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S1. Procedures of calculating lfc, absolute diff, and csSAM results

Given the observations Y and (estimated) mixture proportions θ, we first estimate the pure tissue profiles for
cases (x̂1, · · · , x̂K) and controls (x̂∗

1, · · · , x̂∗
K) using the basis function from Bioconductor package csSAM.

For cell type k,

1. the lfc (log fold change) of cases and controls are computed by lfck = abs(log(x̂k) − log(x̂∗
k)), k =

1, · · · ,K. abs() is the absolute operation.

2. the absolute diff (absolute difference) of cases and controls are computed by absolute diffk = abs(x̂k−
x̂∗
k), k = 1, · · · ,K.

3. the csSAM results are obtained using the csSamWrapper function from the csSAM package with Y , θ
and sample size as inputs.

S2. Procedures of testing for other hypothesis

Most simulation results prsented in the main manuscript are designed to test Hypothesis 1 in Section 2.2.
To demonstrate the functionalities to test other hypothesis, we conduct additional simulations using the
following procedures.

We use the same simulation model as described in Section 2.3. However, different from testing one cell
type between cases and controls, DE signals already exist cross different cell types since all pure tissue
profiles are generated based on real dataset. Instead, we apply Bioconductor package limma on underlying
true pure tissue profiles to define which genes are true DE’s. Following the notation in Section 2.3, the
detailed procedures are as follows:
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• Testing for Hypothesis 2 in Section 2.2

1. For subject i from the control group, denote the individualized reference panel as Xi, which is a
G by K matrix.

2. For cell type p and q (p, q = 1, · · · ,K, p 6= q), extract all the p−th and q−th columns from
Xi, i = 1, · · · , s1 to a new matrix X(p,q). Apply limma on X(p,q) and define all genes with
FDR < 0.05 and absolute log fold change > 3 as true DE genes between cell types p and q in
controls.

3. Apply the proposed method on observed data Ycontrol with all the columns corresponding to
control subjects and obtain the lists of adjusted p values for all cell types.

4. Use true DE status from step 2 and p values from step 3 to draw TDR curves as in Figure S7(a)

• Testing for Hypothesis 3 in Section 2.2

1. For subject j from the disease group, denote the individualized reference panel as X∗
j , which is a

G by K matrix.

2. For cell type p and q (p, q = 1, · · · ,K, p 6= q), extract all the p−th and q−th columns from
X∗

j , j = 1, · · · , s2 to a new matrix X∗(p,q). Apply limma on X∗(p,q) and define all genes with
FDR < 0.05 and absolute log fold change > 3 as true DE genes between cell types p and q in
disease group.

3. Apply the proposed method on observed data Ydisease with all the columns corresponding to
disease subjects and obtain the lists of adjusted p values for all cell types.

4. Use true DE status from step 2 and p values from step 3 to draw TDR curves as in Figure S7(b)

• Testing for Hypothesis 4 in Section 2.2

1. For subject i from the control group, denote the individualized reference panel as Xi, and similarly
for subject j from the disease group, denote the individualized reference panel as X∗

j . Both Xi

and X∗
j are a G by K matrix.

2. For cell type p and q (p, q = 1, · · · ,K, p 6= q), extract all the p−th and q−th columns from
Xi, i = 1, · · · , s1 and X∗

j , j = 1, · · · , s2 to a new matrix X(p,q). Apply limma on X∗(p,q) with a
design matrix including interaction terms. Define all genes with FDR < 0.05 as true DE genes
between cell types p and q across control and disease group.

3. Apply the proposed method on observed data Y with all subjects and obtain the lists of adjusted
p values for all comparisons.

4. Use true DE status from step 2 and p values from step 3 to draw TDR curves as in Figure S7(c)

S3. Simulation study for RNA-seq data

We conducted simulation studies for detecting cell type specific differeneital expression for RNA-seq data.
The simulation parameters are estimated from a real dataset on GEO with accession number GSE60424 [1].
This datasets has RNA-seq measurements of 6 purified blood cells, with 4 replicates for controls and for
patients with an array of immune-associated diseases (type I diabetes, amyotrophic lateral sclerosis, sepsis,
and multiple sclerosis patients).

