## **Supplementary Tables and Figures**

## Table S1. Strains and Plasmids

| Strains            | Genotype/Description                 | Source/Reference |  |  |
|--------------------|--------------------------------------|------------------|--|--|
| Salmonella strains |                                      |                  |  |  |
| 14028              | Wild-type Salmonella strain          | Lab collection   |  |  |
| QW165              | 14028 <i>ycgR</i> ::KAN              | Lab collection   |  |  |
| QW108              | 14028 <i>yhjH</i> ::KAN              | Lab collection   |  |  |
| VN55               | 14028 <i>yhjH ycgR</i>               | Lab collection   |  |  |
| JP1495             | 14028 yhjH ycgR bcsA                 | This work        |  |  |
|                    |                                      |                  |  |  |
| E. coli strains    |                                      | 1                |  |  |
| AW405              | Wild-type                            | 1                |  |  |
| HCB5               | AW405 fliC                           | 2                |  |  |
| JP1442             | AW405 yhjH ycgR                      | This work        |  |  |
| JP1762             | JP1442 bcsA                          | This work        |  |  |
| JP1763             | JP1442 csgD                          | This work        |  |  |
| JP1764             | JP1442 fimA                          | This work        |  |  |
| JP1768             | JP1442 pgaC                          | This work        |  |  |
| JP1769             | JP1442 wcaD                          | This work        |  |  |
| JP1771             | JP1442 yjbE                          | This work        |  |  |
| JP1836             | JP1442 suppressor flare isolate 1    | This work        |  |  |
| JP1837             | JP1442 suppressor flare isolate 2    | This work        |  |  |
| JP1838             | JP1442 suppressor flare isolate 3    | This work        |  |  |
| JP1839             | JP1442 suppressor flare isolate 4    | This work        |  |  |
| JP1844             | JP1442 suppressor flare isolate 5    | This work        |  |  |
| JP1852             | JP1442 suppressor flare isolate 6    | This work        |  |  |
| JP1932             | JP1442 bcsA csgD pgaC fimA wcaD yjbE | This work        |  |  |
| JP1992             | AW405 rssA                           | This work        |  |  |
| JP2063             | MG1655 lacZ::KAN                     | This work        |  |  |
| JP2065             | AW405 lacZ                           | This work        |  |  |
| JP2066             | JP1442 lacZ                          | This work        |  |  |

| JP2173  | JP1442 <sup>a</sup> pJP319             | This work |
|---------|----------------------------------------|-----------|
| JP2214  | JP2066 rssAB::KAN                      | This work |
| JP2079  | AW405 rssB                             | This work |
| JP2221  | AW405 rssAB                            | This work |
| JP2222  | JP1442 rssAB                           | This work |
| JP2347  | AW405 clpX                             | This work |
| JP2348  | JP1442 clpX                            | This work |
| JP2573  | AW405 rpoS::KAN                        | This work |
| JP2574  | JP1442 rpoS::KAN                       | This work |
| JP2586  | AW405 clpX rpoS::KAN                   | This work |
| JP2587  | JP1442 rpoS::KAN clpX                  | This work |
| JP2228  | NM580 <sup>b</sup> PflhD:: <i>lacZ</i> | This work |
| JP2234  | JP2228 rssAB::KAN                      | This work |
| JP2241  | JP2228 ycgR yhjH                       | This work |
| JP2248a | JP2228 ycgR yhjH rssAB                 | This work |
| JP2248b | JP2228 clpX                            | This work |
| JP2248c | JP2228 ycgR yhjH clpX                  | This work |
| VN133   | AW405 yhjH                             | 3         |
| VN139   | AW405 bcsA::KAN                        | 4         |
| VN140   | AW405 ycgR                             | 3         |
| VN145   | HCB5 yhjH                              | This work |
| VN147   | HCB5 yhjH ycgR::KAN                    | This work |
| VN153   | HCB5 ycgR::KAN                         | This work |

| Plasmid  | <sup>c</sup> Expressed Protein                            | Host<br>Plasmid | Resistance | Induction   | Reference |
|----------|-----------------------------------------------------------|-----------------|------------|-------------|-----------|
| pBAD24   | Para <sub>BAD</sub> Expression vector                     | -               | Ampicillin | Arabinose   | (3)       |
| pCP20    | FLP Recombinase                                           | -               | Ampicillin | Temperature | (2)       |
| pSEVA224 | Low-copy <i>lacl</i> <sup>q</sup> -Ptrc expression vector | -               | Kanamycin  | IPTG        | #         |
| pTRC99a  | lacI <sup>q</sup> -Ptrc Expression vector                 |                 | Ampicillin | IPTG        | (1)       |
| pDgcA    | DgcA from Caulobacter crescentus                          | pTRC99a         | Ampicillin | IPTG        | (4)       |
|          |                                                           |                 |            |             |           |

