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SUMMARY

HIV-1 hijacks host proteins to promote infection.
Here we show that HIV is also dependent upon the
host metabolite inositol hexakisphosphate (IP6) for
viral production and primary cell replication. HIV-1
recruits IP6 into virions using two lysine rings in its
immature hexamers. Mutation of either ring inhibits
IP6 packaging and reduces viral production. Loss of
IP6 also results in virions with highly unstable cap-
sids, leading to a profound loss of reverse transcrip-
tion and cell infection. Replacement of one ringwith a
hydrophobic isoleucine core restores viral produc-
tion, but IP6 incorporation and infection remain
impaired, consistent with an independent role for
IP6 in stable capsid assembly. Genetic knockout of
biosynthetic kinases IPMK and IPPK reveals that
cellular IP6 availability limits the production of
diverse lentiviruses, but in the absence of IP6, HIV-1
packages IP5 without loss of infectivity. Together,
these data suggest that IP6 is a critical cofactor for
HIV-1 replication.
INTRODUCTION

The HIV-1 capsid undergoes a number of transformations during

viral replication: assembly, maturation, host interaction, and

uncoating. Assembly occurs at the cell membrane, where the

viral protein Gag polymerizes into a hexagonal structure called

the immature lattice (Bush and Vogt, 2014). Once HIV virions

bud from the cell, viral protease initiates maturation by cleaving

Gag into multiple fragments and disrupting the immature lattice

(Lee et al., 2012). The p24 capsid fragment CA then polymerizes

inside virions to form a fullerene cone structure made up of a

mature hexamer lattice and 12 pentamers. During post-entry

infection, the capsid recruits multiple cytosolic and nuclear
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pore cofactors and protects HIV as it reverses transcribes its

RNA into DNA (Di Nunzio et al., 2012; Lee et al., 2010; Matreyek

and Engelman, 2011; Matreyek et al., 2013; Price et al., 2012,

2014; Schaller et al., 2011). Finally, the capsid undergoes

uncoating freeing the viral DNA to integrate into the host

genome. The molecular mechanisms that drive assembly of

the immature and mature lattices during production and that

trigger capsid uncoating during infection remain unclear. Under-

standing these processes is complicated by the conflicting

structural requirements imposed by capsid function: the capsid

may need to be stable for many hours inside the cell (Holmes

et al., 2015) yet undergo rapid disassembly in the right place

and at the right time. Definitions of even these fundamental pa-

rameters remain controversial, and there is no consensus about

exactly what uncoating means and when and where it happens.

Recently, we reported that the metabolite inositol hexaki-

sphosphate (IP6) binds to an electropositive pore created by

R18 in CA hexamers (Jacques et al., 2016; Mallery et al.,

2018). We demonstrated that IP6 binding increases HIV-1 capsid

stability from minutes to hours and promotes the accumulation

of DNA inside intact structures during reverse transcription (Mal-

lery et al., 2018;Márquez et al., 2018). Importantly, we also found

that HIV-1 packages IP6 in a Gag-dependent manner during viral

production. As themature R18 pore only forms after budding, we

postulated that a similar electropositive pore in the immature

hexamer provided by K158 and K227 might be similarly used

to bind IP6, and this was demonstrated in a subsequent crystal

structure (Dick et al., 2018). On the basis of these results, we pro-

posed that IP6 might be an HIV ‘‘pocket factor’’ that regulates

stable capsid assembly. Pocket factors are small-molecule li-

gands that are incorporated into picornavirus capsids and disso-

ciate upon infection to allow uncoating (Rossmann, 1994; Ross-

mann et al., 2002). Here we have tested the hypothesis that by

driving assembly of capsid lattices, IP6 might promote viral pro-

duction and, by mediating stable capsid maturation, promote

infection. By manipulating IP6 levels in both cells and viruses,

we provide physiological evidence that IP6 is a critical HIV

cofactor for viral replication.
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Figure 1. Depletion of IP6 in IPMK-Knockout Cells Reduces HIV Production but Does Not Affect IP6 Incorporation or Infectivity

(A) Biosynthetic pathway of inositol phosphates, illustrating the central role of IPMK and IPPK in IP6 production.

(B) Analysis of IP6 levels in IPMK CRISPR/Cas9 knockout clones by TiO2-PAGE and toluidine blue staining of cell extracts (left), [3H]inositol labeling with

SAX-HPLC, and scintillation counting of fractions, normalized to background (right). Synthetic polyP was used as ladder for gel orientation.

(C) p24 western blot of pelleted virions showing p24 levels in HIV virions produced from IPMK-KO clones.

(D) Measurement of virus production through quantification of RT in viral supernatants from IPMK-KO clones. Error bars depict mean ± SD of three independent

experiments. Values are represented as fold WT virus for comparison. Reduction compared with WT is statistically significant (p < 0.0003 in all cases).

(legend continued on next page)
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RESULTS

To determine whether IP6 is a necessary cofactor in either HIV

virus production or infection, we sought to alter the availability

of IP6 in producer and target cells and determine the capability

of virus to package it. IP6 biosynthesis is a complex metabolic

pathway involving the conversion of IP3 to IP5 by inositol poly-

phosphatemultikinase (IPMK or IPK2), followed by phosphoryla-

tion of IP5 to IP6 by inositol-pentakisphosphate 2-kinase (IP5-2K,

IPPK, or IPK1) (Figure 1A). As previous work has shown that

genetic deletion of IPMK in mouse embryonic stem cells

(ESCs) leads to a marked reduction in IP6 levels without altering

cell viability (Frederick et al., 2005), we used CRISPR/Cas9 to re-

move IPMK from human 293T cells (Figure S1A). Because flux

through the mammalian IP pathway is incompletely understood,

the effects of knocking out a particular kinase on the levels of

different IP species are difficult to predict. Therefore, we directly

determined the levels of IP5, IP6, ATP, and GTP in extracts from

knockout (KO) clones using titanium dioxide purification (Wilson

et al., 2015) with PAGE (TiO2-PAGE) (Losito et al., 2009) and

comparison with known standards (Figure S1B). We observed

significant (�90%) IP6 reduction in all successful IPMK knock-

outs, although absolute levels varied among clones (Figure 1B).

IP7 has been implicated in regulating ATP levels (Szijgyarto et al.,

2011), but although ATP and GTP varied among IPMK clones,

there was no consistent trend, suggesting that differences

were due to clonal variation. To quantify the relative levels of

inositol phosphates in IPMK-knockout clones, we grew cells in

inositol-free culture media supplemented with tritiated inositol

([3H]inositol) and used strong anion exchange high-performance

liquid chromatography (SAX-HPLC) to isolate specific IP spe-

cies. Scintillation counting of purified samples confirmed a

reduction of both IP5 and IP6, with little change in IP4 (Figure 1B),

consistent with the availability of an alternative metabolic

pathway to produce IP4, albeit a different isomer (Figure 1A).

To test whether a reduction in cellular IP6 levels affects viral

production, we transfected a range of IPMK clones with the

HIV-1Gag-Pol expression plasmid pCRV-1 and the HIV-GFP en-

coding plasmid pCSGW. Analysis of Gag expression revealed

that some clones had slightly higher or lower levels than parental

cells (Figure S1C). In contrast, all IPMK-knockout clones pro-

duced substantially fewer viral particles, as determined by p24

blotting (Figure 1C) and quantitative ELISA for RT enzyme (Fig-

ure 1D). As with viral gene expression, the ratio of RT to p24

showed some random variability between clones but no consis-

tent difference compared with wild-type (WT) (Figure S1D). To

confirm that reduced production in the IPMK knockouts was

not the result of clonal variation, we reconstituted IPMK by stable

transduction (Figure S1E). Analysis of inositol phosphates in cell
(E) Levels of virus production from viral supernatants collected from parental clon

depict mean ± SD of two independent experiments. Values normalized to the lev

(F) Quantification of IP6 packaging in virions produced in wild-type cells and IPM

fractions then normalized to background.

