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Supplementary Text 

Strain diversity and assay generalizability: 

Genetic diversity within a species poses a fundamental challenge to the generalizability of 

bacterial molecular diagnostics, including transcription-based assays1. GoPhAST-R addresses 

this crucial challenge in a number of ways. First, for each pathogen-antibiotic pair, GoPhAST-R 

is trained and tested on a geographically and phylogenetically diverse set of strains: strains in 

this study were obtained from multiple geographic regions that sample across the entire 

phylogeny of each species (Supplementary Fig 3), notably including the CDC’s Antibiotic 

Resistance Isolate Bank collection (https://wwwn.cdc.gov/ARIsolateBank/) that is intended as a 

test set for new diagnostic assays. Additionally, by targeting transcripts affected by antibiotics, 

which by definition affect core bacterial processes required for bacterial survival and whose 

transcriptional regulation is thus generally conserved1, GoPhAST-R measures responses that 

are also likely to be conserved and therefore generalizable.  

 

One functional way to assess the generalizability of these antibiotic susceptibility signatures is 

to compare the optimal signatures chosen in the two phases of testing (Supplementary Fig. 7), 

and how well these chosen genes then performed on novel strains. Combining the initial 

derivation and validation cohorts from Phase 1 into a single, larger training cohort, we repeated 

feature selection and retrained the ensemble classifier on this larger set. The top 10 features 

chosen in this Phase 2 feature selection process were very similar to those chosen in Phase 1 

(Supplementary Table 3), with 78% mean overlap in gene content, mean Jaccard similarity 

coefficient 0.67, and mean Spearman correlation coefficient 0.59 across all pathogen-antibiotic 

combinations. We then applied this refined classifier to predict susceptibility in a new test set of 

25-30 isolates for each antibiotic (Supplementary Fig. 8). The fact that GoPhAST-R performed 

well on test strains that were selected randomly relative to training strains, that the sets of genes 

selected through iterative Phase 1 and 2 training were relatively similar, and that the same 
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classes of antibiotic elicit responses in similar pathways (Supplementary Table 2) and even 

homologous genes (Supplementary Table 3) across different species, all point to the ability of 

GoPhAST-R to account for the genetic diversity within a species.  

 

Because diversity amongst clinical strains in gene content or sequence may hinder probe 

hybridization, we devised a homology masking algorithm to identify conserved regions of each 

target gene across all sequenced isolates from its species (see Methods and Supplementary 

Methods). By thus targeting the most conserved regions of core transcripts in the probe design 

process, GoPhAST-R also takes into account variability in genetic sequence of conserved 

genes in different strains. The phenotypic portion of the assay is particularly robust to sequence 

variation, both because it incorporates the behavior of multiple targets to provide redundancy, 

and because it measures fold-induction of the target gene by antibiotic, so a target gene that 

has mutated beyond recognition would not inform AST classification when registered as absent.  

 

Ultimately, while we aimed to capture diversity in our initial sample set, testing of larger numbers 

of strains may be required. By employing a classification process built on machine-learning 

algorithms that can be iteratively refined as more strains are tested (Supplementary Fig. 7), 

GoPhAST-R is able to incorporate new diversity to asymptotically improve performance. 

 

Strategy for incorporating additional pathogen-antibiotic pairs: 

To extend GoPhAST-R to additional pathogen-antibiotic pairs beyond those defined here, the 

entire pathway described in this manuscript for signature derivation, from RNA-Seq to iterative 

phases of NanoString refinement and validation, will likely be required prior to implementation in 

a clinical setting. While some antibiotics elicit responses in predictable pathways, exemplified by 

fluoroquinolones up-regulating SOS-response transcripts, applying a novel diagnostic assay to 

a new pathogen-antibiotic pair demands rigor to meet clinical performance mandates. For 
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instance, when we applied this approach to S. aureus and P. aeruginosa treated with 

fluoroquinolones (Supplementary Fig. 6), we found that experimental derivation resulted in 

refined transcriptional signatures and control genes that were not predictable from prior assays 

on related pathogen-antibiotic pairs, often involving hypothetical or uncharacterized ORFs. The 

overall responses of both pathogens to fluoroquinolones included canonical DNA damage-

responsive transcripts like lexA, recA, recX, uvrA, and uvrB, which were generally consistent 

with the genes identified for the other three gram-negative pathogens (Supplementary Table 

2). Yet even for such a stereotypical response pathway, the specific genes selected from the 

RNA-Seq data that best distinguish susceptible from resistant isolates included features 

particular to each. In fact, recA was the only feature selected as a candidate responsive 

transcript in all five species; lexA and uvrA emerged in four of the five, but no other single 

transcript was selected in more than three, underscoring the importance of deriving each 

antibiotic response signature individually. In addition, derivation of control genes is critical for 

assay performance (see Supplemental Methods), and does not appear to be predictable across 

species or drug classes. This inability to predict the best-performing responsive and control 

genes by inference from other species highlights the need to individualize the expression 

signature for each pathogen-antibiotic pair, a process that is equivalent to the individualization 

currently required by CLSI to extend traditional AST assays to new pathogen-antibiotic pairs.  

 

Incorporating species identification into GoPhAST-R workflow: 

GoPhAST-R probes were designed to target regions conserved across all sequenced members 

of their parent species, thereby allowing each probeset to encode species identity in its 

reactivity profile. Since the NanoString platform can multiplex up to 800 probes in a single 

assay2, the actual deployed test would combine all 20 probes used for each pathogen-antibiotic 

pair (Supplemental Table 3) into a single multi-species probeset for each antibiotic, thereby 

providing simultaneous pathogen identification along with AST. Alternatively, species could be 
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identified prior to AST on the same NanoString platform using a more sensitive rRNA-based 

assay3. 

 

Proportionality of transcriptional response to antibiotic exposure: 

For each pathogen-antibiotic pair tested, the transcriptional profile of susceptible strains was 

distinct from that of resistant strains (Supplementary Fig. 5a), with the magnitude of the 

transcriptional response reflecting the MIC of the exposed isolate (Supplementary Fig. 5b). 

Sixth, the proportional relationship between transcriptional response and MIC underscores the 

biology that underpins the GoPhAST-R strategy: the more susceptible the strain, the greater its 

transcriptional response to antibiotic exposure. This relationship allows GoPhAST-R to be 

informed by established clinical breakpoint concentrations, thus leveraging decades of careful 

study linking in vitro strain behavior to clinical outcomes4. This relationship also explains why the 

majority of discrepancies between GoPhAST-R and broth microdilution occurred on strains with 

MICs close to the breakpoint. By contrast, the inability to map to MIC is considered a liability of 

genotypic assays, including WGS5. 

 

Carbapenemase detection in GoPhAST-R: 

By incorporating probes to simultaneously detect resistance determinants such as 

carbapenemase genes (Fig. 2), the genotypic component of GoPhAST-R can provide 

complementary evidence to reinforce its phenotypic call of resistance. This can be critical for the 

complex case of CRE detection6-11: even the American Type Culture Collection, the source of 

archived strain BAA2523, recognized this discrepancy in AST, noting that this carbapenemase-

producing isolate was reported as carbapenem-susceptible upon deposition but tested resistant 

by other methods (https://www.atcc.org/~/ps/BAA-2523.ashx). This is one of the isolates 

classified as resistant by GoPhAST-R but susceptible on standard MIC assays (Supplementary 

Table 4); it exhibits a dramatic inoculum effect (Supplementary Fig. 1b-c) that likely explains 
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this discrepancy, and clinical evidence is building that such carbapenemase-producing strains 

with large inoculum effects should be treated as resistant11-15.   