The detail simulation steps are listed below:
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1. For cell type k and gene g, estimate mean µk
g and dispersion φkg from the control group using the

estParam function in Bioconductor package PROPER [2].

2. For cases, we assume they have the same gene-specific dispersons φkg but different means for csDE
genes. The mean expressionss for cases, denoted by µk′

g , is generated based on µk
g with log fold changes

(lfc) added to a randomly selected group of DE genes. Lfc is simulated from 0.5N(2, 1) + 0.5N(2, 1).

3. For person i, simulate the individualized underlying cell type specific expressions mk
gi from a Gamma

distribution.

mk
gi ∼ Γ(µk

g , scale =
φkg

1− φkg
) for controls

and

mk
gi ∼ Γ(µk′

g , scale =
φkg

1− φkg
) for cases

4. For person i, mix the cell type specific expressions to generate the expression for mixed samples. The
mixing proportions are generated using the same procedures presented in the main manuscript.

mgi ∼
∑
k

πk
im

k
gi

5. Generate read count Ygi from Poisson distribution.

Ygi|mgi ∼ Poisson(mgi)

After observations Y = (Ygi) are generated, we apply the proposed method on the raw counts, and the
results are presented in Figure S8. The results are summarized over 20 Monte Carlo datasets.

S4. Fitting the model in original or log scale

Historically, gene expression microarray data analyses are primarily performed in logarithm scale. Under
the sample mixing context, the mixing of pure cell type expression values is believed to take place in the
raw scale, and the linear relationship could be destroyed if one log-transforms the data. This is also the
reason why many proportion estimation methods (either reference-free or reference-based) are performed on
the raw instead of log-transformed data [3, 4, 5, 6]. However there is also voice for using log-scale data [7].

In our simulation study, we evaluate the impact of log-transformation on csDE detection. Figure S5
compares the TDR curves from TOAST for using raw vs. log transformed data in csDE detection for all cell
types, using both reference-based and reference free proportion estimates. The result is a mixed performance
without a universal benefit for using either the log or original scale. Comparison using the Immune dataset
(Figure S11) also shows similar performance on both scales.

In simulations we try to mimic data from real biological experiments as much as possible. However,
real data sets often contain more complex noise sources and outliers not captured in simulations. Log
transformation provides a natural regularization against such noise and outliers, which may lead to more
robust analysis in real data applications. We hold a neural position given the current evidence except to
remind users that the interpretation of the differential effect sizes should depend on the analysis scale: the
estimated difference is a relative value (log fold change) in log scale, whereas in the raw scale it may need to
be interpreted in the context of a feature’s baseline expression/methylation level.
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S5. Application to HIV DNA methylation data

We have also applied the proposed method to a DNA methylation dataset downloaded from GEO with
accession number GSE67705 [8]. Unlike the brain dataset, this HIV dataset only contains measurements for
whole blood, thus we benchmark the results using enrichment analysis and literature research. We obtain
whole blood 450K DNA methylation measurements from 142 HIV patients and 44 healthy controls. The
DNA methylation blood reference is obtained from Bioconductor package FlowSorted.Blood.450k [9]. The
batch effect is removed by Bioconductor package sva. We solve the mixture proportions by EpiDISH from
Teschendorff et al BMC Bioinformatics 2017 [10], which is a reference-based deconvolution software designed
for DNA methylation data. After applying TOAST we find the following signals, we find Monocyte has the
largest number of DMC. There are 26 DMCs with FDR < 0.05, 731 DMCs with FDR < 0.2, and 2987 with
pvalue < 0.01. These 2987 DMC can be mapped to 755 genes and we conduct anenrichment analysis using
software EnrichR (http://amp.pharm.mssm.edu/Enrichr/enrich).

