Supporting Information 1 Carbon chain decomposition of short chain chlorinated paraffins (SCCPs) 2 mediated by pumpkin and soybean seedlings 3 4 Yanlin Li^{†,‡,§}, Xingwang Hou^{†,//}, Weifang Chen^{†,//}, Jiyan Liu*,^{†,//}, Qunfang Zhou^{†,//}, Jerald 5 6 L. Schnoor[‡], and Guibin Jiang^{†,//} 7 †State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for 8 Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 9 10 100085, China [‡]Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa, 11 12 USA §School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 13 230026, China

"College of Resources and Environment, University of Chinese Academy of Sciences,

17

14

15

16

*Corresponding author 18

Beijing, 100049, China

- Tel: +86 10 62849334 19
- Fax: +86 10 62849339 20
- 21 E-mail: liujy@rcees.ac.cn

Summary of the Supporting Information

- Total Pages: 23; total text: 4; total tables: 6; total figures: 4
- 25 List of contents:
- **Text S1:** Chemicals and regents.
- 27 **Text S2:** Extraction and clean up.
- **Text S3:** Instrumentation.
- 29 **Text S4:** Laboratory blanks/background contamination.
- Table S1: Information on commercial standards of individual SCCP congeners.
- 31 Table S2: Water solubility and method detection limits (MDLs) of various parent individual
- 32 SCCP congeners.
- Table S3: List of target chlorinated paraffins (CPs) and their SIM ions.
- Table S4: SCCPs of plant background (plants before exposure).
- 35 **Table S5:** Concentrations of daughter SCCPs in shoots, stems and roots of exposed pumpkins and
- 36 soybeans.
- 37 **Table S6:** Concentrations of daughter SCCPs in shoots, stems and roots of planted blank control
- of pumpkin (PBCP) and soybean (PBCS).
- Figure S1 Schematic of the hydroponic exposure experiments and sampling.
- 40 Figure S2 Concentrations of parent SCCPs in the solutions (A), roots (B), stems (C), and shoots
- 41 (D) when pumpkin plants were exposed to SCCPs over time.
- 42 Figure S3 Concentrations of daughter SCCP congeners in exposure groups (A-D) and planted
- blank controls (E-H) of pumpkin seedlings over time.
- 44 Figure S4 Mass percent of individual parent SCCPs (A) and concentrations of total daughter

46	References
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

SCCPs (B) in different compartments of soybeans after 10 days exposure.

Text S1: Chemicals and regents Florisil (60-100 mesh, Sigma-Aldrich, St. Louis, USA), silica gel (0.063-0.100 mm, Merk, Darmstadt, Germany) and anhydrous sodium sulfate (Na₂SO₄) were heated at 140 °C for 7 h, 550 °C for 12 h, and 660 °C for 6 h, respectively. Acid silica gel was a mixture of activated silica and concentrated H₂SO₄. Then, all of these were stored in a sealed desiccator. Pesticide grade hexane, dichloromethane, acetone and cyclohexane were purchased from J.T. Baker (Phillipsburg, NJ, USA). Ultrapure water (18.3 M Ω × cm) was obtained from a Milli-Q purification system (Millipore, Billerica, USA). All other chemicals and reagents were analytical grade or better.

Text S2: Extraction and clean up

The method for extraction and cleanup was the same as that in our previous research, which was modified from the method developed by Zeng et al. In brief, all samples were added with a surrogate standard (1 ng 13 C₁₀-trans</sub>-chlordane) before extraction. Hydroponic solutions were extracted immediately with 15 mL of dichloromethane for three times consecutively after sampling. The volume of solutions of exposure groups and planted blank controls, and unplanted chemical controls was 22-32 mL, and 40 mL, respectively. The combined organic phase went through an anhydrous sodium sulfate (Na₂SO₄) column (5 g) to remove the remaining trace water and then concentrated to 2 mL. Ground-up plant samples were extracted by a mixture of n-hexane and dichloromethane (1:1, ν/ν) using an accelerated solvent extractor (ASE). The ASE parameters were set at a temperature of 100 °C, pressure of 1500 psi, thermal equilibration for 5 min, static extraction for three cycles (7 min per cycle), and a gaseous nitrogen purge for 100 s. The extract was shaken with the acid silica gel (44%, ν/ν), then passed through an anhydrous sodium sulfate column (5 g) and finally concentrated to 2 mL for further clean up.