 

As a hybridization-based assay, GoPhAST-R will tolerate mutation in its detection targets more 

robustly than PCR-based assays16,17. This enables GoPhAST-R to more readily detect 

resistance determinants with marked sequence variation, particularly exemplified for certain 

carbapenemase gene families. While the KPC and NDM gene families are quite conserved, 

conventional PCR-based detection of the IMP and VIM gene families has been challenging 

because of their genetic diversity18 and the relative intolerance of PCR to point mutations in 

primer binding sites, especially towards the 3’ end of the primer16,17. In contrast, hybridization is 

more tolerant to point mutations and is amenable to a multiplexed format that allows the 

inclusion of multiple probes to recognize different regions of the same target, and thus identify 

targets with greater diversity. For instance, GoPhAST-R includes 4 separate probe pairs to 

accommodate the diversity of the IMP family (Supplementary Table S3; see Supplemental 

Methods).  

 

Comparison to genomic AST prediction: 

GoPhAST-R offers a rapid alternative to current gold-standard phenotypic testing. One 

alternative approach under development is genotypic resistance testing, either through targeted 

genotypic assays such as nucleic acid amplification19-22, or through whole-genome sequencing. 

Whole genome sequencing (WGS) coupled with machine learning has promised the possibility 

of a more universal genomic approach to AST23-27, but many challenges remain, in terms of 

accuracy, generalizability, speed, cost, and deployability. While certain bacterial species or 

antibiotic classes are more amenable to genetic resistance prediction28,29, this approach 

remains far from generalizable5,30-32. Additionally, our inability to predict the emergence of new 

resistance mechanisms33 means that genotypic resistance detection, whether targeted or 
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comprehensive, is fundamentally reactive as new resistance determinants are reported16,34-40. 

Genotypic resistance detection does, however, have the benefit of facilitating molecular 

epidemiology by allowing specific resistance mechanisms to be identified and tracked41,42. By 

integrating key aspects of both phenotypic and genotypic assays, GoPhAST-R realizes 

advantages of each approach.  

 

 

Supplementary Methods 

RNA extraction for RNA-Seq:  

After antibiotic treatment as described in main Methods section, cells were pelleted, 

resuspended in 0.5 mL Trizol reagent (ThermoFisher Scientific), transferred to 1.5 mL screw-

cap tubes containing 0.25 mL of 0.1 mm diameter Zirconia/Silica beads (BioSpec Products), 

and lysed mechanically via bead-beating for 3-5 one-minute cycles on a Minibeadbeater-16 

(BioSpec) or one 90-second cycle at 10 m/sec on a FastPrep (MP Bio). After addition of 0.1 mL 

chloroform, each sample tube was mixed thoroughly by inversion, incubated for 3 minutes at 

room temperature, and centrifuged at 12,000 xg for 15 minutes at 4˚C. The aqueous phase was 

mixed with an equal volume of 100% ethanol, transferred to a Direct-zol spin plate (Zymo 

Research), and RNA was extracted according the Direct-zol protocol (Zymo Research). 

 

Library construction and RNA-Seq data generation: 

Illumina cDNA libraries were generated using a modified version of the RNAtag-Seq protocol43, 

RNAtag-Seq-TS, developed during the course of this study in which adapters are added to the 

3’ end of cDNAs by template switching44 rather than by an overnight ligation, markedly 

decreasing the time, cost, and minimum input of library construction. Briefly, 250-500 ng of total 

RNA was fragmented, DNase treated to remove genomic DNA, dephosphorylated, and ligated 

to DNA adapters carrying 5’-AN8-3’ barcodes of known sequence with a 5’ phosphate and a 3’ 
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blocking group. Barcoded RNAs were pooled and depleted of rRNA using the RiboZero rRNA 

depletion kit (Epicentre). Pools of barcoded RNAs were converted to Illumina cDNA libraries in 2 

main steps: reverse transcription with template switching, then library amplification. RNA was 

reverse transcribed using a primer designed to the constant region of the barcoded adaptor with 

addition of an adapter to the 3’ end of the cDNA by template switching using SMARTScribe 

(Clontech). Briefly, two primers are added to the reverse transcription reaction to facilitate 

template switching: primer AR243, which primes SMARTScribe reverse transcriptase off of the 

ligated adapter, and primer 3Tr343, which contains 3 protected G’s at the 3’ terminus to 

complement the C’s added to the 3’ end of newly synthesized cDNA by SMARTScribe and also 

contains a 5’ blocking group to prevent multiple template-switching events. These primers were 

pre-incubated with rRNA-depleted, adapter-ligated RNA (at 8.33 uM of each primer) at 72˚C x 3 

min, then 42˚C x 2 min, then added directly to a master mix containing SMARTScribe buffer 

(1x), DTT (2.5 mM), dNTPs (1mM each; NEB), SUPERase-In RNase inhibitor (1 unit; 

Invitrogen), and SMARTScribe reverse transcriptase enzyme (final primer concentration in 

reaction mixture: 5 uM each). This reaction mixture was incubated at 42˚C x 60 min, then 70˚C x 

10 min, followed by addition of Exonuclease I (1 uL) and incubation at 37˚C x 30 min. After 1.5x 

SPRI cleanup, the resulting cDNA library was PCR amplified using primers whose 5’ ends target 

the constant regions of the ligated adapter (3’ end of original RNA) and the template-switching 

oligo (5’ end of original RNA) and whose termini contain the full Illumina P5 or P7 sequences. 

cDNA libraries were sequenced on the Illumina NextSeq 2500 or HiSeq 2000 platform to 

generate paired end reads. 

 

RNA-Seq data alignment: 

Sequencing reads from each sample in a pool were demultiplexed based on their associated 

barcode sequence. Barcode sequences were removed from the first read, as were terminal G’s 

from the second read that may have been added by SMARTScribe during template switching. 



 9 

The resulting reads were aligned to reference sequences using BWA45, and read counts were 

assigned to genes and other genomic features as described43. For each pathogen-antibiotic 

pair, a single reference genome was chosen for analysis of all four clinical isolates. This 

reference genome was selected by aligning a subset of RNA-Seq reads from each of the four 

isolates to all RefSeq genomes from that species and identifying the genome to which the 

highest percentage of reads aligned on average across all isolates. Since none of the isolates 

used for RNA-Seq have reference-quality genome assemblies themselves, and since four 

different isolates were used, not all genes in each isolate will be represented in the alignment. 

Yet for this application, any reads omitted due to the absence of a homologue in the reference 

genome used for alignment (i.e., accessory genes not shared by the reference) were assumed 

to be unlikely to be generalizable enough for diagnostic use. Using these criteria, the following 

reference genomes were chosen for alignment of RNA-Seq data for each of the following 

pathogen-antibiotic pairs: K. pneumoniae  = NC_016845 for meropenem and ciprofloxacin, and 

NC_012731 for gentamicin; E. coli = NC_020163 for meropenem, and NC_008563 for 

ciprofloxacin and gentamicin; A. baumannii = NC_021726 for meropenem, and NC_017847 for 

ciprofloxacin and gentamicin. Note that for display purposes in Figs. 1b, 3, and 4d, and 

Supplementary Figs. 6b, 8a, and 9a, all responsive genes were named according to their 

homologues in the best-annotated reference available (NC_016845 for K. pneumoniae, 

NC_000913 for E. coli, and NC_017847 for A. baumannii) in order to convey gene names that 

were as meaningful as possible, instead of simply gene identifiers. Read tables were generated, 

quality control metrics examined, and coverage plots from raw sequencing reads in the context 

of genome sequences and gene annotations were visualized using GenomeView46. Aligned 

bam files are deposited to the Sequence Read Archive (SRA) under study ID PRJNA518730.  

 

Selecting candidate responsive genes from RNA-Seq data: 
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The DESeq2 package47 was used to identify differentially expressed genes in treated vs 

untreated samples at each timepoint, in both susceptible and resistant strains. Analyses from 

select timepoints are displayed as MA plots in Fig 1a, and from all timepoints in 

Supplementary Fig. 2. Since no statistically significant changes in transcription were observed 

in resistant strains, responsive gene selection was only carried out on susceptible isolates.  

