
Supplementary information

S1. Data pre-processing of SGAs and DEGs

We obtained SGA data, including SMs and SCNAs of 4,468 tumors consisting of 16 cancer
typesa directly from TCGA portal22 and Firehose browser of the Broad Instituteb. For SMs: We
considered all the non-synonymous mutation events of all genes and considered the mutation
events at the gene level, where a mutated gene is defined as one that contains one or more
non-synonymous mutations or indels. For SCNAs: TCGA network discretizes the gene SCNA
into 5 di↵erent levels: homozygous deletion, single copy deletion, diploid normal copy, low
copy number amplification, and high copy number amplification. We only included genes
with homozygous deletion (potentially significant loss of gene function) or high copy number
amplification (potentially significant gain of gene function) for further analysis, and filtered
out the other three types of not-so-significant SCNAs. Therefore, we collectively designated all
SGAs a↵ecting a gene using the name of the gene being perturbed. Note that the preprocessing
step of SMs and SCNAs excluded the obvious tumor passenger SGAs, since the functions of
these mutated genes are not or only slightly perturbed. The remaining SGAs have the potential
of being cancer drivers, such as oncogenes with gained functions, or tumor suppressor genes
with lost functions. After processing genomic data from TCGA, we used a binary variable
in a “one-hot” vector to indicate the genomic status of a gene. For example, we represented
the genomic status of TP53 as 1, if it is perturbed by one or more of SM/SCNA events in a
tumor.

Gene expression data were pre-processed and obtained from the Firehose browser of the
Broad Institute. We determined whether a gene is di↵erentially expressed in a tumor by
comparing the gene’s expression in the tumor against a distribution of the expression values
of the gene in the corresponding tissue-specific “normal” or control samples. For a given cancer
type, assuming the expression of each gene (log 2 based) follows a Gaussian distribution in
control sample, we calculated the p-values by determining the probability of observing an
expression value from control distribution. Following the practice in previous work,16 if the
p-value is equal or smaller than 0.005, the gene is considered as di↵erentially expressed in the
corresponding tumor. However, if a DEG is associated with an SCNA event a↵ecting it, we
remove it from the DEG list of the tumor.

aInstead of single cancer types, we used all the available samples of various cancer types, to find the
common signaling mechanisms SGAs in cancer. In addition, the GIT model benefits from the large
scale dataset. The heterogeneity of di↵erent cancer types was stratified by the additional cancer type
feature as input to the model.
bhttp://gdac.broadinstitute.org/



S2. Gene2Vec algorithm implementation

While gene embeddings can be directly learned using the GIT model, it has been shown in the
field of NLP that the pre-trained word embeddings can significantly improve the performance
in other related NLP tasks.12,14 Such pre-trained word embeddings can capture the knowledge
of co-occurrence pattern of the words in languages and exhibit sound semantic properties:
words of similar semantic meanings are close in embedding space, e.g., e“each” ⇡ e“every”. We
therefore propose an algorithm called “Gene2Vec” to pre-train the gene embeddings, which is
closely related the skip gram word2vec12 pre-training algorithm. The biology rationale behind
Gene2Vec algorithm is that we are able to portrait the co-occurrence pattern of SGAs in
each tumor, i.e., mutually exclusive mutations,26 using gene embeddings and gene context
embeddings.

Given the gene embedding eg of an SGA-a↵ected gene g and context embedding of any
possible SGA-a↵ected gene c0: V = {vc0}c02G, where G is the set of all possible SGA-a↵ected
genes, the skip gram paradigm assumes the probability that an alteration in gene c happens
together with the alteration in gene g within a tumor with probability:

Pr (c 2 Context(g) | g) = exp (e|gvc)P
c02G exp (e

|
gvc0)

. (S1)

We used the negative sampling (NS) technique to approximately maximize the log-
likelihood of skip gram, which would otherwise be computationally expensive to optimize
if directly following Eq. (S1). Algorithm 1 shows implementation of Gene2Vec.
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while not converges do
l 0; // Total loss of a mini-batch samples
for b = 1, 2, ..., batch size do

g ⇠ f ; // Sample a gene
gc ⇠ Context(g ; T ); // Sample a context gene
gnr ⇠ fn, r = 1, 2, ..., R ; // Sample negative context genes

l l +NSLoss
�
g, gc, {gnr}Rr=1 ; E ,V

�
; // Update

end

(E ,V) (E ,V)� ⌘ · @l
@(E,V) ; // Gradient descent

end
Function Context(g ; T )