All the extracts were cleaned-up by multilayer columns which were pre-cleaned by 50 mL of hexane. Columns contained 3 g florisil, 2 g activated silica gel, 5 g acid silica gel (30%, w/w), and 4 g anhydrous sodium sulfate from the bottom to the top. After impurities were rinsed by 35 mL of hexane, elution was carried out by adding 100 mL of dichloromethane/hexane (1:1, v/v). The eluent was dried, re-dissolved in 200 μ L of cyclohexane and added with 10 ng injection standard for instrumental analysis.

Text S3 Instrumentation

The GC was equipped with a 7683B series injector and DB-5MSUI capillary column (30 $m \times 0.25$ mm $\times 0.25$ µm; Agilent, CA). Helium ($\geq 99.999\%$) and methane ($\geq 99.999\%$) were the carrier and moderating gases at constant flows of 2.0 and 0.40 mL/min, respectively. The column temperature was initially controlled at 100 °C, held for 1 min; then increased by 30 °C/min to 160 °C, held for 5 min; and finally increased to 300 °C at 30 °C /min and held for 12 min. The pulsed splitless mode injector, ion source and transfer line were set at 280 °C, 200 °C and 280 °C, respectively.

Text S4: Laboratory blanks/background contamination Plants were grown in the cultivation chamber free of parent SCCPs exposure prior to the actual exposure experiment. All results subtracted the corresponding SCCP congener concentrations of the plant background. The calculation equation is shown as follow: $C = C_{\text{detected}} - C_{\text{plantbackground}}$ in which C is the corrected concentration of SCCPs, C_{detected} is the detected concentrations of SCCPs, and $C_{\text{plantbackground}}$ is the concentrations of the SCCPs in the plant background. No CPs were detected in the cultivation solution of the plant background.

154 Table S1 Information on commercial standards of individual SCCP congeners.

Congener	г 1	N	Purity	Concentration	C
cod/CAS NO.	Formula	Name	(%)	$(\mu g/ mL)$	Source
CP-3	C ₁₀ H ₁₇ Cl ₅	1,2,5,6,9-pentachlorodecane	99.1ª	10	E^b
CP-4	$C_{10}H_{16}Cl_6$	1,2,5,6,9,10-hexachlorodecane	99.9	10	E
CP-6	$C_{10}H_{16}Cl_6$	1,2,4,5,9,10-hexachlorodecane	99.9	10	Е
CP-7	$C_{10}H_{15}Cl_7$	1,2,4,5,6,9,10-heptachlorodecane	99.9	10	E
CP-8	$C_{10}H_{15}Cl_7$	1,2,5,5,6,9,10-heptachlorodecane	94.0	10	Е
601523-23-3	$C_{10}H_{14}Cl_8$	1,1,1,3,8,10,10,10-octachlorodecane	96.4	100	\mathbf{C}^c
601523-28-8	$C_{11}H_{18}Cl_6$	1,1,1,3,10,11-hexachloroundecane	90.4	100	C
865306-23-6	$C_{13}H_{22}Cl_6$	1,1,1,3,12,13-hexachlorotridecane	95.0	100	C
865306-21-4	$C_9H_{14}Cl_6$	1,1,1,3,8,9- hexachlorononane	98.7	1000	C

^a The concentrations of decane standard solutions from Ehrenstorfer GmbH have been

159

160

161

162

163

adjusted according to the purity of the compounds as indicated. ^b Dr. Ehrensforfer GmbH,

¹⁵⁷ Germany. ^c Chiron, Norway.