 

Complicating transcript selection is the fact that antibiotics interfere with growth of susceptible 

strains, resulting in the rapid divergence of culture density and growth phase of treated and 

untreated cultures, factors that alone affect the transcription of hundreds of genes that can 

mistakenly be interpreted as the direct result of antibiotic exposure but may not generalize 

across growth conditions. We thus expected that the resulting list of differentially expressed 

genes would represent both genes that respond primarily to antibiotic exposure, and genes that 

respond to ongoing growth that may be prevented by antibiotic treatment in susceptible strains, 

i.e. whose differential expression upon antibiotic exposure is more a secondary effect. As an 

example of this type secondary effect, consider a gene whose expression is repressed by 

increasing cell density, or nutrient depletion from the medium, as cells grow. In the presence of 

antibiotic, cells may never reach that cell density; therefore, this gene would exhibit higher 

expression in the antibiotic-treated culture (where it is not repressed) than in the untreated 

culture (where it is repressed). Without any correction, this gene would appear indistinguishable 

from one whose expression is induced by antibiotic, although this may be entirely a secondary 

effect. We reasoned that such “secondarily” regulated genes may be more dependent upon 

precise growth conditions (media type, temperature, cell density, cell state, etc – in other words, 

transcripts upregulated by progression towards stationary phase in minimal media will likely look 

different than that in rich media, etc), some of which may vary across clinical samples. By 

contrast, since antibiotics target core cellular processes, we hypothesized that the “direct” 

transcriptional response to antibiotic exposure would be more likely to be conserved across 
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strains, which is critical for their success in a diagnostic assay. We therefore wished to focus on 

transcripts whose expression appeared to be a direct result of antibiotic exposure, rather than 

this indirect result of the effects of an antibiotic on the progression of the strain to different 

culture densities.   

 

To enrich for such genes specifically perturbed by antibiotic exposure, additional differential 

expression analyses were carried out using DESeq2 to identify genes whose expression varied 

in untreated samples over the timecourse of the experiment. Such genes were very common: 

>10% of the transcriptome was differentially regulated at some timepoints compared with others 

in our timecourses of K. pneumoniae and E. coli (though considerably fewer in A. baumannii 

cultures). We therefore imposed the additional requirement that any candidate responsive gene 

exhibit a greater degree of differential expression in time-matched antibiotic-treated vs untreated 

samples at ≥1 timepoint, than it did in any untreated timepoint – in other words, that antibiotics 

induce a degree of induction or repression that exceeds that which was achieved at any 

timepoint in the absence of antibiotics. To implement this, we imposed Fisher’s combined 

probability test to combine p-values from each pairwise comparison, selecting those genes 

whose differential expression upon antibiotic treatment at a given timepoint exceeds their 

differential expression between any pair of points in the untreated timecourse, with adjusted p-

value <0.05. As an additional filter for gene selection, in order to be sure to target genes with 

sufficient abundance to be readily detected in the hybridization assay, only genes in the upper 

50% of expression in each condition were considered.  

 

For most pathogen-antibiotic pairs, this analysis resulted in the identification of hundreds of 

candidate antibiotic-responsive genes. We repeated this process (differential expression 

analysis + Fisher’s method), using progressively higher thresholds for the fold-change threshold 

used in the statistical test for differential expression, by increasing the lfcThreshold 
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parameter in DESeq2 (for all comparisons, i.e. antibiotic treatment and each pair of untreated 

timepoints used in Fisher’s method) until the resulting list of candidate responsive genes was 

60-100 long, the size we intended to target in phase 1 NanoString® assays. Table S3 shows 

the fold-change thresholds used to generate the final candidate responsive transcript list for 

each pathogen-antibiotic pair.  

 

This process was executed using custom scripts, available at 

https://github.com/broadinstitute/GeneSelection/ .  

 

Selecting candidate control genes from RNA-Seq data: 

To quantitatively compare the transcription of key antibiotic-responsive genes, it is critical to 

normalize for cell loading, lysis efficiency, and other experimental factors that may 

systematically affect absolute transcript abundance from a given sample. Such invariant 

transcripts (often referred to as “housekeeping” transcripts in qPCR) are crucial for scaling 

candidate responsive genes for comparison across samples, e.g. for comparing treated vs 

untreated samples. We therefore included control transcripts in our NanoString assay in order to 

normalize for these factors. We identified candidate control genes by seeking transcripts whose 

expression did not change in our RNA-Seq timecourses, either upon antibiotic treatment or with 

over the untreated timecourse. To find such genes, we imposed a statistical test to find 

transcripts whose expression did not change by more than a certain fold-change threshold in 

any of the treated or untreated samples by re-running DESeq2 using an inverted hypothesis test 

(altHypothesis = “lessAbs”), tuning the lfcThreshold parameter until we identified 

the 10-20 best control genes. Supplemental Table 3 shows the fold-change thresholds used to 

generate the final candidate control transcript list for each pathogen-antibiotic pair. 

 

Gene Ontology (GO) term enrichment: 
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For GO enrichment analysis, the same protocol was followed for responsive gene selection 

using DESeq2 and Fisher’s method (see “Selecting candidate responsive genes from RNA-Seq 

data”, above), with two exceptions. First, the lfcThreshold parameter was set to 0, in order 

to capture all differentially expressed genes. Second, genes of any expression level were 

considered, since sensitivity of detection was not a concern. This process produced a list of all 

genes that were differentially expressed upon antibiotic exposure to a greater extent than at any 

timepoint in the absence of antibiotic, over the full timecourse tested (0, 10, 30, and 60 min). 

These differentially expressed genes were named according to the reference genome that best 

matched the four strains used for RNA-Seq, as described (see “RNA-Seq analysis”, above). GO 

terms were assigned to annotated genes from each reference genome by blasting the peptide 

sequences for each ORF from that reference genome against a local database of ~120 well-

annotated reference strains from NCBI using blast2GO48 (version 1.4.4). GO terms associated 

with the list of differentially expressed genes was then compared with all GO terms associated 

with the genome, and hypergeometric testing was deployed to identify GO terms that were 

enriched to a statistically significant extent among the differentially expressed genes, using the 

Benjamini-Hochberg correction for multiple hypothesis testing. A false discovery rate threshold 

of 0.05 was used to generate the list of enriched GO terms in Supplemental Table 2.  

 

Homology masking of selected responsive and control transcripts 

Within each candidate responsive or control gene, we identified regions of highest homology to 

target with NanoString probes. For each species, we compiled all complete reference genomes 

from RefSeq as of January 1, 2016, ran BLASTn to identify the closest homologue of each 

desired target from each reference genome, and eliminated targets without an annotated 

homologue in at least 80% of genomes. We then constructed a multi-sequence alignment and 

queried each sliding 100mer window to keep only those windows with at least one 100mer 

region of >97% nucleotide identity across all reference genomes; all sequences failing to meet 
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this homology threshold were “masked”, i.e., removed from consideration as targets for probe 

design. If no such region was found, the homology threshold was relaxed to >95% identity, then 

to >92% identity; if no region with at least 92% identity was found, the transcript was deemed 

too variable to reliably target and thus eliminated from consideration entirely. The window size 

of 100 nucleotides was chosen because NanoString detection involves targeting with two 

~50mer probes that bind consecutive regions2. The resulting homology-masked sequences, 

retaining only those regions of intended target transcripts with sufficient homology, were then 

provided to NanoString for their standard probe design algorithms2. 

 

Design of NanoString probes for carbapenemase and extended-spectrum beta-lactamase gene 

families: 

All gene sequences representing each targeted antibiotic resistance gene family 

(carbapenemases: KPC, NDM, OXA-48, IMP, VIM; ESBLs: CTX-M-15, OXA-10) were collected 

from representatives reported in three databases of antibiotic resistance genes: Resfinder49, 

ArDB50, and the Lahey Clinic catalog of beta-lactamases (http://www.lahey.org/Studies). 