The dbGap (the database of Genotypes and Phenotypes) enrichment analysis results are presented in
Figure S12. We find that Lymphocytes and HIV-1 have been identified as top terms, which may suggest the
validity of our findings. Besides enrichment analysis, we also find a few recent publications that highlighted
the important role of Monocytes in AIDS [11, 12, 13]. Especially the last paper by Hasegawa et al. finds
that the level of monocyte turnover was not linked to the CD4+ T-cell count and was a better predictive
marker for AIDS progression than was viral load or lymphocyte activation, which emphasize the important
role of Monocytes in AIDS etiology and progression.

S6. Several existing methods are special cases of the proposed method

A number of existing methods are available for detecting cell-type specific differential signals. Here we discuss
the connections between three existing methods (cell-type specific differential methylation in human brain
tissue [14], referred to as csDMHB; population-specific expression analysis (PSEA) [15]; and cell specific
eQTL analysis [16], referred to as cseQTL) and the proposed method. We show that they are simplified
version or special cases of our framework in testing cell-type specific differential signals. Note that none of
these existing methods provide functionality for flexible hypothesis test, such as testing the difference among
cell types in one condition as we showed in the Immune Dataset example.

Connection with csDMHB

csDMHB presented a statistical model that estimates differences in DNA methylation between two
brain regions dorsolateral prefrontal cortex (D) and Hippocampal formation (H). Assume there are two
cell types(NeuN+ and NeuN-) in the brain, they want to detect whether cell-type specific differences
exist between the two brain regions. Following the notation from [14], Yi is the observation for sub-
ject i. Indicator variable Xi = 1 if sample i from H and Xi = 0 otherwise. Their model is E(Yi) =

µD,+ + (µD,− − µD,+)πi + (µH,+ − µD,+)Xi(1− πi) + (µH,− − µD,−)Xiπi. To re-format this function into a
linear model framework, they use β0, β1, β2, β3 to represent µD,+, µD,−−µD,+, µH,+−µD,+, and µH,−−µD,−

respectively.
Comparing csDMHB with our model, csDMHB is actually a simplified version of our framework with

condition K = 2. Using our notation, when K = 2, we have E(Yi) = θi1(µ1 +β1Zi)+θi2(µ2 +β2Zi). Here Zi

is the indicator function that equals 1 if sample i from H and 0 otherwise. From this step, we can rearrange
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the term and build connections with csDMHB:

E(Yi) = θi1(µ1 + β1Zi) + θi2(µ2 + β2Zi)

= µ1 + (µ2 − µ1)θi2 + β1Zi(1− θi2) + β2Ziθi2 (1)

= µD,+ + (µD,− − µD,+)πi + (µH,+ − µD,+)Xi(1− πi) + (µH,− − µD,−)Xiπi (2)

= β0 + β1πi + β2Xi(1− πi) + β3Xiπi.

Transition from (1) to (2) implies β0, β1, πi, β2, Xi, β3 in the notation of csDMHB corresponds to µ1, µ2 −
µ1, θi2, β1, Zi, β2 in our notation system. They use the hypotheses β2 = 0 and β3 = 0 to test whether there is
difference in NeuN+ methylation between D and H, and whether there is difference in NeuN− methylation
between D and H respectively. This aligns with testing β1 = 0 and β2 = 0, which we proposes to test
differences in cell type 1 and 2. Thus csDMHB is a simplified version of our method, for it only considers a
mixture with two components. Moreover, it does not provide functionality to test the changes of different
cell types under the same condition, e.g., difference between NeuN+ and NeuN− in D or H.

Connection with PSEA

PSEA presents a model formulation that detects the cell-type (or population) specific differential ex-
pressed genes with respect to their relative expression level calculated using cell-type specific marker gene
expression level. To apply PSEA, one should first obtain a list of cell-type specific marker genes that express
in cell-type p∗ only. They assume y = a+