Table S2 Water solubility and method detection limits (MDLs) of various parent individual SCCP congeners.

	Water solubility ^a	MDLs				
Congeners	(ng/mL)	Plants (ng/g)	Solution (ng/mL)			
1,2,5,6,9,10-HexCD	54.0	15.8 ± 6.3	0.27 ± 0.05			
1,1,1,3,8,10,10,10-OctaCD	1.55	34.7 ± 5.3	0.32 ± 0.07			
1,1,1,3,10,11-HexCU	4.80	213 ± 15	0.41 ± 0.03			
1,1,1,3,12,13-HexCT	0.44	16.1 ± 7.2	0.25 ± 0.08			

^a Calculated value using the Estimation Programs Interface (EPI) Suite software.

180 Table S3 List of target chlorinated paraffins (CPs) and their SIM ions.

	Short chain CP	S	Medium chain CPs						
CD.	Selected i	ons monitored	GD.	Selected ions monitored					
CP congener	m/z ₁ [M-Cl]	m/z ₂ [M-Cl]	- CP congener	m/z ₁ [M-Cl]	m/z ₂ [M-Cl]				
C ₉ Cl ₅	264.9	262.9	$C_{14}Cl_5$	335.1	333.1				
C_9Cl_6	298.9	300.9	$C_{14}Cl_6$	369.0	371.0				
C ₉ Cl ₇	332.9	334.9	$C_{14}Cl_7$	403.0	405.0				
C_9C_8	366.9	368.9	$C_{14}Cl_8$	437.0	438.9				
C ₉ C ₉	402.8	400.8	$C_{14}Cl_9$	472.9	470.9				
$C_{9}C_{10}$	436.8	434.8	$C_{14}Cl_{10}$	506.9	504.9				
C ₁₀ Cl ₅ 279.0		277.0	$C_{15}Cl_5$	349.1	347.1				
$C_{10}Cl_6$	313.0	315.0	$C_{15}Cl_6$	383.0	385.0				
$C_{10}Cl_7$	346.9	348.9	$C_{15}Cl_7$	417.0	419.0				
$C_{10}Cl_8$	380.9	382.9	$C_{15}Cl_8$	451.0	453.0				
$C_{10}Cl_9$	416.8	414.8	$C_{15}Cl_9$	486.9	484.9				
$C_{10}Cl_{10}$	450.8	448.8	$C_{15}Cl_{10}$	520.9	518.9				
$C_{11}Cl_5$	293.0	291.0	$C_{16}Cl_5$	363.1	361.1				
$C_{11}Cl_6$	327.0	329.0	$C_{16}Cl_6$	397.1	399.1				
$C_{11}Cl_7$	360.9	362.9	$C_{16}Cl_7$	431.0	433.0				
$C_{11}Cl_8$	394.9	396.9	$C_{16}Cl_8$	465.0	467.0				
$C_{11}Cl_9$	C ₁₁ Cl ₉ 430.9 428.9		$C_{16}Cl_9$	500.9	498.9				
$C_{11}Cl_{10}$ 464.8		462.8	$C_{16}Cl_{10}$	534.9	532.9				