Additional representatives of each family were identified by homology search (BLASTp, E-value 

< 10-10, >80% similarity) against the conceptual translation of genes identified in the genomes of 

isolates collected as part a multi-institute analysis of carbapenem-resistant Enterobacteriaceae 

specimens41. All other genes in the pan-genome of that cohort that did not meet the homology 

search criterion for inclusion as one of the targeted families were consolidated in an outgroup 

sequence database, which was used to screen for cross-reactivity. This outgroup contains many 

other non-targeted beta-lactamases, as well as the complete genomes of hundreds of 

Enterobacteriaceae isolates41. For each targeted antibiotic resistance gene family, target 

regions for NanoString probe design were identified as described above (see "Homology 

masking of selected responsive and control transcripts”) by identifying regions with >95% 

sequence homology across 150 nucleotides in >90% of homologues within that family. In order 
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to minimize risk of cross-reactivity with undesired targets, these conserved regions of the 

desired targets were then compared by BLASTn to the outgroup database, and any regions with 

E-value < 10 were discarded. For the IMP gene family, no region of sufficient conservation 

could be identified due to sequence diversity within the family, consistent with reports that it is 

difficult to uniformly target by PCR18. We were able to identify four different regions that together 

were predicted to cover all IMP homologs from these databases, i.e., where each IMP homolog 

contained a stretch of sufficient homology to one or more of the four regions. We then submitted 

these regions to NanoString for probe design by their standard algorithms2, including four 

separate probe pairs for IMP (Supplemental Table 3). Signal from each of these four IMP 

probes was combined to yield a single combined total IMP signal (see “NanoString data 

processing, normalization, and visualization”, below).  

 

Lysate preparation for NanoString transcriptional profiling assays:  

Each strain to be tested was grown at 37˚C in Mueller-Hinton broth to mid-logarithmic phase, 

and split into a treated sample, to which antibiotic was added at the CLSI breakpoint 

concentration, and an untreated control. Both samples were grown for the specified time (30-60 

min), then a 100 uL aliquot of culture was added to 100 uL of RLT buffer (Qiagen) plus 1% beta-

mercaptoethanol and mechanically lysed using either the MiniBeadBeater-16 (BioSpec) or the 

FastPrep (MP Biomedicals). This crude lysate was either used directly for hybridization, or 

frozen immediately and stored at -80˚C, then thawed on ice prior to use. 

 

NanoString nCounter® assays: 

All Phase 1 and Phase 2 NanoString experiments (Supplemental Fig. 7) were performed on a 

NanoString nCounter® Sprint instrument, with hybridization conditions as per manufacturer’s 

recommendations, including a 10% final volume of crude lysate as input. Phase 1 experiments 

used probesets made with XT barcoded probe pools and were hybridized for 2 hours at 65˚C, 
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while Phase 2 experiments used probesets made with nCounter ElementsTM probe pools plus 

cognate barcoded TagSets and were hybridized for 1 hour at 67˚C, rather than the 16-24 hour 

hybridizations as recommended by the manufacturer’s protocol. Including 30-60 min for 

antibiotic exposure and these hybridizations, plus a 6 hour run for 12 samples, the total run time 

was under 8 hours for phase 2. Technical replicates for five strains run on separate days 

resulted in Pearson correlations of 0.95-0.99 for normalized data, consistent with expectations 

for this assay platform41, indicating that the shorter hybridization time did not affect 

reproducibility.  

 

Phylogenetic analysis of strains included in this study: 

The Genome Tree report was downloaded for each species from the National Center for 

Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov) in Newick file format and 

uploaded to the Interactive Tree of Life (iTOL; https://itol.embl.de)51 for visualization and 

annotation. Strains from this study that were available on NCBI were identified using strain 

name or other identifying metadata from the NCBI Tree View file, cross-referencing the NCBI ftp 

server (ftp://ftp.ncbi.nlm.nih.gov/pathogen/Results/) as needed to confirm strain identity. 

 

Rapid transcriptional profiling with pilot NanoString Hyb & Seq™ assay platform 

For the rapid pilot GoPhAST-R experiment on a prototype Hyb & SeqTM instrument at 

NanoString (Fig. 4), we constructed pairs of capture probes (Probe A and Probe B) for all 

targets of interest such that each pair could uniquely bind to one target transcript. For Hyb & 

Seq chemistry (Fig. 4b), each Probe A contained a unique target binding region, a universal 

purification sequence, and an affinity tag for surface immobilization. Each Probe B contained 

another unique target binding region, a barcoded sequence for downstream signal detection, 

and a common purification sequence that is different from that of Probes A. For multiplexed 

RNA profiling, crude lysates were mixed with all capture and reporter probes in a single 
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hybridization reaction and incubated on a thermocycler with heated lid at 65˚C for 20 min. This 

hybridization reaction enables formation of unique trimeric complexes between target mRNA, 

Probe A, and Probe B for each target. 

 

We then performed three sequential steps of post-hybridization purification to ensure minimal 

background signal. Briefly, the hybridization product was first purified over magnetic beads 

coupled to oligonucleotides complementary to the universal sequence contained on every Probe 

B. The hybridization product was first incubated with the beads in 5x SSPE/60% 

formamide/0.1% Tween20 at room temperature for 10min in order to bind all target complexes 

containing Probes B, along with the free (un-hybridized) Probes B, onto the beads. Bead 

complexes were then washed with 0.1x SSPE/0.1% Tween20 to remove unbound oligos and 

complexes without Probes B. The washed beads were then incubated in 0.1x SSPE/0.1% 

Tween20 at 45˚C for 10 min to elute the bound hybridized complexes off the beads. This 

second purification was carried out per manufacturer's instructions using Agencourt AMPure XP 

beads (Beckman Coulter) at a 1.8:1 volume ratio of beads to sample, in order to remove oligos 

shorter than 100 nt. This size-selective purification recovers the bigger hybridization complexes 

while removing smaller free capture Probes A and B. Eluates from these AMPure beads were 

purified over a third kind of magnetic beads coupled to oligonucleotides complementary to the 

common purification sequence contained on every Probe A, similar to the first bead purification, 

then eluted at 45˚C. These triple-purified samples were driven through a microfluidic flow cell on 

a readout cartridge by hydrostatic pressure within 20 min. The flow cell was enclosed by a 

streptavidin-coated glass slide that can specifically bind to the affinity tag (biotin) of each Probe 

B, allowing the immobilization of purified complexes on the glass surface. 

 

The cartridge with samples loaded was mounted on a Hyb & Seq prototype instrument equipped 

with an LED light source, an automated stage, and a fluorescent microscope. The barcoded 
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region of each Probe A consisted of two short nucleic acid segments, each of which can bind to 

one of ten available fluorescent bi-colored DNA reporter complexes as dictated by 

complementarity to the exact segment sequences. To detect each complex captured on the 

glass surface (Fig. 4c), photocleavable fluorescent color-coded reporters were grouped by their 

target segment location and introduced into the flow cell one pool at a time. Following each 

reporter pool introduction, the flow cell was washed with non-fluorescent imaging buffer to 

remove unbound reporter complexes and scanned by the automated Hyb & Seq prototype. 

Each field of view (FOV) was scanned at different excitation wavelengths (480, 545, 580 and 

622 nm) to generate four images (one for each wavelength) and then exposed to UV (375nm) 

briefly to remove the fluorophore on surface-bound reporter probes by breaking a 

photocleavable linker. The flow cell was then subjected to a second round of probing with a new 

reporter pool targeting the second segment location on each Probe A. Thus, two rounds of 

probing, washing, imaging and cleavage completed one Hyb & Seq barcode readout cycle. In 

order to improve signal-to-noise ratio, 5 such cycles were completed for each assay. Between 

each cycle, the flow cell was incubated with low salt buffer (0.0033x SSPE/0.1% Tween20) to 

remove all bound reporter complexes without disrupting the ternary complex between Probe A, 

target mRNA, and Probe B.  

