Supplementary Table 2. In silico predictions and functional assays results for BRCA1, BRCA2, CHEK2 and TP53 missense variants classified as loss-of-function.

Gene (RefSeq)	Nucleotide change	Predicted Protein change	Domain	SIFT	Align GVGD	Poly Phen2	phastCons	PhyloP	Mutation Taster	Functional assay Results	ClinVar Classification
BRCA1 (NM_007294.3)	c.181T>G	p.Cys61Gly	RING-finger	Damaging	C65	Benign	1	2.861	Disease causing (0.992)	Defective impact on protein function (Homology directed recombination assay & Protein binding ability assay) ¹ , Mutant (E3 Ub-ligase activity assay) ²	Pathogenic
BRCA1 (NM_007294.3)	c.5212G>A	p.Gly1738Arg	C-terminal BRCT region	Damaging	C65	Possibly damaging	1	2.959	Disease causing (0.999)	Deleterious (protease-based assay) ³ , Mutant (peptide binding ability assay), Strong functional effect (Transcription activation) ⁴	Pathogenic
BRCA1 (NM_007294.3)	c.5246C>G	p.Pro1749Arg	C-terminal BRCT region	Damaging	C65	Benign	1	2.959	Disease causing (0.999)	Deleterious ³ (protease-based assay), Strong functional effect (Transcription activation) ⁴	Pathogenic
BRCA1 (NM_007294.3)	c.5425G>T	p.Val1809Phe	C-terminal BRCT region	Damaging	C65	Benign	1	3.01	Disease causing (0.999)	Deleterious ³ (protease-based assay), Strong functional effect (Transcription activation) ⁴	Likely Pathogenic
BRCA1 (NM_007294.3)	c.5497G>A	p.Val1833Met	C-terminal BRCT region	Damaging	C15	Probably damaging	1	3.088	Disease causing (0.999)	Deleterious (Transcription activation property of <i>BRCA1</i> in human cells) ⁵ , <i>Deleterious-</i> Destabilizing (Thermodynamic stability prediction-biophysical assay) ⁶	Likely Pathogenic
BRCA2 (NM_000059.3)	c.7879A>T	p.Ile2627Phe	BRCA-2-helical	Damaging	C15	Probably damaging	1	1.777	Disease causing (0.999)	As mutant control/inactivated (Centrosome amplification assay) ⁷ , Predicted Pathogenic (Homology directed repair assay) ⁸⁻¹⁰	Pathogenic
CDKN2A (NM_000077.4)	c.71G>C	p.Arg24Pro	ANK	Tolerated	-	Probably damaging	0.085	0.647	Disease causing (0.999)	N/A	Pathogenic/Likely Pathogenic
CHEK2 (NM_007194.3)	c.475T>C	p.Tyr159His	FHA	Damaging	C65	Probably damaging	1	3.51	Disease causing (0.999)	N/A	Unknown Significance
CHEK2 (NM_007194.3)	c.499G>A	p.Gly167Arg	FHA	Damaging	C65	Probably damaging	1	4.205	Disease causing (0.999)	Damaging (DNA repair assay) ⁹	Likely Pathogenic
CHEK2 (NM_007194.3)	c.548T>C	p.Leu183Ser	FHA	Damaging	C65	Probably damaging	0.988	3.51	Disease causing (0.999)	Damaging (DNA repair assay)**	N/A
CHEK2 (NM_007194.3)	c.549G>C	p.Leu183Phe	FHA	Damaging	C15	Probably damaging	0.995	1.26	Disease causing (0.999)	Damaging (DNA repair assay)**	Unknown Significance