(G) Infectivity of viruses produced in selection of IPMK clones plotted against vir

normalize for differences in production (right).

(H) Infectivity of viruses purified from wild-type, 1_7, or 2_1 IPMK-KO producer ce

bars for infection data depict mean ± SD of three replicates from one experimen
extracts by TiO2-PAGE demonstrated successful restoration of

IP6 levels in IPMK-knockout clones reconstituted with IPMK

but not empty vector constructs (Figure S1F). Crucially, ectopic

overexpression of IPMK was sufficient to partially rescue virus

production in the tested IPMK clones, without altering protein

expression levels (Figure 1E; Figure S1G).

We also investigated whether depletion of IP6 had any impact

on IP6 incorporation by virions. We purified virus from two IPMK-

KO clones grown in inositol-free media supplemented with [3H]

inositol as described previously (Mallery et al., 2018). The pres-

ence of IP6 in virions was determined by scintillation counting

of fractions collected using SAX chromatography. IP6 was de-

tected in virus produced from both tested IPMK clones, despite

the reduced number of viral particles. When normalized for viral

particles (CPM/ng p24), we observed no significant difference in

IP6 levels between virus produced in parental cells and IPMK

knockouts (Figure 1F).

The above data suggest that cellular IP6 levels limit the number

of HIV virions that are produced but that viruses retain the same

capacity for IP6 incorporation. On the basis of this finding, we hy-

pothesized that once normalized for viral production, HIV virions

from IP6-depleted cells should be as infectious as those pro-

duced in parental cells. Infection experiments carried out at a

range of virus dilutions confirmed this prediction (Figure 1G).

To test whether IP6 levels are important in target cells, we chal-

lenged parental cells and two IPMK-knockout clones with

viruses produced from each of these cell lines. Virus titration

showed that all combinations were at least as infectious as

parental cell-derived virus in parental cells, with 2_1 virus

marginally more infectious (Figure 1H).

Assembly of an immature lattice from recombinant Gag pro-

tein can be promoted in vitro by both IP5 and IP6 (Dick et al.,

2018). To test whether IP5 can be used by HIV to promote viral

production in the absence of available IP6, we created

CRISPR/Cas9 knockouts of IPPK, the enzyme responsible for

conversion of IP5 to IP6 (Figure S2A). We used TiO2-PAGE to

show that our IPPK KOs have dramatically reduced levels of

cellular IP6 while IP5 was unaffected (Figure 2A). Quantification

of IPs following growth in [3H]inositol-supplemented media

further revealed that IP5 levels in two of three IPPK clones

were identical to parental cells, but IP4 was unexpectedly

increased in all clones (Figure 2B). This is in contrast to the

phenotype in IPK1 yeast knockouts, in which IP5 but not IP4 ac-

cumulates (York et al., 1999). To determine how the different

availability of IP species in IPPK knockouts alters HIV packaging

and viral production, we quantified IP incorporation in virions

produced from IPPK knockout clones (Figure 2C). In contrast

to virus produced from IPMK KOs, IPPK viruses had little or no

IP6. However, IP5 was now detectable in virions produced from
es and the same cell lines stably transduced with either EV or IPMK. Error bars

els in 293T untransduced cells.

K-KO clones by [3H]inositol labeling, SAX-HPLC, and scintillation counting of

al volume input (left) and plotted against quantity of RT in viral supernatants to

lls and titrated onto the three different cell lines, normalized to RT levels. Error

t representative of three independent experiments.
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Figure 2. HIV Incorporates IP5 in the Absence of IP6 without Loss of Production or Infectivity

(A) TiO2-PAGE and toluidine blue staining of cell extracts showing IP5 and IP6 levels in IPPK CRISPR/Cas9 knockout clones.

(B) Inositol phosphate quantification in selected IPPK-KO clones using 3H-inositol labeling and inositol phosphate fractionation by SAX-HPLC.

(C) Quantification of IP5 and IP6 packaging in virions produced in wild-type and IPPK-KO cells through [3H]inositol labeling, SAX-HPLC, and scintillation counting

of fractions.

(D) p24 western blot of pelleted virions showing p24 levels in HIV virions produced from IPPK-KO clones.

(E) Measurement of virus production through quantification of RT in viral supernatants from IPMK-KO clones. Error bars depict mean ± SD of three independent

experiments. Values are represented as fold WT virus, and reduction compared with WT is statistically significant (p < 0.0012 in all cases).

(F) Infectivity of viruses from (E), as a function of viral dose measured by RT levels. Error bars depict mean ± SD of three replicates from one experiment

representative of three independent experiments.

(legend continued on next page)
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all tested clones. Two discrete peaks for IP5 were observed

following SAX chromatography, which is likely the result of phos-

phate jumping between adjacent hydroxyl groups that occurs

during IP extraction conditions (Pisani et al., 2014). Summing

the two IP5 species reveals that HIV packages a similar number

of IP5 molecules per virion when it is produced in IPPK KOs as it

does IP6 when produced in parental cells (Figure S2B). Viral pro-

tein expression in IPPK KOswas broadly similar to parental cells,

except for 2_7, in which it was reduced (Figure S2C). Importantly,

there was a consistent and substantial decrease in virion pro-

duction in all IPPK clones as assessed both by p24 blot (Fig-

ure 2D) and RT incorporation (Figure 2E). Despite this defect in

production, IPPK-derived viruses were as infectious as those

fromparental cells (Figure 2F), again consistent with the behavior

of viruses produced from IPMK knockouts. These results sug-

gest that HIV can substitute IP5 for IP6 during viral production

when the latter is not available and that this does not substan-

tially alter infectivity. The similar decrease in viral production

observed in IPPK and IPMK KOs likely reflects that the IP mole-

cule packaged by virus in these cells (IP5 or IP6, respectively) is at

similar levels (5–10 mM).

The above data suggest that the availability of IP5 and IP6 in

producer cells limits the production of HIV virions. This could

be a result of impaired Gag recruitment to the plasmamembrane

or inefficient viral budding. To investigate this, we compared

budding sites in WT, IPMK, and IPPK cells using a membrane

flotation assay to measure Gag localization (Kutluay and Bien-

iasz, 2010; Ono and Freed, 1999). We observed similar levels

of Gag in the membrane fractions of each cell line, suggesting

that IP6 is not involved in recruitment (Figure 2G). To determine

viral release efficiency, we infected cells with VSV-G-pseudo-

typed env(-) pNL4-3 (pNL4-3/KFS) virus (Freed et al., 1992)

and calculated the cell/virion Gag ratio. In both IPMK and IPPK

KOs, there was an increase in this ratio consistent with a reduc-

tion in release efficiency (Figure 2H). These data indicate that IP6

levels limit viral budding rather than recruitment of Gag to

budding sites. Moreover, they suggest that IP6 is limiting for viral

production irrespective of whether producer cells are trans-

fected or transduced.

To understand how HIV-1 can substitute IP5 for IP6 without

loss of infection, we solved the crystal structure of the mature

capsid hexamer in complex with the myo isomer of IP5 (inositol

1,3,4,5,6-pentakisphosphate) (Table S1) and compared it with

our previously solved structure with hexakisphosphate (Mallery

et al., 2018). In mammals, myoIP5 is the precursor for IP6 synthe-

sis by IPPK, which phosphorylates the axial 2-OH. As expected,

we found that IP5 was coordinated at the center of the HIV-1 hex-

amer by the ring of arginine residues at position 18 (Figures 3A

and 3B). The location of the ligand at the center of the six-fold

axis leads to symmetry averaging of six equivalent binding posi-

tions. However, in contrast to IP6, which with its axial phosphate

is significantly less planar, the density for IP5 is much clearer, and
(G) Membrane flotation analysis of cell lysates from WT, IPMK-KO, and IPPK-KO

levels of Gag are associated with the membrane fractions. Gag precursor Pr55G

(H) Virus release assays showing levels of Gag in lysates and virions after transdu

quantification of p24 from two independent experiments and western blots. Repr

otherwise indicated. CPM data are normalized to background.
the ligand can be unambiguously placed in a parallel stacking

arrangement with the R18 ring (Figure 3C). This stacking confor-

mation is reminiscent of that observed with the nonphysiological

compound hexacarboxybenzene and allows multiple hydrogen

bonds to form between all five equatorial phosphates and the

arginine side chains in the ring (Jacques et al., 2016). The addi-

tional axial phosphate present in IP6 would be orientated away

from the R18 ring. Thus the probable reason why IP5 can substi-

tute for IP6 without loss of infectivity is because interaction is

driven largely by the equatorial phosphates, at least when the

ligand is in a planar conformation. The packing of IP5 above

the plane of the R18 ring also places it in the cavity bounded

by the b-hairpin, meaning that, like IP6, its dissociation from

the hexamer could be regulated by opening and closing of the

b-hairpin (Figure 3D).