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{12}Cl_5$	307.0	305.0	$C_{17}Cl_5$	377.1	375.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{12}Cl_6$	341.0	343.0	$C_{17}Cl_6$	411.1	413.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{12}Cl_7$	375.0	377.0	$C_{17}Cl_7$	445.0	447.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{12}Cl_8$	408.9	410.9	$C_{17}Cl_8$	479.0	481.0
$C_{13}Cl_5$ 321.1 319.1 $C_{13}Cl_6$ 355.0 357.0 $C_{13}Cl_7$ 389.0 391.0 $C_{13}Cl_8$ 422.9 424.9 $C_{13}Cl_9$ 458.9 456.9	$C_{12}Cl_9$	444.9	442.9	C ₁₇ Cl ₉	515.0	513.0
$C_{13}Cl_6$ 355.0 357.0 $C_{13}Cl_7$ 389.0 391.0 $C_{13}Cl_8$ 422.9 424.9 $C_{13}Cl_9$ 458.9 456.9	$C_{12}Cl_{10}$	478.8	476.8	$C_{17}Cl_{10}$	548.9	546.9
$C_{13}Cl_7$ 389.0 391.0 $C_{13}Cl_8$ 422.9 424.9 $C_{13}Cl_9$ 458.9 456.9	$C_{13}Cl_5$	321.1	319.1			
$C_{13}Cl_{8}$ 422.9 424.9 $C_{13}Cl_{9}$ 458.9 456.9	$C_{13}Cl_6$	355.0	357.0			
C ₁₃ Cl ₉ 458.9 456.9	$C_{13}Cl_7$	389.0	391.0			
	$C_{13}Cl_8$	422.9	424.9			
C ₁₃ Cl ₁₀ 492.9 490.9	C ₁₃ Cl ₉	458.9	456.9			
	$C_{13}Cl_{10}$	492.9	490.9			

Table S4 SCCPs of plant background (plants before exposure).

Plant	Tissues	$C_{10}Cl_5$	$C_{10}Cl_6$	$C_{10}Cl_7$	$C_{10}Cl_8$	$C_{11}Cl_5$	$C_{11}Cl_6$	$C_{12}Cl_5$	$C_{12}Cl_6$	$C_{13}Cl_5$	$C_{13}Cl_6$
species	Tissues	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)
Background	Shoots	2790 ± 973^a	1949 ± 476	624 ± 343	434 ± 324	2260 ± 887	1263 ± 234	444 ± 199	121 ± 47	502 ± 259	126 ± 58
of pumpkin	Stems	3218 ± 188	962 ± 242	248 ± 77	154 ± 47	3129 ± 349	805 ± 219	2756 ± 358	404 ± 118	2709 ± 463	421 ± 113
	Roots	4465 ± 1518	2038 ± 247	494 ± 38	239 ± 97	4329 ± 215	1694 ± 145	2895 ± 156	548 ± 34	2206 ± 39	546 ± 86
Background	Shoots	1492 ± 1227	1068 ± 976	438 ± 145	297 ± 112	2469 ± 562	1382 ± 333	1683 ± 289	160 ± 21	3093 ± 280	182 ± 103
of soybean	Stems	4773 ± 327	469 ± 43	194 ± 51	102 ± 86	5871 ± 388	570 ± 89	13621 ± 1889	237 ± 13	36787 ± 3336	265 ± 43
	Roots	8222 ± 614	322 ± 146	258 ± 117	61.8 ± 29.3	2655 ± 391	379 ± 128	5902 ± 761	482 ± 156	9747 ± 4084	398 ± 205

^aMean value ± standard deviation (n=3). No SCCPs detected in the cultivation solution for plant backgrounds.

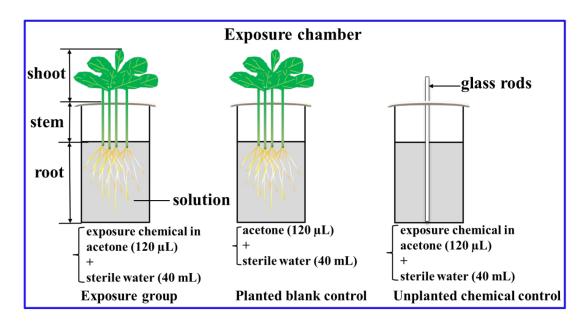
Table S5 Concentrations of daughter SCCPs in shoots, stems and roots of exposed pumpkins and soybeans.