 

A custom algorithm was implemented to process the raw images for each FOV on a FOV-by-

FOV basis. This algorithm can identify fluorescent spots and register images between each 

wavelengths and readout cycles. A valid feature is defined as a spot showing positive 

fluorescence readout for all barcoded segment locations in the same spatial position of each 

image after image registration. The molecular identity of each valid feature is determined by the 

permutation of color codes for individual rounds of barcode segment readout. In this 

implementation, the maximal degree of available multiplexing for a single assay using 10-plex 

reporter pools was 102 = 100 kinds for two-segment barcodes, but up to four-segment barcodes 
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are available, permitting up to 104 = 10,000 distinct barcodes. This algorithm provides tabulated 

results for the total raw count of each reporter barcode of interest identified in a single assay. 

These raw counts are used as input for subsequent data processing, visualization, and further 

analysis. 

 

NanoString data processing, normalization, and visualization: 

For each sample, read counts from each targeted transcript were extracted using nSolver 

Analysis Software (v4.070, NanoString, Seattle WA). Raw read counts underwent the following 

processing steps, all executed in R (version 3.3.3), utilizing the packages dplyr (version 0.7.4), 

xlsx (version 0.5.7), gplots (version 3.0.1), and DescTools (version 0.99.23): 

1. Data aggregation: all data for a given pathogen-antibiotic pair, for a given phase of 

analysis (eg phase 1 or phase 2), was read in to a single data object so that all 

subsequent data processing steps were done together.  

2. Positive control correction: per manufacturer’s protocol, ERCC spike-ins were included 

in every hybridization at known concentrations, spanning the range of expected target 

RNA concentrations. For each sample, the geometric mean of counts from positive 

control probes targeting these ERCC spike-ins was calculated. This geometric mean 

was used to scale each remaining probe in the sample, in order to standardize across 

lanes for any systematic variation.  

3. Negative control subtraction: per manufacturer’s protocol, for each sample, the mean of 

negative control probes targeting ERCC spike-ins not present in the hybridization 

reaction were subtracted from the raw read counts for each target.  

4. Failed probe removal: any control probe with fewer than 10 reads, or any responsive 

control with negative reads, after negative control subtraction in any sample was 

removed from all samples for a given pathogen-antibiotic pair, in order to omit transcripts 

whose content, sequence, or expression was too variable across strains.  
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5. Selection of optimal control probes: among the set of candidate control probes, across 

all strains in a given phase of analysis, the subset of these control probes that performed 

most consistently across samples was selected using a variation on the geNorm 

algorithm52. The principle behind this algorithm is that the per-cell expression of ideal 

control probes will not vary under any experimental conditions, and therefore, the ratio 

between expression levels of a set of ideal control probes will be constant (reflecting 

only the difference in cell number in each sample). We thus calculate the coefficient of 

variation of each control probe with the geometric mean of all control probes. In the ideal 

case, this coefficient of variation will be zero. The candidate control probe with the 

highest coefficient of variation is removed, and the process is repeated with the 

remaining control probes until the highest coefficient of variation is less than a threshold 

set to yield an acceptable number of non-operonic control transcripts, typically 4-8. For 

these experiments, this threshold was adjusted from 0.2 to 0.3 depending on the 

bacteria-antibiotic pair. Thresholds chosen, and the optimal control probes used at this 

threshold, are noted in Supplementary Table 3.  

6. Control transcript normalization: the geometric mean of the optimal control probes was 

calculated for each sample and used to normalize all remaining read counts from that 

sample, i.e. for candidate responsive transcripts, and for carbapenemase or ESBL 

genes (if applicable), by dividing these corrected read counts by this geometric mean for 

each sample.  

7. Calculation of fold-induction of normalized responsive transcripts by antibiotic: for each 

candidate responsive transcript, normalized counts from each antibiotic-treated strain 

were divided by normalized counts from untreated samples of the same strain. These 

fold-inductions of normalized expression for each candidate responsive transcript were 

used as input into machine learning algorithms, both reliefF for feature selection and the 

caret package for random forest classification.  
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8. Log-transformation of fold-induction data for responsive transcripts: for visualization, the 

natural logarithm of fold-inductions of normalized expression for each candidate 

responsive transcript was calculated and displayed using the heatmap.2 function of the 

gplots R package (version 3.0.1). For each set of strains, ln(fold induction) for each 

transcript was clustered using the default hclust function, and strains were ordered by 

MIC.  

9. Combination of IMP probes: because of the variability of gene sequences in the IMP 

family, four separate IMP probes were designed, one or more of which was expected to 

recognize all sequenced members of this gene family. Following control gene 

normalization, signal from the four separate probes was added together to give a single 

IMP score. 

10. Background subtraction for carbapenemase/ESBL gene detection: For each species, the 

subset of tested strains was identified for which whole-genome sequencing (WGS) data 

was available and none of the target beta-lactamase genes was found. From this subset, 

the arithmetic mean plus two standard deviations of the normalized signal from each 

probe (step 6) was calculated, and this mean + two standard deviations was subtracted 

from the normalized signal from each probe across all tested samples. All 

carbapenemases identified by WGS were detected above background, though the two 

A. baumannii isolates expressing blaNDM were only detected at very low levels. 

Background-subtracted data were log-transformed for visualization (any probe with a 

negative value after background-subtraction was set to 0.1 normalized counts for all 

standard nCounter experiments, or to 0.25 normalized counts for Hyb & Seq 

experiments, prior to log-transformation).  

 

One-dimensional projection of transcriptional data via squared projected distance (SPD) metric: 
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Normalized, log-transformed fold-induction data from the ~60-100 responsive were collapsed 

into a one-dimensional projection that we call squared projected distance (SPD), essentially as 

described53. Conceptually, the transcriptional response of a test strain is placed on a vector in 

N-dimensional transcriptional space (where N = number of responsive genes, here ~60-100 per 

probeset) between the average position (i.e. centroid in transcriptional space) of a derivation set 

of susceptible strains (defined as SPD = 0) and the average position of a derivation set of 

resistant strains (defined as SPD = 1). All vector math was performed exactly as described53 

and implemented in R (version 3.3). For each pathogen-antibiotic pair, the same strains used for 

RNA-Seq were also used as the derivation set of two susceptible and two resistant strains, in 

order to ensure that the resulting projections of the remaining strains were not self-determined. 

In other words, only the strains used to select the transcripts to be used in the NanoString 

experiments (based on RNA-Seq) were used to set the average position of susceptible or 

resistant isolates; any tendency of other isolates to cluster at a similar SPD as these derivation 

strains, either susceptible or resistant, is thus due to a similarity in their transcriptional profiles. 

These derivation strains are labeled in Supplementary Table 1 as “deriv_S” and “deriv_R” for 

susceptible and resistant strains, respectively. SPD data are plotted by CLSI class 

(Supplementary Fig. 5a) and by MIC (Supplementary Fig. 5b), showing a proportional 

relationship between MIC and this summative metric of transcriptional response to antibiotic 

exposure upon treatment at the breakpoint concentration (vertical dashed line).  

 

Approach to strain classification based on NanoString data:  

In order to select the most distinguishing features and to classify isolates as susceptible or 

resistant, we turned to machine learning algorithms, which we implemented in two phases 

(Supplementary Fig. 7).  
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In phase 1, NanoString XT probesets were designed targeting dozens (60-100) of antibiotic-

responsive transcripts (Supplementary Table 3) selected from RNA-Seq data as described and 

used to quantify target gene expression from 18-24 isolates of varying susceptibility, both 

treated and untreated with the antibiotic in question, from which normalized fold-induction data 

for each responsive gene candidate was determined as described above. These isolates are 

partitioned into 50% training strains and 50% testing strains, randomly but informed by MIC: 

isolates are sorted in order of MIC and then alternately assigned to training and testing sets in 

order to ensure a balanced mix of isolates in each cohort across the full range of MICs 

represented by the strains in question. The only exceptions to random strain assignments to 

training vs testing sets in Phase 1 were: (1) intermediate isolates were not used for training, but 

were assigned to the validation cohort (and were grouped with resistant isolates for accuracy 

reporting, i.e., “not susceptible”), and (2) the two E. coli isolates with large meropenem inoculum 

effects were noted prior to randomization and deliberately assigned to the validation cohort, 

given the physiological basis for their discrepant transcriptional response from that of a 

conventional susceptible strain. From the training (derivation) cohort, the top 10 features were 

first selected using reliefF (see details below, “Feature selection from NanoString data”), then a 

random forest model was trained on this derivation cohort using the caret package, then 

implemented on the testing (validation) cohort, using only data from these top 10 selected 

features (see details below, “Random forest classification of strains from NanoString data”). 