The pandemic strain HIV-1 M uses multiple protein cofactors

to promote its replication in human cells. However, cofactor

use is not always conserved in other diverse lentiviruses. For

instance, feline immunodeficiency virus (FIV) can replicate inde-

pendently of nuclear import proteins that are required byHIV-1M

(Lee et al., 2010). We therefore sought to determine whether IP6

is an HIV-1 M specific cofactor or an evolutionary conserved

component of lentiviral replication. To this end, we investigated

the production of HIV-1 O, HIV-2, simian immunodeficiency virus

(SIV), and FIV in cells depleted of either IPMK or IPPK (Figure S3).

In all cases, we observed a reduction in the viral titer of lentivi-

ruses produced in cells lacking either kinase (Figure 4A). This

reduction in titer was accompanied by a decrease in the amount

of virions produced in IPMK- or IPPK-KO cells, as assayed by RT

ELISA of the supernatants (Figure 4B). The data are in agreement

with our findings that reducing the availability of IP6 in producer

cells reduces viral production rather than infectivity. Moreover,

there was no substantial variation in protein expression (as

measured by virally encoded GFP), consistent with a require-

ment for IP6 during assembly (Figure 4C). Together this suggests

that IP6 is a highly conserved lentiviral cofactor.

Next, we sought to complement our results in IP6-depleted

cells by mutating residues within Gag that are implicated in IP6

recruitment. Previously, we hypothesized that because the R18

pore only forms after budding, IP6 may be recruited by two

lysines (K158 and K227) that form a similar charged ring in imma-

ture hexamers and bind IP6 in vitro (Figure 5A). Our prediction

was that mutation of these lysine residues could potentially

affect both production and infection by altering recruitment of

IP6. Production might be limited because the ability of IP6 to pro-

mote assembly of the immature lattice could be impaired, while

infection might be reduced if insufficient IP6 levels are available

inside virions to promote maturation and stabilize the capsid.

We mutated each lysine residue to alanine or isoleucine, with

the latter residue chosen because K227I has previously been

shown to be infectious (Rihn et al., 2013). As before, we

measured Gag production in virus-producing cells and found
cells. Western blotting of sucrose gradient fractions for Gag show that similar

ag (pr55), p41, and mature capsid protein (p24) are indicated.

ction of WT and KO cells with virus produced in WT cells. Graph shows relative

esentative data from at least two independent experiments are shown, unless
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Figure 3. Structure of the HIV-1 Capsid

Hexamer:IP5 Complex

(A and B) Secondary structure representation of

the complex shown from above (outside-facing, A)

and side (within the capsid lattice, B). The six

equivalent binding positions for IP5 are shown,

together with the location of the R18 ring.

(C) The structure of IP5 alone and interacting with

the six arginine residues at position 18. Electron

density (2Fo � Fc) centered around the ligand is

shown as a mesh contoured at 1.4s. Putative

hydrogen bond interactions between IP5 and R18

side chains are shown as black dashes.

(D)Molecular surface of the capsid hexamer sliced

through the middle to reveal the internal cavity

where IP5 is bound. All surface residues are

colored gray except R18 (blue), and the b-hairpin

(residues 1–12) that forms one end of the cavity

(green). IP5, positioned above the R18 ring, is also

shown.
that Pr55Gag protein expression was at least as abundant as

wild-type (Figure S4A). In contrast, all mutants except K227I

had reduced viral production as determined both by p24 blotting

and RT enzyme quantification (Figures 5B and 5C), with K227I

being produced at wild-type levels by both measures.

To test whether the defects in production associated with

the lysine mutants were accompanied by a loss of IP6 recruit-

ment, we measured IP6 incorporation as described above. We

were able to obtain data for both K227 mutants but not K158A,

because too few virions were recovered during post-produc-

tion processing for incorporation to be measured. Given that

similar levels of K158A and K227A virions are initially pro-

duced, this suggests that K158A may be less stable. We

observed a substantial reduction in IP6 packaging per virion

(Figure 5D), suggesting that the K227 ring in the immature

Gag lattice is involved in recruiting IP6 from producer cells.

The finding that K227A/I mutation reduces IP6 incorporation

allowed us to investigate whether IP6 is important for HIV

infectivity in addition to its effect on production. Challenging

cells with each mutant virus normalized per nanogram RT re-

vealed that removal of either K158 or K227 results in a pro-

found loss of infectivity (Figure 5E). Mutation of K227 reduced

infection by up to 10-fold, while K158 mutants were �100-fold

less infectious than wild-type. The fact that K227A and K227I

caused the same reduction in infectivity, despite the fact that

only K227A is defective for production, suggests that mutation

at this position affects both processes independently. Mean-

while, the finding that both mutants display similarly reduced

infectivity correlates with their similarly impaired levels of

incorporated IP6. Despite having reduced IP6 incorporation,

production of K227I remained sensitive to cellular IP6 levels

and a similar reduction in production was observed in IPMK-
3988 Cell Reports 29, 3983–3996, December 17, 2019
and IPPK-KO cells as with wild-type vi-

rus (Figure S4B). Just as with wild-type

virus, this production defect was not

due to large changes in viral gene

expression (Figure S4C). Also consis-
tent with wild-type data, knockout of IPMK or IPPK in target

cells did not alter K227I infectivity (Figure 5F).

A defect in IP6 packaging could affect the assembly and func-

tion of the mature capsid, such as supporting encapsidated

reverse transcription inside the cell. Consistent with this hypoth-

esis, all lysine mutants produced significantly less viral DNA by

4 h post-infection (Figure 5G). Importantly, within each lysine

pair the samemagnitude of defect was observed, with K158mu-

tants giving a more profound reduction in reverse transcription

than K227. Taken together, this suggests that a failure in DNA

synthesis is behind the reduced infectivity of the lysine mutants.

The more profound impact of mutating K158 versus K227 also

agrees well with the relative importance of these residues in

binding IP6 in the immature hexamer structure: K158 is primarily

responsible for binding the five equatorial phosphates, whereas

K227 is oriented more toward the single axial phosphate (Dick

et al., 2018). Finally, we tested whether defective DNA synthesis,

and consequently infection, was a kinetic effect by following

infection of K227I for 150 h. The fraction of infected cells reached

a plateau that remains lower for the mutant than the WT, sug-

gesting that K227I is not merely slower in its infection kinetics

(Figure 5H).

Capsid functions required for infection can be affected at the

level of the virus population if maturation becomes less efficient

and fewer mature capsids form or if the functional properties of

all capsids are compromised. To investigate this question, we first

determinedwhether lysinemutant viruses such as K227I can form

capsids that function likewild-type and retain the ability to interact

with capsid cofactors inside the cell. Nuclear pore protein Nup358

and the karyopherin TNPO3 have both been implicated asHIV co-

factors whose depletion by short hairpin RNA (shRNA) reduces

viral infection (Schaller et al., 2011). Nup358 binds directly to the
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Figure 4. The Requirement for IP6 during Viral Production Is Conserved in Diverse Lentiviruses
(A) Titers of viral supernatants for lentiviruses produced inWT, IPMK-KO, and IPPK-KO293T cells. Titers are determined by percentageGFP infection onWT 293T

cells.