∑P
p=1 xpfp where a is background, xp is the cell-type specific gene

expression in cell type p, and fp is the mixing proportion.
By using cell-type specific marker gene xp∗ , fp∗ = (yp∗ − a)/xp or its approximation fp∗ = yp∗/xp

is used as surrogate for mixture proportion. Thus the PSEA model becomes yi = a +
∑P

p=1 xp
yp∗−a

xp∗
=

a[1 −
∑ xp

xp∗
] +

∑P
p=1 xp

yp∗

xp∗
≈ a +

∑P
p=1 βpyp∗ . Here βp =

xp

xp∗
. For two group comparison, PSEA uses an

indicator variable di with di = 0 for samples in group 1 and di = 1 for samples in group 2. The model is
represented as

yi = a+

P∑
p,p∗=1

βpyp∗,i +

P∑
p,p∗=1

β
′

pyp∗,idi

Comparing PSEA to our method, we find the ideas are very similar and our formulation is the generalized
version of PSEA. Using our notation,

E(Yi) =

K∑
k=1

θikµk +

K∑
k=1

θikβkZi (3)

= a+

P∑
p=1

xp ·
yp∗

xp∗
+

P∑
p=1

(x
′

p − xp)
y∗p
xp∗

di

= a+

P∑
p=1

βpyp∗,i +

P∑
p=1

β
′

pyp∗,idi (4)

Transition from (3) to (4) suggests βp, β
′

p, di, yp∗ correspond to µk/Xmarker, βk/Xmarker, Zi, θik ·Xmarker

respectively. Our method does not have marker gene expressionss in the formula since we assume the mixing
proportions θik are known, so we just use Xmarker to symbolically represent the relative relationship. Note
that the background term a is assumed omissible in PSEA and is absorbed into µ1 in our notation system.
PSEA uses H0 : β

′

p = 0 to test the null hypothesis of no difference between the p-th cell types in the two
sample groups, which aligns with testing H0 : βk = 0 for detecting the difference between k-th cell types in
our notation system.
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Similarly in three-group comparison, PSEA has the model

yi = a+

P∑
p,p∗=1

βpyp∗,i +

P∑
p,p∗=1

β
′

pyp∗,id1,i +

P∑
p,p∗=1

β
′′

p yp∗,id2,i.

While in our notation system, we only need to specify covariate Zi as a vector with Zi = (0, 0)T for subjects
from group 1, (1, 0)T for subjects from group 2, and (0, 1)T for subject from group 3, then the correspondence
relationship between PSEA and our model still holds. Thus, PSEA is similar to our method for detecting
the expression changes for a specific cell type among different groups. It does not have functionality to test
differential expression among different cell types in the same group, or higher order changes.

Connection with cseQTL

cseQTL expands the typical linear model to detect cell-type specific effects using expression quantitative
trait loci (eQTL) datasets generated from whole tissue. Instead of using mixture proportions as the previous
mentioned methods, cseQTL creates cell-type specific proxy for cell types of interest through correlation-
based marker selection process. They treat the cell-type specific proxy as a covariate and add the main
effect for the covariate and interaction term of covariate and genotype. Their model can be written as
Y ≈ I + β1 ×G+ β2 ×P + β3 ×P : G+ e where Y is the gene expression, G is the genotype information, P
is the cell-type specific proxy, P : G is the interaction term between proxy and the genotype. The parameter
of interest for testing is β3.

Comparing the cseQTL model with the existing methods and our proposed method, we find the cseQTL
model is very similar to the formulation of csDMGHB and can be seen as a special case of method with
K = 2. The fact that cseQTL only uses the proxy for one cell type in the formulation implies that they
assume only two cell types (cell type of interest and cell type not of interest) in the analysis of each cell type.
We can build a connection with cseQTL model as

E(Yi) = θi1(µ1 + β1Zi) + θi2(µ2 + β2Zi)

= µ1 + β1Zi + (µ2 − µ1)θi2 + (β2 − β1)Ziθi2 (5)

≈ I + β1G+ β2P + β3P : G (6)

We use ’≈’ to follow the notation utilized in the cseQTL paper [16] which indicates that cell-type proxy is
used and the formulation just gives an approximation for single marker cis−eQTL mapping. The transition
from (5) to (6) implies that we can build correspondence relationship between β1, β2, β3 in cseQTL’s notation
and and β1, µ2 − µ1, β2 − β1 in our notation.
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N: Neuron
A: Astrocyte
M: Microglia
O: Oligodendrocyte