| pFD313  | FliC <sup>sticky</sup>       | pTRC99a  | Ampicillin      | IPTG       | (5)               |
|---------|------------------------------|----------|-----------------|------------|-------------------|
| pJP319  | RssAB                        | pTRC99a  | Ampicillin      | IPTG       | This work         |
| pJP388  | YcgR                         | pSEVA224 | Kanamycin       | IPTG       | This work         |
| pJP393  | RssA                         | pBAD24   | Ampicillin      | Arabinose  | This work         |
| pJP394  | RssB                         | pBAD24   | Ampicillin      | Arabinose  | This work         |
| pJP395  | RssB <sup>D58E</sup>         | pBAD24   | Ampicillin      | Arabinose  | This work         |
| pJP396  | RssB <sup>D58A</sup>         | pBAD24   | Ampicillin      | Arabinose  | This work         |
| pKD46   | $\lambda$ Red recombinase    | -        | Ampicillin      | Arabinose  | (2)               |
| pPA114  | Tsr                          | pKG116   | Chloramphenicol | Salicylate | J.S.Parkinson     |
| pRR53   | Tsr                          | pBR322   | Ampicillin/Tet  | IPTG       | J.S.Parkinson     |
| pRS1551 | lac reporter plasmid         | -        | Ampicillin      | -          | (9)               |
| pRZ30   | FRET reporter plasmid        | -        |                 |            | J.S.Parkinson     |
| pVN5    | YcgR from S. enterica        | pBAD24   | Ampicillin      | Arabinose  | (6)               |
| pVS88   | FRET reporter plasmid        | pTRC99a  | Ampicillin      | IPTG       | J.S.Parkinson     |
| pVS177  | PfliA::lacZ reporter plasmid | pRS1551  | Ampicillin      | -          | (10)              |
| pVS182  | PflhD::lacZ reporter plasmid | pRS1551  | Ampicillin      | -          | (10)              |
| pYhjH   | YhjH from S. enterica        | pTRC99a  | Ampicillin      | IPTG       | Lab<br>collection |

<sup>a</sup> p=plasmid; <sup>b</sup> P=promoter; <sup>c</sup> All *E. coli* proteins, unless otherwise noted; # SEVA Resource http://seva.cnb.csic.es/

| Revertant<br>Strain <sup>a</sup> | Mutant<br>Genes <sup>a</sup> | Mutation (s) <sup>b</sup> | Gene Function <sup>c</sup>         |
|----------------------------------|------------------------------|---------------------------|------------------------------------|
| JP2372                           | pitA                         | ∆635-636 nt               | Phosphate transporter              |
|                                  | rssAB                        | Δ2-1734 nt                | Regulator of RpoS                  |
| JP2373                           | pitA                         | A391T (GCG→ACG)           | Phosphate transporter              |
| JP2374                           | sspA                         | +295-303 nt               | Stringent starvation protein A     |
|                                  | rssAB                        | Δ4-1687 nt                | Regulator of RpoS                  |
| JP2375                           | pitA                         | G456E (GGG→GAG)           | Phosphate transporter              |
| JP2376                           | pitA                         | G456E (GGG→GAG)           | Phosphate transporter              |
|                                  | rssAB                        | Δ1-1704 nt                | Regulator of RpoS                  |
| JP2377                           | cheB                         | P193L (CCC→CTC)           | Chemotaxis methylesterase          |
|                                  | pitA                         | ∆802-810 nt               | Phosphate transporter              |
| JP2378                           | pitA                         | G423E (GGG→GAG)           | Phosphate transporter              |
|                                  | fliZ                         | Q124* (CAA→TAA)           | Regulator of FliA                  |
| JP2379                           | pitA                         | R404L (CGT→CTT)           | Phosphate transporter              |
|                                  | rssAB                        | Δ3-1745 nt                | Regulator of RpoS                  |
| JP2380                           | cheB                         | G284S (GGC→AGC)           | Chemotaxis methylesterase          |
|                                  | pitA                         | +IS1, +529-537 nt         | Phosphate transporter              |
|                                  | rssAB                        | ∆13-1677nt                | Regulator of RpoS                  |
| JP2381                           | pitA                         | W477* (TGG→TAG)           | Phosphate transporter              |
|                                  | rssAB                        | ∆4-1709 nt                | Regulator of RpoS                  |
| JP2382                           | pitA                         | W477* (TGG→TAG)           | Phosphate transporter              |
|                                  | rssAB                        | Δ1-1707 nt                | Regulator of RpoS                  |
| JP2383                           | fliM                         | N249Y (AAC→TAC)           | Flagella motor switching           |
|                                  |                              | A201 205                  | component                          |
|                                  | pitA                         | $\Delta 391-395$ nt       | Phosphate transporter              |
|                                  | rssAB                        | Δ5-1/1/ nt                | Regulator of RpoS                  |
| JP2384                           | pitA                         | $\Delta$ 391-395 nt       | Phosphate transporter              |
| JP2385                           | cheB                         | H233N (CAT→AAT)           | Chemotaxis methylesterase          |
|                                  | pitA                         | ∆114-115 nt               | Phosphate transporter              |
|                                  | rssAB                        | Δ1-1746 nt                | Regulator of RpoS                  |
| JP2386                           | pitA                         | ∆1080-1180 bp             | Phosphate transporter              |
|                                  | rssAB                        | $\Delta 1$ -1694 nt       | Regulator of RpoS                  |
| JP2387                           | cheB                         | R316C (CGC→TGC)           | Chemotaxis methylesterase          |
|                                  | glrK                         | Δ130-1890 nt              | Sensor kinase for glmY sRNA        |
|                                  | pitA                         | W112* (TGG→TAG)           | Phosphate transporter              |
|                                  | rssAB                        | Δ3-1718 nt                | Regulator of RpoS                  |
| JP2388                           | fliM                         | N249Y (AAC→TAC)           | Flagella motor switching component |