(B) Quantification of viral production as determined by RT levels in viral supernatants. Values shown are mean ± SD from three independent experiments.

Statistically fewer virions are produced in kinase-knockout cells (p < 0.002 in all cases).

(C) Western blots for GFP expression during viral production show similar protein levels for each cell line. Bottom panel shows loading control Cox-IV.
capsid via interaction with the CypA binding loop, while TNPO3

binds indirectly via cargo protein CPSF6 that binds between two

monomers of the mature hexamer (Price et al., 2012, 2014).

Depletion of both Nup358 and TNPO3 by shRNA reduced infec-

tion of K227I to a similar degree as wild-type virus (Figure 5I; Fig-

ure S4D). Nuclear pore protein Nup153 has also been identified as

an important HIV cofactor (Matreyek and Engelman, 2011). Fusion

of an FG-repeat component of Nup153 to TRIM5 generates a syn-
thetic restriction factor TRIM-Nup153, which potently inhibits HIV

infection (Matreyek et al., 2013). Importantly, Nup153 can only

bind intact mature hexamers, meaning that its binding is sensitive

to capsid oligomerization (Price et al., 2014). Infecting cells ex-

pressing TRIM-Nup153 revealed that mutant K227I is as sensitive

to restriction as wild-type virus (Figure 5J). Finally, we tested

whether K227I virus remained sensitive to the anti-capsid drug

PF74. PF74 has bimodal inhibition kinetics, in which at low
Cell Reports 29, 3983–3996, December 17, 2019 3989
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Figure 5. Mutation of K158 and K227 Rings in Immature Gag Hexamers Affects Viral Production and Infectivity

(A) View of five subunits of the immature hexamer (on the basis of PDB: 6BHR) showing the lysine side-chains responsible for coordinating IP6 (blue sphere

denotes the ε-amino group). Symmetrically equivalent molecules of IP6 are shown with the carbon rings in green.

(B) Western blot of pelleted virions to show p24 levels in HIV wild-type and mutant virions.

(C) Quantification of mutant virus production 293T cells as determined by RT levels in viral supernatants. Error bars depict mean ± SD of three independent

experiments. Values are expressed as fold change from levels of RT produced in WT virus. The reduction in virus production betweenWT and K158A, K158I, and

K227A is statistically significant (p = 0.0121, p < 0.0001, and p < 0.0001, respectively).

(legend continued on next page)
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concentrations it reduces infection by competing with cofactors

Nup153 and CPSF6 while at high concentrations it causes irre-

versible and catastrophic uncoating that prevents reverse tran-

scription (Price et al., 2014). Mutant K227I remained sensitive to

PF74 and displayed similar bimodal inhibition kinetics as wild-

type (Figure 5K). Interestingly, we did observe some resistance

of K227I to intermediate drug concentrations. This is reminiscent

of the partial rescue to PF74 inhibition in cells treated with CypA

ligand cyclosporin or depleted of CPSF6 (Saito et al., 2016). These

effects are thought to be due to viruses’ becoming less dependent

upon nuclear entry by uncoating earlier in the cytoplasm. A similar

interpretation when applied to the K227I PF74 inhibition data sug-

gests that a lack of IP6 may reduce capsid stability. Taken

together however, the data collected on capsid sensors suggest

that K227I can form infectious particles that appear to be pheno-

typically normal with respect to host factor dependence and

sensitivity to capsid-targeting inhibitors.

The above experiments do not reveal the basis for the infec-

tivity impairment in K227I. We decided to investigate whether

this may be due to K227I forming fewer stable virions. We per-

formed single-molecule total internal reflection fluorescence

(TIRF) imaging assays to compare the capsid stability of wild-

type and K227I mutant virions (Figure 6A) using our CypA paint

method (Márquez et al., 2018, 2019). Virions were immobilized

onto coverslips attached tomicrofluidic flow cells and permeabi-

lized using the membrane pore-forming protein perfringolysin O

(PFO) (Figure 6A, step 1). Upon permeabilization, capsids were

visualized using fluorescently labeled CypA, whereby the signal

of bound CypA is constant while the capsid remains intact (Fig-

ure 6A, step 2) and then decays when the capsid uncoats (Fig-

ure 6A, step 3). Capsid stability was determined by measuring

the fluorescence lifetimes of hundreds of individual virions.

Example traces of individual wild-type and K227I virions are

shown in Figure 6B. Collation of the data into survival curves re-

veals two phases, ‘‘fast’’ and ‘‘slow,’’ corresponding to capsids

with low and high intrinsic stability (half-lives of <1 min and

5–8 min, respectively) (Figure 6C). Importantly, K227I virions

have a higher proportion of highly unstable capsids. This obser-

vation suggests that successful K227I maturation occurs less

frequently than for wild-type virions, potentially explaining why

the mutant has substantially reduced infectivity even though

the number of produced virions is the same. Moreover, the pro-
(D) Quantification of IP6 packaging in mutants K227A and K227I after normaliza

package similarly reduced levels of IP6 with respect to wild-type virus. Represen

(E) Infectivity of lysinemutant viruses normalized to nanogramRT input. Eachmuta

Error bars depict mean ± SD of three replicates from one experiment representa

(F) Infectious titer of WT and K227I mutant viruses produced in WT 293T, IPMK-KO

of input virus (nanogram RT).

(G) Levels of reverse transcription products strong-stop (RU5) and post-strand-tr

from one experiment representative of three independent experiments.

(H) Infectivity of WT and K227I virus matched for RT input over 150 h to determine

an IncuCyte and determined as proportion of cell area that is GFP positive.

(I) HeLa cells stably expressing shRNA control or shNUP358 or shTNPO3 were inf

per quantity of input virus (nanogram RT).

(J) WT or TRIM-Nup153 expressing HeLa cells were infected with wild-type or K

positive cells for a range of input virus (quantified by nanogram RT).

(K) HeLa cells were infectedwithwild-type or K227I virus in the presence of anti-ca

Error bars depict mean ± SD of three replicates from one experiment representa
portion of unstable K227I capsids is likely to be even higher than

measured, because the CypA-paint does not detect capsids that

collapse immediately upon membrane permeabilization.

Repeating our TIRF experiments in the presence of added IP6

revealed that the population of unstable capsids could not be

stabilized even at 100 mM, providing further support for this hy-

pothesis (Figure 6C). Importantly, the remaining K227I capsids

could be stabilized by IP6 to the same degree as wild-type, re-

sulting in a dramatically increased lifetime. This suggests that

infection by K227 is due to a fraction of properly formed and

stabilizable capsids, also likely to be those that are sensitive

to the capsid cofactors used above. To further correlate the

stability of K227I virions on the single-molecule level with their

infectivity, we carried out endogenous reverse transcription

(ERT) experiments on purified capsid cores. In ERT assays,

the level of DNA synthesis that occurs within intact and stable

capsids can be measured by adding nuclease to degrade any

exposed DNA. These assays use capsid cores extracted and

purified from virions, and we typically obtained fewer K227I

cores than wild-type, consistent with the fact that the mutant

forms fewer stable capsids (Figure 6D). However, upon titration

of nucleotides into successfully isolated cores, we observed a

similar increase in encapsided DNA synthesis for both viruses

(Figure 6E). Moreover, the accumulation of DNA in both wild-

type and K227I capsids could be similarly promoted by the

addition of IP6. Addition of IP5 also promoted the accumulation

of DNA, consistent with the infection data of viruses produced

in IPPK-KO cells, which incorporate IP5 instead of IP6. Taken

together, the data suggest that K227I can form stable mature

capsids, but far less efficiently than wild-type. This is consistent

with its decreased incorporation of IP6 and is the likely explana-

tion of its reduced infectivity.