TP53 (NM_000546.5)	c.578A>T	p.His193Leu	DNA-binding domain	Damaging	C65	Probably damaging	0.998	3.095	Disease causing (0.999)	Non-Functional (Transcriptional activity) ¹¹	Likely Pathogenic
TP53 (NM_000546.5)	c.847C>T	p.Arg283Cys	DNA-binding domain	Damaging	C55	Benign	0.188	2.044	Disease causing (0.890)	Partially Functional (Transcriptional activity) ¹¹	Unknown Significance
TP53 (NM_000546.5)	c.1021T>G	p.Phe341Val	TP53- tetramerization motif	Damaging	C0	Benign	0.932	0.027	Disease causing (0.986)	Partially Functional (Transcriptional activity) ¹¹	N/A

Notes: Missense variants identified during the study have been evaluated and classified. Of these, seventeen variants in five genes (BRCA1, BRCA2, CHEK2, TP53 and CDKN2A) have been classified as loss-of-function. These were, **BRCA1**: c.181T>G, c.5212G>A, c.5246C>G, c.5425G>T, c.5497G>A and c.5467G>A, **BRCA2**: c.7879A>T, c.7976G>A and c.7006C>T, **CHEK2**: c.475T>C, c.499G>A, c.548T>C and c.549G>C, **TP53**: c.578A>T, c.847C>T and c.1021T>G, **CDKN2A**: c.71G>C. Of these, **BRCA1**, c.5467G>A, **BRCA2**, c.7976G>A and c.7007G>A, involve base changes in the last nucleotide of an exon and were previously shown to cause aberrant splicing.

Most of the BRCA1 variants reported herein are either recurrent or have a founder effect among Greek individuals, while there are multiple families with complete segregation of the missense variant along with breast and/or ovarian cancer. CHEK2 missense variants, lying in the forkhead-associated domain (FHA), have been also identified in multiple Greek families/individuals with strong family history for breast cancer and have been categorized as damaging by a Saccharomyces cerevisiae yeast functional assay (Delimitsou et al, under revision). CDKN2A c.71G>C variant has shown an impaired binding ability to CDK4, has been reported in melanoma/pancreatic families and is classified as pathogenic on ClinVar.

Supplementary References

- 1. Ransburgh DJ, Chiba N, Ishioka C, Toland AE, Parvin JD. Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination. *Cancer research*. 2010;70(3):988-995.
- 2. Morris JR, Pangon L, Boutell C, Katagiri T, Keep NH, Solomon E. Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility. *Human molecular genetics*. 2006;15(4):599-606.
- 3. Williams RS, Chasman DI, Hau DD, Hui B, Lau AY, Glover JN. Detection of protein folding defects caused by BRCA1-BRCT truncation and missense mutations. *The Journal of biological chemistry*. 2003;278(52):53007-53016.
- 4. Lee MS, Green R, Marsillac SM, et al. Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. *Cancer research*. 2010;70(12):4880-4890.
- 5. Carvalho M, Pino MA, Karchin R, et al. Analysis of a set of missense, frameshift, and in-frame deletion variants of BRCA1. Mutation research. 2009;660(1-2):1-11.
- 6. Rowling PJ, Cook R, Itzhaki LS. Toward classification of BRCA1 missense variants using a biophysical approach. The Journal of biological chemistry. 2010;285(26):20080-20087.
- 7. Farrugia DJ, Agarwal MK, Pankratz VS, et al. Functional assays for classification of BRCA2 variants of uncertain significance. Cancer research. 2008;68(9):3523-3531.
- 8. Guidugli L, Pankratz VS, Singh N, et al. A classification model for BRCA2 DNA binding domain missense variants based on homology-directed repair activity. *Cancer research.* 2013;73(1):265-275.
- 9. Roeb W, Higgins J, King MC. Response to DNA damage of CHEK2 missense mutations in familial breast cancer. Human molecular genetics. 2012;21(12):2738-2744.
- 10. Schwarz JK, Lovly CM, Piwnica-Worms H. Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. *Molecular cancer research : MCR*. 2003;1(8):598-609.
- 11. Kato S, Han SY, Liu W, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. *Proceedings of the National Academy of Sciences of the United States of America*. 2003;100(14):8424-8429.

** Delimitsou et al, under revision