Accuracy of GoPhAST-R in this phase was assessed by comparing predictions of the random 

forest model for the strains in the testing cohort, which it had never previously seen, with known 

susceptibility data for these strains (Fig. 1c, Supplementary Fig. 2c; Supplementary Table 4).  

 

In phase 2, the training and testing cohorts from phase 1 were first combined into a single, 

larger training set, and selection of the top 10 responsive features were repeated using the 

same algorithms (reliefF). These represent our best-informed prediction of the 10 responsive 
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probes that most robustly discriminate between susceptible and resistant isolates, and are 

highlighted in Supplementary Table 3 for each pathogen-antibiotic combination (column F = 

either “Phase 2” or “Top feature”). A new NanoString nCounter Elements probeset was then 

designed for each pathogen-antibiotic pair, targeting only these 10 transcripts as well as ~10 

control probes that performed best in phase 1 (i.e. had the lowest coefficients of variation 

compared with the geometric mean of all control probes, using the variation on the geNorm 

algorithm described above; also indicated in Supplementary Table 3, column F). For K. 

pneumoniae + meropenem and ciprofloxacin, we proceeded to test an additional 25-30 strains 

using these focused phase 2 probesets, again quantifying target gene expression and 

normalized fold-induction of these responsive genes with and without antibiotic exposure. These 

data were supplied to the random forest classifier trained on all data from phase 1, and the 

resulting classifications of phase 2 strains were compared with known susceptibility data for 

these strains (Supplementary Fig. 8b; Supplementary Table 4). Of note, phase 2 deploys 

GoPhAST-R in exactly the way we envision it being deployed on true unknown samples: each 

of the phase 2 strains was an unknown, considered independently and not used at any point to 

train the model, only to assess its performance one strain at a time.  

 

Every strain tested was an independent clinical isolate, with two minor exceptions. First, in the 

case of A. baumannii + ciprofloxacin, for which we did not have access to sufficient numbers of 

independent ciprofloxacin-susceptible A. baumannii isolates to train and test a classifier (only 

five out of 22 A. baumannii isolates). For this bacteria-antibiotic pair, we therefore ran biological 

replicates of the two susceptible strains used for RNA-Seq, RB197 (three replicates) and RB201 

(two replicates). These biological replicates were grown from separate colonies in separate 

cultures, each split into treated and untreated samples. All three RB197 replicates ended up 

randomized to the phase 1 training set, while both RB201 replicates were randomized to the 

phase 1 testing set. Since we were not training on one biological replicate and testing on 
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another, the reported categorical agreement should not be confounded by excessive similarity 

between replicates. One additional linkage between isolates was that one A. baumannii isolate, 

RB197, exhibited two distinct colony morphotypes upon streaking onto LB plates: a dominant, 

larger morphotype, and a less abundant, smaller morphotype. The smaller morphotype was 

renamed RB197s and tested in both the meropenem and ciprofloxacin datasets, randomized to 

the testing (validation) cohort in both cases. 

 

Feature selection from NanoString data: 

For feature selection in both phase 1 and phase 2, we employed the reliefF algorithm54 using 

the the CORElearn package (version 1.52.0) in R (version 3.3.3) to generate a list of features 

ranked in order of importance in distinguishing susceptible from resistant strains within the 

training set. The input to the reliefF algorithm was normalized fold-induction data from all 

responsive probes, and the CLSI classification, for each training isolate. (For this analysis, CLSI 

classification was simplified into two classes by grouping intermediate strains with resistant 

strains, in keeping with common clinical practice to avoid an antibiotic for which an isolate tests 

intermediate.)  

 

The process by which reliefF generates its ranking is well-described elsewhere54. We chose the 

specific estimator algorithm (lEst parameter) “ReliefFexpRank”, which considers the k nearest 

hits and misses, with the weight of each hit and miss exponentially decreasing with decreasing 

rank. We iterated five times (ltimes parameter = 5), with a separate 80% partition of the training 

data for each iteration, then averaged feature weight across each of these five iterations to 

generate the final ranked list. The output from this reliefF algorithm is a ranked list of features 

that best distinguish susceptible from resistant isolates; from this list, we chose to keep the top 

10 features (featureCount parameter = 10). The same parameter values were chosen for 

feature selection for both phase 1 (i.e., on the half of the phase 1 data assigned to the training 
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set) and phase 2 (i.e., using all of the phase 1 data, for use in designing new probesets for de 

novo data acquisition in phase 2). 

 

Random forest classification of strains from NanoString data: 

To build a random forest classifier, we employed the caret (classification and regression 

training) package (version 6.0-78) in R (version 3.3.3) to classify strains in the testing cohort. 

Input data for this algorithm are normalized fold-inductions of the top 10 responsive genes 

selected by reliefF for both training and testing strains, and CLSI classifications for each training 

strain (again with intermediate and resistant isolates grouped together). This random forest 

model is a common example of an ensemble classifier55 that embeds feature selection and 

weighting in building its models, which should mitigate risk for overtraining from including 

additional features from reliefF, since features not required for accurate classification need not 

be considered. It enacts 5-fold cross-validation on the training set, i.e. 80% sampling of the 

testing data, run 5 times, to optimize parameters including “mtry”, “min.node.size”, and 

“splitrule”, to build 500 trees (parameter “ntree” set to 500) based on prediction of the omitted 

training strains. After these hyperparameters are optimized through this cross-validation, an 

additional 500 trees are built using all of the training data and used to classify strains from the 

test set, one strain at a time. The resulting output is this classifier model that generates 

predictions for the classification of each test strain, reported as “probability of resistance” 

(probR) based on what fraction of trees ended up classifying the strain as resistant. (For 

instance, a strain with probR of 0.2 was classified as susceptible in 100 trees and as resistant in 

400.) For quantitative assessment of accuracy, we used the prediction of the most likely class 

as the ultimate classification (i.e., if probR > 0.5, the classifier is predicting resistant; if probR < 

0.5, the classifier is predicting susceptible). One might ultimately choose to set this threshold 

somewhere other than 0.5: since the cost of misclassifying a resistant isolate as susceptible (a 

“very major error” in the parlance of the FDA) is greater than the cost of misclassifying a 
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susceptible isolate as resistant, one might wish to label an isolate resistant if its probR is, say, 

0.3. However, for simplicity, and to avoid overtraining on the relatively limited number of 

samples in this manuscript, we chose the default threshold of 0.5, accepting the classifier’s 

prediction as to which state is more likely. 

 

Reproducibility of GoPhAST-R classification: 

Phase 2 probesets for meropenem susceptibility were combined with probes for 

carbapenemase and ESBL gene detection (Supplementary Table 3). For K. pneumoniae + 

meropenem, in addition to testing all phase 2 strains simultaneously for phenotypic AST and 

genotypic resistance determinants, we retested 23 of 24 phase 1 strains using the phase 2 

probeset in order to capture their carbapenemase and ESBL gene content. This provides a set 

of effective technical replicates for assessing the robustness of our classifier, since all phase 2 

genes are included as a subset of the phase 1 probeset, but all data were regenerated in a new 

NanoString experiment using the phase 2 probeset with added genotypic probes.  