The above experiments were carried out in cell lines in which a

single infectious cycle was measured. To investigate the impor-

tance of IP6-recruiting residues K158 and K227 in the context of

replicating virus in relevant primary cells, we performed experi-

ments in peripheral blood mononuclear cells (PBMCs) from

three independent donors. The replication of wild-type virus

and mutants K158A, K158I, K227A, and K227I was determined

by quantifying viral production over 20 days. All mutants dis-

played a profound loss of replication, with only K227I giving

measurable production and then only in two of three donors
tion for background and input virus (per nanogram p24). Both K227 mutants

tative data from two independent experiments are shown.

nt pair gives similarly reduced levels of infection, with K158A/I largely impaired.

tive of three independent experiments.

, and IPPK-KO cells. Infectivity is expressed as infection units (IU) per quantity

ansfer (GFP) 4 h post-infection. Error bars depict mean ± SD of three replicates

whether K227I could recover infectivity over time. Infectivity is measured using

ected with wild-type or K227I virus. Infection is quantified as infection units (IU)

227I virus. The percentage infected cells was determined by percentage GFP

psid inhibitor PF-74. Data are normalized to infection in the absence of inhibitor.

tive of at least two independent experiments.
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Figure 6. Addition of IP6 Is Able to Stabilize Both WT and K227I Mutant Virions

(A) Outline of single-molecule analysis for virus stability. Briefly, viral particles were immobilized, and fluorescence traces were obtained at the locations of

individual virions while permeabilizing their membranes with PFO in the presence of fluorescently labeled CypA (1). CypA binds to the capsid, resulting in the

appearance of a stable fluorescence signal (2). As the capsid uncoats, the CypA signal disappears (3), and the fluorescence trace returns to background levels.

(B) Example traces for individual virions demonstrating the tracking of fluorescence over time. Addition of IP6 to the virions results in a delay in the fluorescence

signal reduction signaling uncoating.

(C) Capsid survival curves collated from single-virion traces showing that K227I particles have a high fraction of short-lived capsids in the presence and absence

of IP6, while the remainder of capsids is strongly stabilized by IP6 addition for both wild-type and K227I particles.

(legend continued on next page)
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and at substantially reduced levels (Figure 7). These experiments

demonstrate the dependence of HIV replication in primary cells

on IP6-recruiting Gag residues.

DISCUSSION

Here we have tested the hypothesis that IP6 is a capsid cofactor

that promotes HIV-1 production and infection. Reducing cellular

IP6 levels by removal of IPMK, which converts the precursor

metabolite IP3 to IP5, decreased viral production but did not

reduce IP6 incorporation into virions. Consistent with this, viruses

produced in IP6-depleted cells had no infectivity defect. Knockout

of the downstream kinase IPPK, which converts IP5 to IP6, also

decreased virion production without altering virion infectivity.

Thus, the reduced infection previously observed using viral super-

natant produced in IPPK-deficient cells (Dick et al., 2018) was

probably the result of a reduction in production rather than the

ability of virions to infect, as demonstrated here for both IPPK

and IPMK. Our data also show that reducing cellular IP5 and IP6

levels affects producer but not target cells. Membrane flotation

experiments in kinase KOs indicate that decreased HIV produc-

tion caused by reduced cellular IP6 levels is due to a defect in

the assembly of virions at budding sites rather than recruitment

of Gag to the plasma membrane. However, future studies will

be necessary to investigate this process in more depth.

To complement our manipulation of IPs in producer and target

cells, we also mutated the HIV Gag protein to determine how

altering the ability to sequester IP6 during assembly affects viral

replication. In this second approach, we mutated two lysines in

Gag, K158 andK227, that form two charged rings in the immature

hexamer and bind IP6. We hypothesized that these lysines recruit

IP6 to drive assembly of the immature lattice prior to budding and

also promote stable capsid formation during maturation. In

agreement with this hypothesis, we found that lysine mutation

greatly reduced packaging of IP6 into virions and significantly

reduced both viral production and infection. Consistent with a

role for IP6 in assembly of the mature capsid, we also found

that the infectivity loss of mutant K227I was accompanied by a

dramatic reduction in the frequency of stable mature capsids.

An important difference between our cellular (IPMK and IPPK)

and viral (K158 and K227) datasets is that only the latter manip-

ulation results in reduced IP6 incorporation per virion. This is

likely because the lysine mutants have a reduced affinity for

IPs and do not efficiently recruit them. Such a conclusion is sup-

ported by in vitro data showing that although K158 and K227mu-

tants form immature VLPswith near wild-type efficiency, they are

unresponsive to the hugely assembly-enhancing effect of IP6

(Dick et al., 2018). Interestingly, we observed that K227I did

not have a virus production defect, in contrast to K227A. We

speculate that this may be because the substitution of an isoleu-

cine allows hydrophobic packing in the core of immature hexam-

ers to compensate for partial occupancy and weaker binding of

IP6 within the forming lattice. The failure of isoleucine to restore
(D) Capsid core yields determined by RT quantification (representative of at leas

(E) ERT assay using cores isolated fromWT and K227I virions, showing a dNTP tit

K227I cores are competent for ERT and are stabilized by both IP5 and IP6 to th

normalized to the copies of RU5 measured in the absence of dNTPs.
production in K158I may reflect the fact that this lysine ring is

dominant in IP6 coordination and essential for IP6 promotion of

assembly. Consistent with the greater importance of K158 in

IP6 engagement, mutation of this residue gave the most pro-

found infection and DNA synthesis defect.

The data here suggest that the previous report of abolished

infectivity in K158A and K227A is actually the result of combined

production and infectivity defects (Dick et al., 2018). There may

be several reasons why mutation of the immature lysine rings

and diminished virion incorporation of IP6 reduces infectivity.

One explanation, supported by our data, is that IP6 is required

to stabilize the mature lattice and promote capsid formation dur-

ing maturation of budded virions. TIRF imaging of K227I capsids

reveals that many are highly unstable and collapse with a half-life

of <1 min. A reduction in the frequency with which stable K227I

capsids form correlates with their reduced IP6 packaging and

explains their lower per virion infectivity. This explanation is

also supported by previous in vitro experiments, in which IP6

was shown to promote mature lattice assembly (Dick et al.,

2018). It would nevertheless be useful to further investigate

how in vitro virion properties predict in-cell stability and infec-

tivity. This could be accomplished in future experiments by

quantifying the structural defect associated with K227I using

quantitative electron cryotomography. Interestingly, although

cellular concentrations of IP6 were sufficient to promote imma-

ture lattice assembly (10 mM), significantly higher IP6 concentra-

tions than those in the cytosol were required to efficiently pro-

mote formation of a mature lattice (>250 mM) (Dick et al.,

2018). This is consistent with the finding that IP6 is enriched

into budded virions, creating an artificially higher IP6 concentra-

tion during maturation (Mallery et al., 2018). This IP6 concentra-

tion dependence may help explain why formation of the imma-

ture lattice is favored during assembly at the plasma membrane.

Although the data here support the role of IP6 post-assembly,

they do not demonstrate a requirement post-entry. That there

was no infectivity loss for any virus, WT or mutant, in IPMK or

IPPK cells suggests either that IPs are no longer needed, virally

packaged ligands are sufficient or that viruses can obtain suffi-

cient quantities during infection despite the reduced levels. Pre-

viously we have shown that IP6 greatly stabilizes the mature HIV

capsid after it has formed (Mallery et al., 2018). Without IP6, cap-

sids fall apart on a timescale (minutes) that would not support

DNA synthesis or cellular infection. Our results here also show

that although K227I has fewer intact capsids, those that form

can be stabilized by IP6 in both TIRF microscopy and encapsi-

dated RT assays. These findings provide a mechanistic basis

for the mutants reduced but measurable infectivity. They also

support the notion that a charged polyanion is required post-en-

try to maintain capsid stability, albeit that this may be an abun-

dant molecule, like ATP, obtained from the target cell. Capsid

stability may be important not just to promote infection but

also to evade immune sensing. A failure to incorporate sufficient

IP6 could reveal HIV to pathogen receptors in target cells by
t two independent experiments).

ration in the absence of IPs or in the presence of either IP5 or IP6. Both WT and

e same extent. Data are average of three biological replicas and have been
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Figure 7. Capsid Mutants Prevent Efficient Replication in PBMCs

PBMCs from three donors were infected with viruses carrying capsid mutations K158A, K158I, K227A, or K227I for 2 h. Cells were cultured over 20 days and

supernatants sampled every other day and assayed for RT activity.
reducing capsid stability or increasing the number of incomplete

cores. For instance, this could lead to exposure of the viral

genome or synthesized DNA to the STING/cGAS pathway.