Crowns	Complex	C ₁₀ Cl ₅	$C_{10}Cl_6$	C ₁₀ Cl ₇	$C_{10}Cl_8$	C ₁₁ Cl ₅	$C_{11}Cl_6$	C ₁₂ Cl ₅	C ₁₂ Cl ₆	C ₁₃ Cl ₅	C ₁₃ Cl ₆
Groups	Samples	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)
Exposed	Shoots	n.d.a	n.d.	456 ±	214 ±	1139 ±	692 ±	251 ±	83.0 ±	n.d.	82.2 ±
pumpkin				424^{b}	178	921	503	211	65.6		37.2
(1 day)	Stems	n.d.	784 ±	255 ±	46.7 ±	n.d.	$478 \pm$	n.d.	n.d.	n.d.	n.d.
			670	206	56.2		372				
	Roots	n.d.	894 ±	557 ±	62.7 ±	n.d.	592 ±	n.d.	n.d.	n.d.	n.d.
			379	199	61.2		458				
Exposed	Shoots	n.d.	3891 ±	1437 ±	426 ±	699 ±	668 ±	417 ±	144 ±	n.d.	131 ±
pumpkin			2653	672	256	1067	701	268	95		79
(2 days)	Stems	n.d.	358 ±	210 ±	49.9 ±	n.d.	171 ±	n.d.	n.d.	n.d.	n.d.
			289	121	37.4		174				
	Roots	n.d.	558 ±	424 ±	99.4 ±	n.d.	400 ±	n.d.	n.d.	n.d.	n.d.
			409	109	101		217				

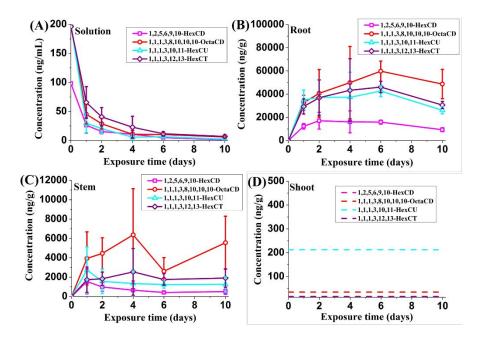
Exposed	Shoots	1735 ±	6856 ±	3188 ±	1296 ±	n.d.	698 ±	1053 ±	297 ±	301 ±	299 ±
pumpkin		2262	5541	1978	838		844	772	212	302	210
(4 days)	Stems	n.d.	2074 ±	818 ±	319 ±	n.d.	1076 ±	n.d.	712 ±	n.d.	570 ±
			2757	935	320		1149		1310		1135
	Roots	n.d.	959 ±	566 ±	192 ±	564 ±	1174 ±	1475 ±	254 ±	727 ±	225 ±
			565	134	84	429	1294	685	166	430	140
Exposed	Shoots	n.d.	n.d.	954 ±	524 ±	n.d.	n.d.	811 ±	86.3 ±	863 ±	83.9 ±
pumpkin				301	133			239	23.0	305	30.0
(6 days)	Stems	6096 ±	232 ±	223 ±	61.3 ±	5550 ±	71.6 ±	4666 ±	304 ±	10720 ±	345 ±
		6112	59	136	29.9	6186	84.0	2381	63	13972	264
	Roots	6779 ±	n.d.	81.8 ±	138 ±	18930 ±	n.d.	21244 ±	792 ±	16733 ±	520 ±
		6407		47.4	65	6146		8484	215	8868	225
Exposed	Shoots	n.d.	686 ±	820 ±	102 ±	n.d.	n.d.	490 ±	57.5 ±	139 ±	34.0 ±

pumpkin			718	128	76			140	22.9	96	9.8
(10 days)	Stems	1124 ±	1840 ±	1235 ±	623 ±	n.d.	n.d.	910 ±	871 ±	2276 ±	449 ±
		1225	2144	1233	814			1034	1706	1810	903
	Roots	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	907 ±	n.d.	1967 ±	n.d.
								1245		2397	
Exposed	Shoots	n.d.	n.d.	1404 ±	1006 ±	n.d.	n.d.	2369 ±	141 ±	2382 ±	145 ±
soybean				130	78			603	55	1507	98
(10 days)	Stems	13846 ±	1344 ±	1316 ±	612 ±	12630 ±	$2020 \pm$	7178 ±	1162 ±	41292 ±	937 ±
		11810	1478	1040	903	6924	4343	8848	1923	32220	883
	Roots	1727 ±	844 ±	54.0 ±	256 ±	8530 ±	552 ±	2463 ±	549 ±	8291 ±	235 ±
		1124	64	30.6	34	3627	315	3155	228	5378	65