 Table S2. Mutational changes in pseudorevertants of JP 2173 (ycgR yhjH/pRssAB)

|        | pitA  | + 391-395 nt        | Phosphate transporter     |
|--------|-------|---------------------|---------------------------|
|        | rssAB | Δ1-1719 nt          | Regulator of RpoS         |
| JP2389 | cheB  | D37E (GAT→GAA)      | Chemotaxis methylesterase |
|        | pitA  | +391-395 nt         | Phosphate transporter     |
|        | rssAB | $\Delta$ 7-1690 nt  | Regulator of RpoS         |
| JP2390 | cheB  | H233N (CAT→AAT)     | Chemotaxis methylesterase |
|        | pitA  | Δ114-115nt          | Phosphate transporter     |
|        | yahG  | K129R (AAA→AGA)     | DUF1116 family protein    |
|        | rssAB | $\Delta 1$ -1697 nt | Regulator of RpoS         |
| JP2391 | cheB  | T168A (ACT→GCT)     | Chemotaxis methylesterase |
|        | pitA  | W181* (TGG→TAG)     | Phosphate transporter     |
|        | rssAB | $\Delta 1$ -1691 nt | Regulator of RpoS         |
|        | 1     | I                   | 1                         |

<sup>*a*</sup>Mutational changes were identified by whole genome sequencing of twenty independent pseudorevertants using Breseq (19). <sup>*b*</sup>+, insertion;  $\Delta$ , deletion; nt. Nucleotide; \*, STOP codon; IS1, Insertion Sequence 1. <sup>*c*</sup>Gene product descriptions are from Genbank annotations. The *rssAB* deletions refer to nucleotides in the *rssAB* operon (1920 nt) rather than the individual genes. Full details of <sup>*d*</sup>JP strains found in Table S1.