A curious difference between IP6 use in assembly versus

maturation is that whereas immature hexamers use two lysine

rings to engage IP6, mature hexamers appear to use a single

arginine ring. An attractive hypothesis is that the two lysine

rings help preferentially recruit IP6. The location of K227 imme-

diately below K158 in the immature hexamer is favorable for

coordinating the axial phosphate in IP6. IP5 lacks an axial phos-

phate, as it is IPPK that modifies the inositol 2-OH when it con-

verts the molecule into IP6 (González et al., 2010). This means

that IP5 could not make the equivalent interaction with the

K227 lysine ring as IP6, thereby thermodynamically discrimi-

nating against IP5 binding. Nevertheless, our data show that

HIV can use IP5 when IP6 is not available. Moreover, this substi-

tution does not seem to drastically decrease either viral pro-

duction or infection. We did observe decreased virus produc-

tion in IPPK KOs, where IP5 rather than IP6 was specifically

incorporated into virions, but this was comparable with the

decrease in IPMK KOs, in which IP6 levels were reduced to a

similar level. The cellular concentration of IP6 is normally 5-

fold higher than IP5, suggesting it is IP availability that is the

primary determinant of incorporation and the reason why HIV-

1 is normally highly selective for IP6 in wild-type cells (Mallery

et al., 2018).

In conclusion, our data support a model in which IP6 is re-

cruited from producer cells during assembly of HIV at the plasma

membrane (Dick et al., 2018; Mallery et al., 2018). IP6 is recruited

by two lysines (K158 and K227) in the immature Gag hexamer,

where it helps drive formation of the immature lattice. During

maturation, coordination of IP6 is disrupted when the immature

lattice is cleaved by viral protease. IP6 is then available to pro-

mote assembly of the mature capsid by coordinating the R18

pore inmature hexamers. Once inside the cell, IP6 or another pol-

yanion, such as ATP, may help stabilize the capsid as it transits

the cytosol and undergoes DNA synthesis. Finally, and by anal-

ogy with picornavirus pocket factors, it is possible that engage-

ment of cellular cofactors disrupts polyanion binding, allowing

rapid uncoating to take place. The immature lattice lysine rings

K158 and K227 and a mature capsid charged ring (e.g., R18)

are highly conserved across diverse lentiviruses (Figure S5), sug-

gesting that IP6 is an essential component of lentiviral replication.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells & Plasmids
293T CRL-3216 cells were purchased from ATCC and authenticated by the supplier. All cells are regularly tested and are myco-

plasma free. Gag/Pol and GFP vectors were, respectively, for HIV-1 pCRV-1(Zennou et al., 2004) and CSGW(Naldini et al., 1996);

for HIV-2, HIV-2 ROD Gag/Pol and HIV-2 GFP(Griffin et al., 2001); for HIV-1 O p8.91 MVP(Ikeda et al., 2004); for SIVmac, SIV3+

and SIV-eGFP(Poeschla et al., 1998) and for FIV FP93(Poeschla et al., 1998). Lentiviral packaging plasmid pMDG2, which encodes

VSV-G envelope, was used to pseudotype infectious virions (Addgene plasmid # 12259). Cells for depletion of TNPO3 and NUP358

were produced by expression of shRNAs as previously described(Schaller et al., 2011). HEK293T and HeLa cell lines were main-

tained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml strep-

tomycin (GIBCO) at 37�Cwith 5%CO2. PBMCswere stimulatedwith 2 mg/ml PHA-P for 4 days before infection, then cultured in RPMI

1640 with 10% FBS, 2mM L-glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, and 50 U/ml IL-2.

METHOD DETAILS

Infection Experiments
Infections of HeLa cells were performed in the presence of 5 mg ml�1 polybrene. GFP expressing cells were enumerated on a BD

LSRII flow cytometer (BD Biosciences) 2 days post-infection after fixation of cells in 4% paraformaldehyde. Values are the mean ±

standard deviation. For PF74 inhibition experiments, the compoundwas dissolved in DMSOor DMSOand diluted in complete DMEM

supplemented with polybrene as above and added to cells shortly before infection. Infections were carried out with sufficient virus to

result in 10%–30% infection. Stable TNPO3 and Nup358 depletion experiments were performed by transducing HeLa cells (13 105)

with retroviral vectors (pSIREN RetroQ) expressing specific short hairpin RNA (shRNA). Cells were selected with 10 mg/ml puromycin

and stable cell-lines used in infection experiments. For further details see Schaller et al. (2011). For TRIM-Nup153 restriction exper-

iments, a construct containing Nup153 residues 896-1475 fused to the C terminus of the tripartite domains of TRIM5 (as described in

Matreyek et al., 2013) was transduced into HeLa cells and selected with puromycin. In all cases, infection was carried out in 43 104

HeLa cells at a multiplicity of infection (m.o.i.) between 0.1-0.3. Where viruses were quantified for levels of RT enzyme, a colorimetric

RT assay kit (Roche) was used according to manufacturer’s instructions.

Production of [3H]inositol-Labeled Virus and Cells
[3H]Inositol labeled viruses were prepared as previously described(Mallery et al., 2018). Briefly, 1 3 106 293T cells were seeded

into 2 3 10cm dishes in inositol-free DMEM and left to adhere overnight. The media was replaced with 5ml inositol-free DMEM

supplemented with 5 mCi/ml [3H]inositol (Perkin Elmer). After 3 days incubation, an additional 5ml inositol-free media containing

5 mCi/ml [3H]inositol was added onto cells, which were then transfected with 2mg each pCRV GagPol and CSGW. For determining

IP levels in cells, the same procedure was used except without transfection of viral plasmids. Cells were left for a further 3 days to

produce HIV-1 viral particles. After 3 days, either the cells were pelleted for IP determination or viral supernatants were collected.

Viral supernatants were topped up to 30ml and pelleted over a 5ml 20% sucrose cushion) in a SW28 rotor (Beckman) at 28,000 rpm

at 4�C. Pellets were resuspended in inositol freemedia and pelleted as previously. After the second spin, pellets were resuspended

in 1ml PBS and spun at 13,000rpm at 4�C in a bench top microfuge for 60 min. Pellets were frozen at�20�C until processing. Cells

were washed with PBS, then harvested by scraping, counted, and pelleted for quantification of cellular IP6 labeling. Pellets were

frozen at�20�C until processing. For comparison of virion and purified capsid core samples, p24 levels were determined by ELISA

for p24 (Perkin Elmer).

Purification and Analysis of Inositol Phosphates
Analysis of unlabeled inositol phosphates was performed following previously described protocols(Pisani et al., 2014, Wilson and

Saiardi, 2018). Cells were extracted using 1M perchloric acid and inositol phosphates purified using titanium dioxide (TiO2) beads.

Extracts were subsequently separated using polyacrylamide gel electrophoresis (PAGE) and visualized using Toluidine blue staining.

Inorganic polyphosphate (polyP; Sigma Aldrich S6128) was used as a ladder. The relative IP6 levels in kinase knockout cells were

compared to 293T wild-type cells.