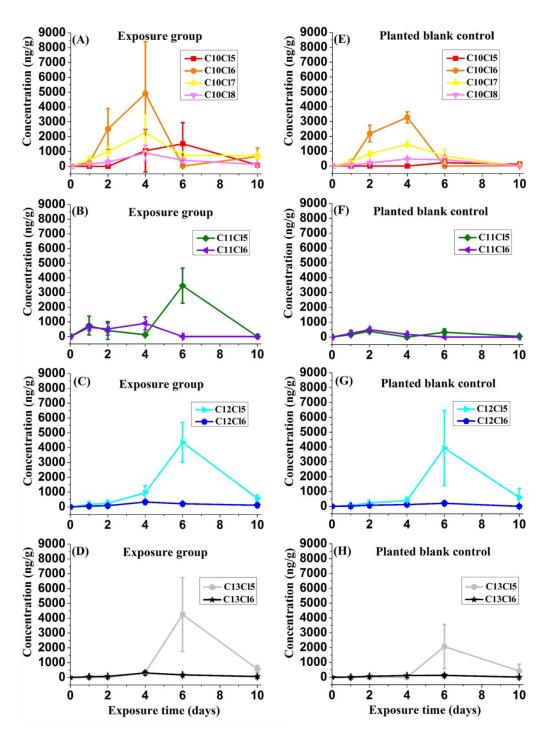
^a Non- detectable. ^b Mean value \pm standard deviation (n = 5).


Table S6 Concentrations of daughter SCCPs in shoots, stems and roots of planted blank controls of pumpkin (PBCP) and soybean (PBCS).

C	G 1	$C_{10}Cl_5$	$C_{10}Cl_6$	$C_{10}Cl_7$	$C_{10}Cl_8$	$C_{11}Cl_5$	$C_{11}Cl_6$	$C_{12}Cl_5$	$C_{12}Cl_6$	$C_{13}Cl_5$	$C_{13}Cl_6$
Groups	Samples	(ng/g)									
PBCP	Shoots	n.d.a	n.d.	300 ±	53.9 ±	245 ±	106 ± 94	91.0 ±	27.2 ±	n.d.	13.9 ±
(1 day)				40^b	25.9	166		65.8	7.7		2.3
	Stems	n.d.	$440 \pm$	182 ±	76.1 ±	n.d.	246 ±	n.d.	n.d.	n.d.	n.d.
			527	141	44.0		245				
	Roots	n.d.	878 ±	$330 \pm$	74.5 ±	n.d.	706 ±	n.d.	n.d.	n.d.	n.d.
			785	195	33.5		583				
PBCP	Shoots	n.d.	2753 ±	1071 ±	283 ±	599 ±	678 ±	353 ±	167 ±	n.d.	117 ±
(2 days)			549	108	5	35	77	30	92		32
	Stems	n.d.	601 ±	245 ± 41	78.1 ±	n.d.	153 ± 11	n.d.	n.d.	n.d.	n.d.
			115		3.7						
	Roots	n.d.	826 ±	387 ±	89.5 ±	n.d.	538 ±	n.d.	n.d.	n.d.	n.d.
			824	296	78.5		455				


PBCP	Shoots	n.d.	4726 ±	2180 ±	693 ±	n.d.	215 ±	564 ±	179 ±	n.d.	166 ±
(4 days)			865	206	80		153	128	24		27
	Stems	n.d.	n.d.	54.9 ±	31.9 ±	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
				7.2	39.7						
	Roots	n.d.	n.d.	165 ±	79.5 ±	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
				270	106						
PBCP	Shoots	n.d.	n.d.	912 ±	589 ±	n.d.	n.d.	2207 ±	174 ±	449	148 ±
(6 days)				665	473			864	122	±604	107
	Stems	n.d.	n.d.	n.d.	n.d.	2146 ±	n.d.	6490 ±	113 ±	13353 ±	116 ±
						2397		7484	120	14185	174
	Roots	1193 ±	n.d.	n.d.	n.d.	875 ±	n.d.	9771 ±	391 ±	3817 ±	47.7 ±
		1030				508		9301	330	2652	30.7
PBCP	Shoots	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	460 ±	n.d.	443 ±	n.d.