 

All 23 retested strains (11 susceptible, 12 resistant) were classified correctly based upon data 

from the phase 2 probeset; of these 23 strains, 12 (6 susceptible, 6 resistant) were phase 1 

training strains (that were therefore not previously classified in phase 1), and 11 (5 susceptible, 

6 resistant) were phase 1 testing strains that were classified the same way based upon data 

from the phase 2 probeset as they had been in phase 1 testing. The probability of resistance 

(probR) parameters for these 23 replicates from phase 1 (Supplementary Table 4) versus 

those from “re-classification” using data from the phase 2 probeset were highly correlated 

(Pearson correlation coefficient = 0.95). Note that because these same strains were used in 

training the random forest classifier, the results of re-classification of these retested strains are 

not included in the accuracy statistics reported elsewhere in this manuscript. The 100% 
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concordance observed for re-classification of these 23 strains is thus not a reflection of 

GoPhAST-R’s accuracy, but does speak to its reproducibility.  

 

Blood culture processing: 

Under Partners IRB 2015P002215, 1 mL aliquots from blood cultures in the MGH clinical 

microbiology laboratory whose Gram stain demonstrated gram-negative rods were removed for 

processing. For simulated blood cultures, consistent with clinical microbiology laboratory 

protocol56, blood culture bottles were inoculated with individual isolates of each pathogen 

suspended in fetal bovine serum at <10 cfu/mL to simulate clinical samples and incubated in a 

BD BacTec FX instrument (BD Diagnostics; Sparks, MD) in the clinical microbiology laboratory 

at Massachusetts General Hospital, or on a rotating incubator at 37˚C in our research laboratory 

at the Broad Institute. Once the BacTec instrument signaled positive (after 8.5-11.75 hours of 

growth), or after an equivalent time to reach the same culture density in the research laboratory 

(confirmed by enumeration of colony-forming units), 1 mL aliquots were removed for processing. 

Bacteria were isolated by differential centrifugation: 100 xg x 10 min to pellet RBCs, followed by 

16,000 xg x 5 min to pellet bacteria. The resulting pellet was resuspended in 100 uL of Mueller-

Hinton broth and immediately split into 5 x 20 uL aliquots for treatment with the indicated 

antibiotics (three antibiotics, plus two untreated samples, one for harvesting at 30 min to pair 

with the ciprofloxacin-treated aliquot and one at 60 min to pair with both meropenem- and 

gentamicin-treated aliquots). After the appropriate treatment time, 80 uL of RLT buffer + 1% 

beta-mercaptoethanol was added to 20 uL of treated bacterial sample, and lysis via bead-

beating followed by NanoString detection were carried out as above (see “Lysate preparation for 

NanoString transcriptional profiling assays”). For real blood cultures, lysates were stored at -

80C until organisms were identified in the laboratory by conventional means; only samples 

containing E. coli or K. pneumoniae were run on NanoString. GoPhAST-R results were 

compared with standard MIC testing in the MGH clinical microbiology laboratory, which were 
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also run on simulated cultures. Specimens were blinded until all data acquisition and analysis 

was complete. For head-to-head time trial compared with gold standard AST testing in the MGH 

clinical microbiology laboratory (subculture + VITEK-2), blood culture processing steps were 

timed in our research laboratory (Boston, MA, USA), then frozen and shipped to NanoString for 

transcript quantification on the prototype Hyb & Seq platform at NanoString (Seattle, WA, USA). 

A timer was restarted when lysates were thawed, and the total time at each site was combined 

to estimate the complete assay duration. 

 

Blood culture AST classification: 

Simulated blood cultures were classified using the same random forest approach as cultured 

strains, using the top 10 features selected during Phase 1 for each pathogen-antibiotic pair. This 

was implemented using leave-one-out cross-validation57 rather than an even partitioning into 

training and testing because (1) feature selection was already complete, allowing multiple 

rounds of classifier training without requiring one unified model, and (2) given this, leave-one-

out cross-validation (i.e., iteratively omit each strain once from training, test on the omitted 

strain, repeat with each strain omitted) allowed for training on the maximum number of strains. 
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Supplementary Figure legends:  

 

Supplementary Figure 1. Differential gene expression upon antibiotic exposure 

distinguishes susceptible and resistant strains. (a) RNA-Seq data from two susceptible (left 

panels) or two resistant (right panels) clinical isolates of E. coli or A. baumannii treated with 

meropenem (60 min), ciprofloxacin (30 min), or gentamicin (60 min) at CLSI breakpoint 

concentrations are presented as MA plots. Statistical significance was determined by a two-

sided Wald test with the Benjamini-Hochberg correction for multiple hypothesis testing, using 

the DESeq2 package47. (b) Heatmaps of normalized, log-transformed fold-induction of top 10 

antibiotic-responsive transcripts from 24 clinical isolates of E. coli or A. baumannii treated at 

CLSI breakpoint concentrations with meropenem, ciprofloxacin, or gentamicin. Gene identifiers 

are listed at right, along with gene names if available. CLSI classifications of each strain based 

on broth microdilution are shown below. * = strains with large inoculum effects in meropenem 

MIC; x = strains discordant by more than one dilution. (c) GoPhAST-R predictions of probability 

of resistance from a random forest model trained on NanoString data from the derivation cohort 

and tested on the validation cohort (y-axis) are compared with standard CLSI classification 

based on broth microdilution MIC (x-axis) for E. coli (top) or A. baumannii isolates treated with 

meropenem, ciprofloxacin, and gentamicin. Horizontal dashed lines indicate 50% probability of 

resistance. Vertical dashed lines indicate the CLSI breakpoint between susceptible and not 

susceptible (i.e. intermediate/resistant). Numbers in each quadrant indicate concordant and 

discordant classifications between GoPhAST-R and broth microdilution. Carbapenemase 

(square outline) and select ESBL (diamond outline) gene content as detected by GoPhAST-R 

are also displayed on the meropenem plot. 

 

Supplementary Figure 2. Timecourse of RNA-Seq data upon antibiotic exposure reveals 

differential gene expression between susceptible and resistant clinical isolates. 
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Susceptible (left panels) or resistant (right panels) clinical isolates of K. pneumoniae, E. coli, or 

A. baumannii treated with meropenem, ciprofloxacin, or gentamicin at CLSI breakpoint 

concentrations for the indicated times. Data are presented as MA plots, Statistical significance 

was determined by a two-sided Wald test with the Benjamini-Hochberg correction for multiple 

hypothesis testing, using the DESeq2 package47.  

 

Supplementary Figure 3. Phylogenetic trees highlight the diversity of strains used in this 

study. Phylogenetic trees of all sequenced isolates deposited in NCBI for (a) K. pneumoniae, 

(b) E. coli, (c) A. baumannii, and (d) P. aeruginosa, with all sequenced isolates used in this 

study indicated by colored arrowheads around the periphery. See Supplemental Methods for 

details. 

 

Supplementary Figure 4. NanoString data from dozens of antibiotic-responsive genes 

distinguish susceptible from resistant isolates. Heatmaps of normalized, log-transformed 

fold-induction of antibiotic-responsive transcripts from clinical isolates of K. pneumoniae (24, 18, 

and 26 independent clinical isolates for the three antibiotics, respectively), E. coli (24 

independent clinical isolates for each antibiotic), or A. baumannii (24 clinical isolates for each 

antibiotic) treated at CLSI breakpoint concentrations with meropenem, ciprofloxacin, or 

gentamicin. CLSI classifications are shown below. All antibiotic-responsive transcripts chosen 

as described from RNA-Seq data are shown here; the subset of these chosen by reliefF as the 

10 most discriminating transcripts are shown in Fig. 1b or Supplemental Fig. 1b. * = strains 

with large inoculum effects in meropenem MIC; + = one-dilution errors; x = strains discordant by 

more than one dilution. 