Inositol phosphates extraction and analysis by HPLC was performed modifying a previously described protocol(Azevedo and

Saiardi, 2006). Cells labeled with [3H]inositol as described above were resuspended in 200 mL of extraction solution (1M

Perchloric acid, 5mM EDTA) and incubated on ice for 10 min. The samples were spun out at 13,000rpm at 4�C for 5 min

and the supernatant recovered. Viral or cell pellets were extracted for 10 min at 100�C using 200 mL of extraction buffer and

spun out as before. Supernatants from acid extractions were neutralized to pH6-8 using 1M Potassium carbonate, 5mM

EDTA (approx. 100 ml) and incubated on ice with the lids open for 1-2hrs. Samples were spun at 13,000rpm at 4�C for 5 min

and supernatant containing inositol phosphates was loaded onto HPLC or stored at 4�C. Extraction of IP at low pH and high

temperature can induce phosphate jumping; the movement of a phosphate group to a free hydroxyl, resulting in IP isomeriza-

tion. Therefore, I(1,3,4,5,6)P5, the single IP5 isomer detectable in IPPK KOs, becomes two IP5 species when preparing samples

of viral particles.
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Inositol phosphates were resolved by strong anion exchange chromatography Sax-HPLC on a Partisphere SAX 4.6�— 125 mm

column (Hichrom). The column was eluted with a gradient generated by mixing buffer A (1mM EDTA) and buffer B (1mM EDTA;

1.3 M (NH4)2HPO4, pH 4.0) as follows: 0–5 min, 0% B; 5–10 min, 0%–30% B; 10–85 min, 30%–100% B; 85–95 min, 100% B. Frac-

tions (1 ml) were collected and analyzed by scintillation counting after adding 4 mL of Ultima-Flo AP LCS537 cocktail (Perkin Elmer).

Preparation of HIV-1 Virions
Replication deficient VSV-G pseudotyped HIV-1 virions were produced in HEK293T cells using pMDG2, pCRVGagPol and CSGWas

described previously(Price et al., 2014). pNL4-3 Virus Stocks were produced in HEK293T cells by transfection with HIV-1 proviral

DNA (pNL4-3) using polyethylenimine (PEI) (Brissault et al., 2003). VSV-G-pseudotyped virus stocks were generated from cells

co-transfected with HIV-1 proviral DNA harboring the KFS mutation in env (Freed et al., 1992)) and the VSV-G expression vector

pHCMV-G (Yee et al., 1994) at a DNA ratio of 10:1. Viral supernatants were filtered through a 0.45-mm membrane at 48 hours

post-transfection and virus was quantified by measuring RT activity.

Virus Release
293T WT and IPMK/IPPK KO cells were transduced with VSV-G-pseudotyped HIV-1 KFS (env-) at 1 RT(cpm)/cell. At 48 hours post-

transduction, viral supernatants were ultra-centrifuged and virions were pelleted through a 20% sucrose cushion at 4�C. Virus pellets
and remaining cells were lysed and western blotted for Gag. Imaging and band quantification were performed using the Sapphire

Biomolecular Imager and Azure Spot analysis software (Azure Biosystems). Virus release was calculated using the following formula.

virus p24

virus p24+ cell p24+ cell Pr55
Replication Experiments
Peripheral blood mononuclear cells (PBMCs) from three donors were infected for 2 hours with RT-normalized virus stocks prepared

by transfection of 293T cells with PEI. Cells were washed and cultured in RPMI 1640 mediumwith 10% FBS with penicillin (100 U/ml)

and streptomycin (100 mg/ml) in a 24-well plate. Supernatants were collected every other day and virus replication was quantified by

RT activity.

Membrane Flotation Analysis
Membrane flotation analysis was based on published protocols(Kiernan et al., 1998, Kutluay and Bieniasz, 2010, Ono et al., 2000).

Briefly two 10cm dishes of 293T cells were seeded and transfected as for virus production. 48hrs post-transfection cells were

washed twice with ice cold buffer (10mM Tris pH7.4, 100mM NaCl, 1mM EDTA) and harvested into 1ml of the same buffer. Cells

were pelleted and resuspended in 500ml Hypotonic buffer (10mM Tris pH7.4, 1mM EDTA) with protease inhibitors. Cells were lysed

by passing through a 25G needlemultiple times, adjusted to 150mMNaCl, 1mMMgCl2 and spun at 1000 g for 10min at 4�C for 10min

to remove nuclei and intact cells. Lysates were mixed to 80% sucrose and layered with 65% and 10% sucrose and centrifuged over-

night at 35K rpm. 1ml fractions were removed from gradients from the top and TCA precipitated. Pelleted protein was resuspended in

LDS Sample Buffer and western blotted for Gag.

CRISPR/Cas9 Knockouts
Knockout cell lines were largely produced following the IDT protocol. Briefly, 2.5ml each of crRNA and tracrRNA at 100mM were an-

nealed. This was then mixed with 80-100 pmol Cas9 protein and incubated at 37�C for 10 min to form the Cas9/RNP mix which was

kept on ice until use. 2ml of the Cas9/RNP mix was transfected into 8 3 105 cells using the Neon Transfection system, according to

manufacturer’s protocol (Thermo Fisher). Cells and RNP were immediately transferred into a tube containing 1ml pre-warmed anti-

biotic free media and subsequently into a flask containing 4ml complete media. Cells were allowed to recover for 24-72hr until being

sorted to single cells. Single cell clones were grown up and DNA extracted and sequenced to analyze for CRISPR targeting.

Sequences were analyzed by CRISP-ID software(Dehairs et al., 2016) and manual decoding.

Western Blotting
Samples were run on 4%–12% Bis Tris gels and transferred onto nitrocellulose membranes using iBlot (Life Technologies) and

detected by ECL or by Li-COR for quantification. Anti-HIV p24 (183-H12-5C) was obtained from the NIH AIDS Reagent Program,

Division of AIDS, NIAID, NIH: Anti-HIV-1 p24 Monoclonal (183-H12-5C) (Cat# 3537) from Dr. Bruce Chesebro and Kathy Wehrly

(Toohey et al., 1995, Wehrly and Chesebro, 1997), anti-IPMK (NC12) from Genetex, anti-Nup358 (A301-797A-T) from Bethyl Labo-

ratories, and anti-GFP (ab6556), anti-TNPO3 (ab109386) both from Abcam. For virus release, samples were subjected to SDS-PAGE

(4%–20%), then transferred to a polyvinylidene fluoride (PVDF) membrane (Immobilon, Millipore) via semi-dry transfer (Bio-Rad

Trans-Blot Turbo). The membrane was blocked for 1 hour with 5% nonfat milk in Tris-buffered saline + 0.05% Tween 20 detergent

(TBST) and incubated overnight at 4�Cwith anti-HIV IgG. The membrane was then washed with TBST and incubated for 2 hours with

anti-human horseradish peroxidase-conjugated secondary antibody and washed again. SuperSignal West Pico PLUS (Thermo

Scientific) was used to reveal protein bands.
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Crystallization, Structure Solution, and Analysis
CA hexamer protein was prepared exactly as described previously(Mallery et al., 2018). Crystals were grown at 17�C by sitting-drop

vapor diffusion in which 100 nL protein was mixed with 100 nL precipitant and suspended above 80 ml precipitant. The structure was

obtained from 12mg/ml hexamer mixedwith 14%PEG550MME, KSCN (0.15M), Tris (0.1M, pH 8.5) containing 1mMofmyo-IP5 and

cryoprotected with precipitant supplemented with 20% MPD. Crystals were flash-cooled in liquid nitrogen and data collected at

beamline I24 at Diamond Light Source. The datasets were processed using the CCP4 Program suite(Winn, 2003). Data were indexed

and integrated with iMOSFLM and scaled and merged with AIMLESS(Evans and Murshudov, 2013). Structures were solved by mo-

lecular replacement using the model 6ES8 in PHASER(McCoy, 2007) and refined using REFMAC5(Murshudov et al., 1997). Between

rounds of refinement, the model was manually checked and corrected against the corresponding electron-density maps in

COOT(Emsley and Cowtan, 2004). Final figures were rendered in The PyMOL Molecular Graphics System, Version 1.5.0.4

Schrödinger, LLC. The model and data were deposited in the PDB database with code 6R8C.

