	7	9
Cardiovascular accident (n)	1	2
Diabetes (n)	3	2
Clinical data		
Acute tubular necrosis (n)	0	5
Sepsis (n)	3	6
Shock (n)	1	2
Acute coronary syndrome (n)	1	1
Hemorrhagic stroke	0	1
Paraquat intoxication	0	0

AKIN stage (n)		
Ι	0	14
II	0	9
III	0	5
APACHE II score (Average)	12-24 (18.7)	15-36 (22.1)
Baseline creatinine (mg/dl; average)	0.8-2.3 (1.2)	0.8-3.8 (1.8)
Peak creatinine (mg/dl; average)	0.8-2.3 (1.2)	1.9-4.1 (2.3)

AKIN, Acute Kidney Injury Network; APACHE, Acute Physiology, Age, Chronic Health Evaluation.

Name	Catalogue number	Dilution factor
IL6	Abcam, #ab7737	1:1000
Sirt3	Abcam, #ab86671	1:1000
VDAC	Abcam, #ab15895	1:1000
GAPDH	Abcam, #ab181602	1:1000
ABCB10	Abcam, #ab74815	1:1000
BI1	Abcam, #ab18852	1:1000
Bcl2	Cell Signaling Technology, #3498	1:1000
PHB2	Cell Signaling Technology, #14085	1:1000
Ccl2	Cell Signaling Technology, #2029	1:1000
Bax	Cell Signaling Technology, #2772	1:1000
Caspase9	Cell Signaling Technology, #9504	1:1000

Supplemental Table 2: Antibody information in Western blot

_

Supplemental Table 3: Primers for qPCR

Gene	Forward Prime	Reverse Prime
Ccl2	5'-GTTGGCTCAGCCAGATGCA-3'	5'-AGCCTACTCATTGGGATCATCTTG-3'
IL6	5'-TGGCTAAGGACCAAGACCATCCAA -3'	5-AACGCACTAGGTTTGCCGAGTAGA-3'
PHB2	5'-CCATTGTTAATGAGGTGCTCAA -3'	5'CTTCGGATCAACAGGGACA-3'
PGC1a	5'-TCACACCCCAAGCCCTTTT-3'	5'-GTGGGCTTCAACCAGCTTTG-3'
Sirt3	5'-GGTGCCTAGTGAGAGTGAGTCCCC-3'	5'-TCGGGGCTGAAGAGGGAGAAGTC-3'
GAPDH	5'-ACGGCAAATTCAACGGCACAGTCA-3'	5'-TGGGGGGCATCGGCAGAAGG-3'
Kim1	5'-ACATATCGTGGAATCACAACGAC-3'	5'-ACTGCTCTTCTGATAGGTGACA-3'
ND-1	5'-ATGGTCAGTCTGTCATGGTGGAAC-3'	5'-GCATAGCACAAGCAGCGACAAC-3'
COX-1	5'-GAAGAGACAGTGTTTCATGTGGTGT-3'	5'-TCCTGGGCCTTTCAGGAATA-3'
Complex-IV	5'-CAGGATTCTTCTGAGCGTTCTATCA-3'	5'-AATTCCTGTTGGAGGTCAGCA-3'