 

Supplementary Figure 5. One-dimensional projection of NanoString data distinguishes 

susceptible from resistant isolates and reflects MIC. (a) Phase 1 NanoString data from 
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Supplemental Fig. 2 (i.e., normalized, log-transformed fold-induction for each responsive 

transcript), analyzed as described to generate squared projected distance (SPD) metrics (y-

axes) for each strain (see Supplemental Methods), are binned by CLSI classifications (x-axes), 

for clinical isolates of K. pneumoniae (24, 18, and 26 independent clinical isolates for the three 

antibiotics, respectively), E. coli (24 independent clinical isolates for each antibiotic), or A. 

baumannii (24 clinical isolates for each antibiotic) treated at CLSI breakpoint concentrations with 

meropenem, ciprofloxacin, or gentamicin (the same isolates shown in Fig. 1b-c and 

Supplemental Fig. 1b-c). By definition, an SPD of 0 indicates a transcriptional response to 

antibiotic equivalent to that of an average susceptible strain, while an SPD of 1 indicates a 

response equivalent to that of an average resistant strain. See Supplemental Methods for 

details. Data are summarized as box-and-whisker plots, where boxes extend from the 25th to 

75th percentile for each category, with a line at the median, and whiskers extend from the 

minimum to the maximum. Note that for A. baumannii and meropenem, the clustering of the 

majority of susceptible strains by this simple metric (aside from one outlier which is misclassified 

as resistant by GoPhAST-R) underscores the true differences in transcription between 

susceptible and resistant isolates, despite the more subtle-appearing differences in heatmaps 

for this combination (Supplemental Fig. 1b), which is largely caused by one strain with an 

exaggerated transcriptional response (seen here as the strain with a markedly negative SPD) 

that affects scaling of the heatmap. (b) The same SPD data (y-axes) plotted against broth 

microdilution MICs (x-axes) reveal that the magnitude of the transcriptional response to 

antibiotic exposure correlates with MIC. In both (a) and (b), strains with a large inoculum effect 

upon meropenem treatment are displayed in red and enlarged. Vertical dashed line indicates 

the CLSI breakpoint between susceptible and not susceptible (i.e., intermediate or resistant).  

 

Supplementary Figure 6. RNA-Seq and NanoString data reveal differential gene 

expression that distinguishes susceptible from resistant clinical isolates for S. aureus + 
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levofloxacin and P. aeruginosa + ciprofloxacin. (a) RNA-Seq data from two susceptible or 

two resistant clinical isolates of each species treated with the indicated fluoroquinolone at 1 

mg/L for 60 minutes are presented as MA plots. Statistical significance was determined by a 

two-sided Wald test with the Benjamini-Hochberg correction for multiple hypothesis testing, 

using the DESeq2 package47. (b) Heatmaps of normalized, log-transformed fold-induction of 

antibiotic-responsive transcripts from 24 independent clinical isolates of each species treated 

with the indicated fluoroquinolone at 1 mg/L for 60 minutes. For each species, NanoString data 

from all candidate transcripts are shown at left, and top the 10 transcripts selected from Phase 1 

testing are shown at right. (c) GoPhAST-R predictions of probability of resistance from a 

random forest model trained on Phase 1 NanoString data from the derivation cohort and tested 

on the validation cohort (y-axis) compared with standard CLSI classification based on broth 

microdilution MIC (x-axis). Horizontal dashed lines indicate 50% probability of resistance. 

Vertical dashed lines indicate the CLSI breakpoint between susceptible and not susceptible (i.e. 

intermediate/resistant). Numbers in each quadrant indicate concordant and discordant 

classifications between GoPhAST-R and broth microdilution. 

 

Supplementary Figure 7. Schematic of data analysis scheme, including “two-phase” 

machine learning approach to feature selection and strain classification. Schematic 

representation of major data analysis steps in identifying antibiotic-responsive transcriptional 

signatures from RNA-Seq data, validating and optimizing these signatures using NanoString in 

two phases, and using these signatures to classify strains of unknown MIC, also in two phases. 

First, candidate antibiotic-responsive and control transcripts were chosen from RNA-Seq data 

using custom scripts built around the DESeq2 package47, and conserved regions of these 

transcripts were identified for targeting in a hybridization assay. In phase 1 (implemented for all 

pathogen-antibiotic pairs), these candidate transcripts were quantitated on the NanoString 

assay platform, and the resulting data were partitioned by strain into training and testing 
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cohorts. Ten transcripts that best distinguish susceptible from resistant strains within the training 

cohort were then selected (step 1A) using the reliefF feature selection algorithm (implemented 

via the CORElearn package), then used to train an ensemble classifier (step 1B) on the same 

training cohort using a random forest algorithm (implemented via the caret package). This 

trained classifier was then used to predict susceptibilities of strains in the testing cohort (step 

1C), and accuracy was assessed by comparing with broth microdilution results (Supplementary 

Table 4). In phase 2 (implemented for K. pneumoniae + meropenem and ciprofloxacin), the 

same process was repeated, but the phase 1 training and testing cohorts were combined into a 

single, larger training cohort for feature selection (step 2A) and classifier training (step 2B), and 

a new set of strains were obtained as a testing cohort. The 10 genes selected from the phase 2 

training cohort were measured from this phase 2 testing cohort, and the trained classifier was 

used for AST on these new strains (step 2C), with accuracy again assessed by comparison with 

broth microdilution (Supplementary Table 4). See Supplemental Methods for detailed 

descriptions of each of these analysis steps.  

 

Supplementary Figure 8. GoPhAST-R accurately classifies K. pneumoniae isolates tested 

in phase 2. (a) Heatmaps of normalized, log-transformed fold-induction of top 10 antibiotic-

responsive transcripts from K. pneumoniae treated at CLSI breakpoint concentrations with 

meropenem (31 independent clinical isolates) or ciprofloxacin (25 independent clinical isolates). 

CLSI classifications are shown below. * = strain with large inoculum effects in meropenem MIC; 

+ = one-dilution error; x = strain discordant by more than one dilution. Note that the 10 

responsive transcripts shown are the only 10 tested for this second phase of GoPhAST-R 

implementation. (b) GoPhAST-R predictions of probability of resistance from a random forest 

model trained on all Phase 1 NanoString data the independent Phase 2 cohort (y-axis) 

compared with standard CLSI classification based on broth microdilution MIC (x-axis). 

Horizontal dashed lines indicate 50% probability of resistance. Vertical dashed lines indicate the 
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CLSI breakpoint between susceptible and not susceptible (i.e. intermediate/resistant). Numbers 

in each quadrant indicate concordant and discordant classifications between GoPhAST-R and 

broth microdilution. * = strain with large inoculum effects in meropenem MIC. 

 

Supplementary Figure 9. GoPhAST-R accurately classifies AST and detects key 

resistance elements directly from simulated positive blood culture bottles in <4 hours. (a) 

Heatmaps of normalized, log-transformed fold-induction NanoString data from the top 10 

antibiotic-responsive transcripts directly from 12 simulated positive blood culture bottles for each 

indicated pathogen-antibiotic combination reveal antibiotic-responsive transcription in 

susceptible but not resistant isolates. For meropenem, results of carbapenemase / ESBL gene 

detection are also displayed as a normalized, background-subtracted, log-transformed heatmap 

above. CLSI classifications of isolates, which were blinded until analysis was complete, are 

displayed below each heatmap. (b) Probability of resistance from a random forest model trained 

by leave-one-out cross-validation on NanoString data from (a) (y-axis) compared with standard 

CLSI classification based on broth microdilution MIC (x-axis) for each isolate. Horizontal dashed 

lines indicate 50% chance of resistance based on random forest model. Vertical dashed lines 

indicate CLSI breakpoint between susceptible and resistant. Carbapenemase (square outline) 

and select ESBL (diamond outline) gene content as detected by GoPhAST-R are also displayed 

on meropenem plots. See Supplemental Methods for details of spike-in protocol.  

 
 
 