(10 days)								565		541	
	Stems	3002 ±	455 ±	145 ±	65.8 ±	1163 ±	n.d.	3145 ±	92.9 ±	441 ±	254 ±
		3090	629	120	8.2	1560		3207	85.0	539	327
	Roots	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	921 ±	n.d.	287 ±	n.d.
								420		66	
PBCS	Shoots	1945 ±	n.d.	2291 ±	1345 ±	2711 ±	n.d.	2893 ±	177 ±	n.d.	224 ±
(10 days)		138		2548	1490	1847		1930	150		320
	Stems	64171 ±	707 ±	2378 ±	271 ±	8745 ±	803 ±	n.d.	1018 ±	n.d.	596 ±
		56413	284	1778	51	8417	1243		851		392
	Roots	n.d.	176	$808 \pm$	108 ±	4824 ±	379 ±	2042 ±	n.d.	n.d.	146 ±
			±168	1010	30	4166	515	3079			125


^a Non-detectable. ^b Mean value \pm standard deviation (n = 3).

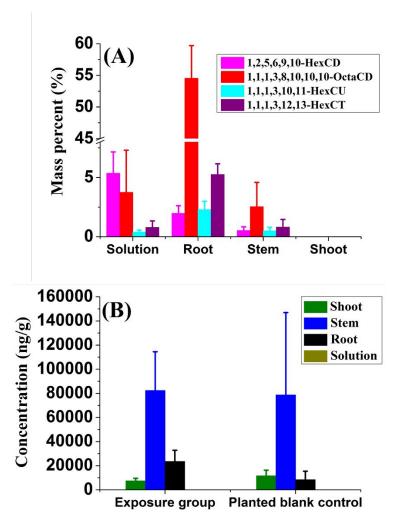

Figure S1 Schematic of the hydroponic exposure experiments and sampling. Bottles were wrapped with aluminum foil. Pumpkins and soybeans were separately exposed to parent SCCPs.

Figure S2 Concentrations of parent SCCPs in the solutions (A), roots (B), stems (C), and shoots (D) when pumpkin plants were exposed to SCCPs over time. No parent SCCPs were detected in the shoots (lower than the method detection limits (MDLs) as the dashed lines show).

Figure S3 Concentrations of daughter SCCP congeners in exposure groups (A-D) and planted blank controls (E-H) of pumpkin seedlings over time. No C₉ daughter congeners were detected in plants tissues and solutions of exposure groups and planted blank controls.

Figure S4 Mass percent of individual parent SCCPs (A) and concentrations of total daughter SCCPs (B) in different compartments of soybeans after 10 days exposure. No parent SCCPs were found in the shoots of the exposure group, and no daughter SCCPs were found in solution of the exposure group or the planted blank control.

253 References

- 1. Li, Y. L.; Hou, X. W.; Yu, M.; Zhou, Q. F.; Liu, J. Y.; Schnoor, J. L.; Jiang, G. B.
- Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated
- by the whole pumpkin seedlings. *Environ. Pollut.* **2017**, *224*, 524-531.
- 257 2. Zeng, L. X.; Wang, T.; Han, W. Y.; Yuan, B.; Liu, Q.; Wang, Y. W.; Jiang, G. B. Spatial
- and Vertical Distribution of Short Chain Chlorinated Paraffins in Soils from Wastewater
- 259 Irrigated Farmlands. *Environ. Sci. Technol.* **2011,** *45* (6), 2100-2106.