Mixed samples

(a) (b)

Figure S1: Heatmaps of gene expression profiles for purified rat brain cells and mixed samples from
GSE19380. (a) Gene expression from primary brain cell cultures of rat. Purified cell types include neu-
ronal, astrocytic, oligodendrocytic and microglial cultures. (b) Gene expression from RNA mixtures of rat.
For both (a) and (b), only the top 1000 most variant genes are presented and the rows have been re-ordered
for demonstration purpose.
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Figure S2: Impact of sample size and noise level on DE detection accuracy. True Discovery Rate (TDR)
curves using the proposed method when reference-based method is used as up-stream deconvolution method.
Sample size increases from left column to right column and observation noise increases from top row to bottom
row.
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is applied to this dataset and the number of tissue types is set as 4.
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Figure S4: True Discovery Rate (TDR) plots with different levels of noise added to simulation reference
panel. Reference-based method is used for deconvolution. The noise on pure tissue panel increases from left
to right.
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Figure S5: Impact of using raw vs. log-scale data in four cell types. TDR curvess from TOAST when using
raw or log-scale data, and different proportion estimation as inputs for csDE detection. Raw: raw scale data.
Log: log scale data.

11



500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 1

# top ranked genes

%
 tr

ue
 D

E

500 1000 1500 2000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Cell Type 2

# top ranked genes

%
 tr

ue
 D

E

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 3

# top ranked genes

%
 tr

ue
 D

E

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 4

# top ranked genes

%
 tr

ue
 D

E

TOAST
csSAM
Log fold change
Absolute diff

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 1

# top ranked genes

%
 tr

ue
 D

E

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 2

# top ranked genes

%
 tr

ue
 D

E

500 1000 1500 2000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Cell Type 3

# top ranked genes

%
 tr

ue
 D

E
500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 4

# top ranked genes

%
 tr

ue
 D

E

TOAST
csSAM
Log fold change
Absolute diff

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 1

# top ranked genes

%
 tr

ue
 D

E

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 2

# top ranked genes

%
 tr

ue
 D

E

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 3

# top ranked genes

%
 tr

ue
 D

E

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cell Type 4

# top ranked genes

%
 tr

ue
 D

E

TOAST
csSAM
Log fold change
Absolute diff

(a) (b)

(c)

Figure S6: True Discovery Rate (TDR) plots of TOAST, csSAM, Log fold change and Absolute diff for all
cell types in different DE generation settings. Figure (a): DE genes change in 2 cell types simultaneously.
Figure (b): DE genes change in 3 cell types simultaneously. Figure (c): DE genes change in 4 cell types
simultaneously. Reference-based method is used for deconvolution.
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Figure S7: True Discovery Rate (TDR) plots of TOAST in testing for other hypothesis. Figure (a) is to test
difference between cell types in normal group (Hypothesis 2 in Section 2.2); (b) is to test difference between
cell types in case group (Hypothesis 3 in Section 2.2); (c) is to test difference of changes between cell types
in two conditions (Hypothesis 4 in Section 2.2).
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Figure S8: True Discovery Rate (TDR) plots of TOAST in the simulation study with RNA-seq dataset
(GEO60424). Raw counts and true mixture proportions are used as inputs to TOAST.
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Figure S9: In the Immune data analysis, (a) TDR plot of across cell type DE detection using the proposed
method when reference-free method is used for up-stream deconvolution analysis. (b) Heatmap of correlation
coefficients for estimated proportions from reference-free methods versus true proportions.
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Figure S10: In the Immune data analysis, TDR plot of across cell type DE detection using the proposed
method when true proportions are used as inputs.
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Figure S11: In the Immune data analysis, TDR plot of across cell type DE detection using the proposed
method using raw-scale data or log-scale data. Reference-based deconvolution is used to obtain mixture
proportions.
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(a)

(b)

Figure S12: Enrichment analysis of the database of Genotypes and Phenotypes (dbGaP) using EnrichR. Top
panel (a) shows the enrichment level (log p value) of each term, bottom panel (b) shows the p value and
adjusted p value of each term.
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