| Strain Comparisons <sup>a</sup>                                   | <i>p</i> -value <sup>b</sup> |
|-------------------------------------------------------------------|------------------------------|
| A)                                                                |                              |
| Wild-type vs. ycgR yhjH                                           | < 0.0001                     |
| Wild-type vs. ycgR yhjH rssA                                      | < 0.0001                     |
| Wild-type vs. ycgR yhjH rssB                                      | < 0.05                       |
| Wild-type vs. ycgR yhjH rssAB                                     | NS                           |
| ycgR yhjH vs. ycgR yhjH rssA                                      | NS                           |
| ycgR yhjH vs. ycgR yhjH rssB                                      | < 0.0001                     |
| ycgR yhjH vs. ycgR yhjH rssAB                                     | < 0.0001                     |
| ycgR yhjH rssA vs. ycgR yhjH rssB                                 | < 0.0001                     |
| ycgR yhjH rssA vs. ycgR yhjH rssAB                                | < 0.0001                     |
| ycgR yhjH rssB vs. ycgR yhjH rssAB                                | NS                           |
|                                                                   |                              |
| <i>ycgR yhjH</i> pCtrl vs. <i>ycgR yhjH</i> pRssA                 | NS                           |
| <i>ycgR yhjH</i> pCtrl vs. <i>ycgR yhjH</i> pRssB                 | < 0.0001                     |
| <i>ycgR yhjH</i> pCtrl vs. <i>ycgR yhjH</i> pRssB <sup>D58E</sup> | < 0.0001                     |
| <i>ycgR yhjH</i> pCtrl vs. <i>ycgR yhjH</i> pRssB <sup>D58A</sup> | NS                           |
| <i>ycgR yhjH</i> pRssA vs. <i>ycgR yhjH</i> pRssB                 | < 0.0001                     |
| <i>ycgR yhjH</i> pRssA vs. <i>ycgR yhjH</i> pRssB <sup>D58E</sup> | < 0.0001                     |
| <i>ycgR yhjH</i> pRssA vs. <i>ycgR yhjH</i> pRssB <sup>D58A</sup> | NS                           |
| <i>ycgR yhjH</i> pRssB vs. <i>ycgR yhjH</i> pRssB <sup>D58E</sup> | < 0.01                       |
| <i>ycgR yhjH</i> pRssB vs. <i>ycgR yhjH</i> pRssB <sup>D58A</sup> | < 0.0001                     |
| $ycgR yhjH pRssB^{D58E}$ vs. $ycgR yhjH pRssB^{D58A}$             | < 0.0001                     |
| <b>B</b> )                                                        |                              |
| Wild-type vs. <i>ycgR yhjH</i>                                    | < 0.0001                     |
| Wild-type vs. <i>rpoS</i>                                         | < 0.01                       |
| Wild-type vs. ycgR yhjH rpoS                                      | < 0.0001                     |
| Wild-type vs. <i>clpX</i>                                         | < 0.001                      |
| Wild-type vs. ycgR yhjH clpX                                      | < 0.0001                     |
| Wild-type vs. ycgR yhjH clpX rssAB                                | < 0.0001                     |
| Wild-type vs. ycgR yhjH clpX rpoS                                 | < 0.0001                     |

Table S3. Statistical analysis of motility data presented in Fig. 5.

| Wild-type vs. ycgR yhjH clpX rpoS rssAB            | < 0.0001 |
|----------------------------------------------------|----------|
| ycgR yhjH vs. rpoS                                 | < 0.0001 |
| ycgR yhjH vs. ycgR yhjH rpoS                       | NS       |
| <i>ycgR yhjH</i> vs. <i>clpX</i>                   | < 0.0001 |
| ycgR yhjH vs. ycgR yhjH clpX                       | < 0.0001 |
| ycgR yhjH vs. ycgR yhjH clpX rssAB                 | NS       |
| ycgR yhjH vs. ycgR yhjH clpX rpoS                  | NS       |
| ycgR yhjH vs. ycgR yhjH clpX rpoS rssAB            | NS       |
| rpoS vs. ycgR yhjH rpoS                            | < 0.0001 |
| rpoS vs. clpX                                      | NS       |
| rpoS vs. ycgR yhjH clpX                            | < 0.0001 |
| rpoS vs. ycgR yhjH clpX rssAB                      | < 0.0001 |
| rpoS vs. ycgR yhjH clpX rpoS                       | < 0.0001 |
| rpoS vs. ycgR yhjH clpX rpoS rssAB                 | < 0.0001 |
| ycgR yhjH rpoS vs. clpX                            | < 0.0001 |
| ycgR yhjH rpoS vs. ycgR yhjH clpX                  | < 0.0001 |
| ycgR yhjH rpoS vs. ycgR yhjH clpX rssAB            | NS       |
| ycgR yhjH rpoS vs. ycgR yhjH clpX rpoS             | NS       |
| ycgR yhjH rpoS vs. ycgR yhjH clpX rpoS rssAB       | NS       |
| clpX vs. ycgR yhjH clpX                            | < 0.0001 |
| clpX vs. ycgR yhjH clpX rssAB                      | < 0.0001 |
| clpX vs. ycgR yhjH clpX rpoS                       | < 0.0001 |
| clpX vs. ycgR yhjH clpX rpoS rssAB                 | < 0.0001 |
| ycgR yhjH clpX vs. ycgR yhjH clpX rssAB            | < 0.0001 |
| ycgR yhjH clpX vs. ycgR yhjH clpX rpoS             | < 0.0001 |
| ycgR yhjH clpX vs. ycgR yhjH clpX rpoS rssAB       | < 0.0001 |
| ycgR yhjH clpX rssAB vs. ycgR yhjH clpX rpoS       | NS       |
| ycgR yhjH clpX rssAB vs. ycgR yhjH clpX rpoS rssAB | NS       |
| ycgR yhjH clpX rpoS vs. ycgR yhjH clpX rpoS rssAB  | NS       |

<sup>a</sup>A and B refer to strains tested in Fig. 5A and B. <sup>b</sup>Data were processed using One way ANOVA (Tukey's Comparison) using Graphpad Prism 6, with calculated *p*-values shown.