Virus Production for TIRF Microscopy
Replication deficient HIV-1 virions without envelope protein were produced in HEK293T cells using pCRV-1 GagPol and CSGW, bio-

tinylated using EZ-Link Sulfo-NHS-LC-LC-Biotin (Thermo Scientific, 21338) and purified as described (Márquez et al., 2018, 2019).

CypA Expression and Purification
CypA was expressed in E. coli using a pET-21 vector and purified as previously described(Márquez et al., 2018). For CypA paint,

CypA was labeled with Alexa Fluor 568-C2-maleimide (AF568) and binding of conjugated CypA verified by surface plasmon

resonance.

TIRF Imaging of Capsids in Permeabilized Viral Particles
TIRF microscopy was carried out following the published method of Márquez et al. (2018, 2019). Briefly, biotinylated viral

particles were captured onto coverslips attached to microfluidic flow cells and imaged using a custom built TIRF microscope with

an ASI-RAMM frame (Applied Scientific Instrumentation), a Nikon 100 x CFI Apochromat TIRF (1.49 NA) oil immersion objective

and NicoLase laser system. Immobilized virions were treated with imaging buffer containing 200 nM PFO, to permeabilize the lipid

envelope, and labeled CypA (0.5 - 1 mM), to detect the capsid. TIRF imageswere then acquiredwith a frequency of 1 frame/6 s using a

561 nm laser with a 20 ms exposure time for excitation and an Andor iXon 888 EMCCD camera for detection. Single-virion fluores-

cence traces were extracted from the TIRF image stacks using the JIM Immobilized Microscopy analysis package (https://github.

com/lilbutsa/JIM-Immobilized-Microscopy-Suite) and further analyzed in MATLAB (The MathWorks, Inc) using software adapted

from previous work(Böcking et al., 2011). Briefly, the duration of the CypA signal was extracted from fluorescence traces by step-

fitting using change point analysis. Capsid stability was quantified as the time difference between acquisition of Alexa Fluor

568-CypA upon permeabilization and loss of fluorescence upon capsid uncoating.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis
Unless otherwise indicated, statistical analyses were performed with the Student’s t test using GraphPad Prism 7 software

(GraphPad). The number of experiments or (biological) replicates (n) used for the statistical evaluation of each experiment is indicated

in the corresponding figure legends. The data are plotted as a mean ± SD or SEM as indicated. Where the mean is calculated from

technical replicates, it is representative of multiple experiments that have been repeated at least twice as described within the figure

legend (Figures 1F, 2C, and 5D). Data from infection experiments are plotted as the mean ± SD of three replicates from one exper-

iment representative of three independent experiments (Figures 1G and 1H, 2F, 4A, and 5E). Where the data are given with biological

errors, this has been normalized to allow multiple independent datasets to be directly compared and is described within the

figure legend (Figures 1E, 2E, and 5C). The single molecule TIRF data in Figure 6 was analyzedMATLAB and full details are described

in the Methods section above.

DATA AND CODE AVAILABILITY

The published article includes an X-ray structure, which has been deposited in the PDB database with the code 6R8C. Table S1 gives

the data collection and refinement statistics. A full PDB validation report is also provided.
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Supplementary Figure 1 related to Figure 1: (A) Analysis of CRISPR knockout clones. 

Chromatograms and alignments for sequencing of CRISPR/Cas9 knockout clones of IPMK. 

Indels were identified using the program outlined in Dehairs, J. et al.(Dehairs et al., 2016), as 

well as manual decoding. (B) PAGE and toluidine blue staining of standard cell extracts 

including standard controls to demonstrate migration of IP5, IP6, ATP and GTP.  Standards 

were run in the presence of cell extract to allow equivalent migration. (C) Western blot for 

Gag expression levels in transfected IPMK KO clones. Gag precursor Pr55Gag (Pr55), p41 and 

mature capsid protein (p24) are indicated. Lower panel shows loading control COX-IV. (D) 

Graph showing pg RT per ng p24 in virions from viral supernatants obtained from transfection 

of IPMK KO clones.  Error bars depict mean ± SD of three independent experiments with no 

statistical difference to WT. (E) Western blots showing overexpression of IPMK in CRISPR 

knockout clones. Clones were blotted for IPMK and lower panel shows Cox-IV loading control. 

(F) TiO2-PAGE and toluidine blue staining of cell extracts from IPMK KO clones stably 

transduced with empty vector control (EV) or a CMV-driven IPMK gene. Synthetic polyP was 

used for gel orientation.  Gels show knockout clones are successfully reconstituted and IP6 

levels restored. (G) Western blot for Gag expression levels in IPMK KO parental clones and 

cells stably transduced with either EV or IPMK. Gag precursor Pr55Gag (Pr55), p41 and mature 

capsid protein (p24) are indicated. Lower panel shows loading control COX-IV. 

 

Supplementary Figure 2 related to Figure 2: (A) Analysis of CRISPR knockout clones. 

Chromatograms and alignments for sequencing of CRISPR/Cas9 knockout clones of IPPK. 

Indels were identified using the program outlined in Dehairs, J. et al.(Dehairs et al., 2016), as 

well as manual decoding. (B) Comparison of total IP5 and IP6 incorporation in virions from IPPK 

KO clones shown in Figure 2C. (C) Western blot for Gag expression levels in transfected IPPK 

KO clones. Gag precursor Pr55Gag (pr55), p41 and mature capsid protein (p24) are indicated. 

Lower panel shows loading control COX-IV.  

 

Supplementary Figure 3 related to Figure 4: Alignment of lentiviral gag sequences. Residues 

are highlighted by conservation, with the mature and immature charged ring residues boxed. 

 

Supplementary Figure 4 related to Figure 5: (A) Western blot showing Gag expression levels 

of lysine mutants in producer cells. Gag precursor Pr55Gag (pr55), p41 and mature capsid 



protein (p24) are indicated. (B) Quantification of viral production from 293T, IPMK KO and 

IPPK KO cells as determined by RT levels in viral supernatants. Error bars depict mean ± SD of 

two independent experiments.  Values are expressed as fold change from levels of RT 

produced in WT virus. (C) Western blot for Gag expression levels in cell lysates from WT and 

IPMK and IPPK KO cells during WT and K227I virus production. Gag precursor Pr55Gag (pr55), 

p41 and mature capsid protein (p24) are indicated. (D) Western blots of cell extracts showing 

cell extracts from stably transduced cells, showing depletion of TNPO3 or NUP153 by 

expression of short hairpin RNAs.  

 

Supplementary Table 1 related to Figure 3: Data collection and refinement statistics. 

Crystallographic statistics for the HIV-1 hexamer structure complexed with IP5. 
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Supplementary Figure 2 related to Figure  2
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Supplementary Figure 3 related to Figure 4



Supplementary Figure 4 related to Figure 5
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Supplementary Table 1 related to Figure 3: Data collection and refinement statistics  
 
 6R8C 
Data collection  
Space group P6 
Cell dimensions    
    a, b, c (Å) 90.66, 90.66, 57.00 
    a, b, g  (°)  90.0, 90.0, 120.0 
Resolution (Å) 78.52-1.91 (1.98-1.91) 
Rmeas 6.6 (73.0) 
CC1/2 (%) 99.8 (83.3) 
I / sI 17.7 (2.6) 
Completeness (%) 99.3 (90.0) 
Redundancy 6.5 (6.0) 
  
Resolution (Å) 1.91 
No. reflections 20758 
Rwork / Rfree 0.19/0.23 
No. atoms 1855 
    Protein 1612 
    Ligand/ion 64 
    Water 179 
B-factors  
    Protein 35.2 
    Ligand/ion 85.6 
    Water 42.3 
R.m.s. deviations  
    Bond lengths (Å) 0.02 
    Bond angles (°) 1.90 
*Values in parentheses are for highest-resolution shell. 
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