Figure S1. Time course monitoring motor speed and bias in response to YcgR induction using a whole-cell tethering assay in *Salmonella*. Strains monitored are A) WT *S. enterica* (14028), B) WT with pYcgR, C) Isogenic *yhjH* deletion strain, D) *yhjH* with pYcgR (pVN5). In each experiment, performed thrice independently, 35 tethered cells were recorded for 45 min and analyzed during playback at 5 min intervals, with or without induction of YcgR from a plasmid with 0.2% arabinose inducer. Motor behavior was scored for the three indicated categories: CCWr, CCW, and Stopped. The basal motor behavior of WT was CCW with reversals (CCWr) (A). This behavior was fairly constant, with a small increase in the number of stopped motors by the end of the observation period. For an isogenic *yhjH* strain (C), where a chromosomal copy of *ycgR* is still present, the expectation was that the motors would be more CCW biased as observed with *E. coli* motors (Fig. 1). However, the rotation bias was being determined visually, and a small change in bias from the WT might have been missed due to the inherently smooth (i.e. CCW-biased) nature of the motors with (7). The CCW population increased slightly over the course of the experiment, as

did the fraction of stopped motors (C). Motor speeds were not computed because they are low to begin with in this assay (~150 revolutions per min; (8)). When a plasmid expressing YcgR was introduced in both strains, and the inducer arabinose was added, the pattern of motor behavior in the WT strain remained unchanged (compare B with A). In the *yhjH* strain, however, CCWr population began to steadily decrease upon addition of the inducer, with a reciprocal increase in the CCW population (D). These two trends merged at 35 min, and at this time (dotted red line), greater than 50% of the cell population exhibited visibly slower speeds compared to the same population at the start of the experiment. The "stopped motor" population began to increase around this time point as well. Despite the subjective nature of this experiment, the overall trend of the data in D clearly showed that upon YcgR induction, the shift in motor bias was observed first and arrest of motor rotation occurred later, implying that changes at the rotor preceded those at the stators.





**Figure S2. Effect of overexpression of YhjH and DgcA on** *E. coli* **motility.** Wild-type *E. coli* and its *ycgR yhjH* mutant derivative were transformed with a control plasmid (empty vector), pYhjH or pDgcA plasmids, before inoculation at the center of 0.3% LB swim agar plates supplemented with ampillicin (plasmid selection), and 0.2% arabinose (inducer for expression of cloned genes) and incubated at 30°C for 8 h.

## References

- 1. **Amann, E., B. Ochs, and K. J. Abel.** 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene **69:**301-315.
- 2. **Datsenko, K. A., and B. L. Wanner.** 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci U S A **97:**6640-6645.
- Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121-4130.
- 4. **Kim, H. K., and R. M. Harshey.** 2016. A Diguanylate Cyclase Acts as a Cell Division Inhibitor in a Two-Step Response to Reductive and Envelope Stresses. MBio **7**.
- 5. **Kuwajima, G.** 1988. Construction of a minimum-size functional flagellin of Escherichia coli. J Bacteriol **170:**3305-3309.
- 6. **Nieto, V.** 2013. The c-di-GMP binding protein, YcgR, is the primary inhibitor of motor function in *Salmonella* and *Escherichia coli*. Ph.D. . University of Texas, Austin.
- 7. **Partridge, J. D., V. Nieto, and R. M. Harshey.** 2015. A new player at the flagellar motor: FliL controls both motor output and bias. MBio **6:**e02367.
- 8. **Paul, K., V. Nieto, W. C. Carlquist, D. F. Blair, and R. M. Harshey.** 2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Molecular cell **38**:128-139.
- 9. **Simons, R. W., F. Houman, and N. Kleckner.** 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene **53**:85-96.
- 10. **Sperandio, V., A. G. Torres, J. A. Giron, and J. B. Kaper.** 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol **183:**5187-5197.