Pc  U ({gc | gc 2 Ti, g 2 Ti}i=1,2,...,N ) ; // Uniform distribution on sequence of
adjacent mutations

return Pc

Function NSLoss(g, gc, {gnr}Rr=1 ; E ,V)
l log � (e|gvgc) +

PR
r=1 log � (�e|gvgnr); // Negative sampling loss of one sample

return l
Algorithm 1: Gene2Vec algorithm to pre-train the gene embeddings using skip

gram with negative sampling loss. Given the context information of somatic genomic
alterations (SGAs) in each cancer patient, i.e., whether two SGAs happened together in
a single tumor, we pre-trained the gene embeddings (and context gene embeddings) using
similar techniques to word2vec. Skip gram was used to predict the probability of co-occurred
SGAs c given a known SGA g, as explained in Equation S1. Negative sampling loss was uti-
lized to accelerate the maximization of log-likelihood in the skip gram assumption. Instead of
original mutation frequency f(g), the negative sampling frequency of SGA was sub-sampled
by scaling to f(g)3/4. In practice, the step size ⌘ in mini-batch gradient descent was decayed
after training for every epoch to converge fast and prevent overfitting. Note that E here is
defined slightly di↵erent from that in the main context, which contains both gene and cancer
type embeddings.



S3. Mathematical details of multi-head self-attention mechanism

For all SGA-a↵ected genes {g}mg=1 and the cancer type s of a tumor t, we first mapped them
to corresponding gene embeddings {eg}mg=1 and a cancer type embedding es from a look-up
table E={eg}g2G \ {es}s2S , where eg and es are real-valued vectors. From the implementation
perspective, we treated cancer types in the same way as SGAs, except the attention weight of
it is fixed to be “1”.

The overall idea of producing the tumor embedding et is to use the weighted sum of cancer
type embedding es and gene embeddings {eg}mg=1 (Fig. 1b) :

et = 1 · es +
X

g
↵g · eg = 1 · es + ↵1 · e1 + ...+ ↵m · em. (S2)

The attention weights {↵g}mg=1 are calculated by employing multi-head self-attention mech-
anism, using gene embeddings of SGAs {eg}mg=1 in the tumor (Fig. 1c):

↵1,↵2, ...,↵m = FunctionAttention(e1, e2, ..., em). (S3)

The attention function FunctionAttention is implemented as a sub-network. In the case of single-
head attention, there is only one single head parameter ✓j, and the unnormalized weights
{�g,j}mg=1 can be derived as follows:

�g,j = ✓|
j · tanh(W0 · eg), g = 1, 2, ...,m, (S4)

which are further normalized to single-head weights {↵g,j}mg=1:

↵1,j ,↵2,j , ...,↵m,j = softmax(�1,j ,�2,j , ...,�m,j), (S5)

where softmax function is defined as : ↵g =exp (�g)/
Pm

g0=1 exp (�g0). In the case of multi-head

attention, there exist h di↵erent parameters ⇥= {✓j}hj=1. Then multiple attention weights of
each gene embedding are generated following Eq. (S4,S5) and summed up to be the final
multi-head attention weight:

↵g =
Xh

j=1
↵g,j = ↵g,1 + ↵g,2 + ...+ ↵g,h, g = 1, 2, ...,m. (S6)



S4. Evaluation metrics of gene embedding space

We designed two metrics for evaluating whether the gene embedding space is fair using the
Gene Ontology (GO).15 We mainly concentrated on evaluating whether SGA-a↵ected genes
share GO annotations in the “biological process” domain, based on the assumption that genes
involved in a common biological process will likely share common functional impact. The top
1,474 frequently altered genes (a↵ected by SGAs for more than 150 times across all the tumors
in the dataset) were used for evaluation, assuming that the gene embeddings of rare SGAs
may not be well learned.

NN accuracy: We first designed a metric called “nearest neighborhood (NN) accuracy”
as a measure of functional similarity among genes sharing similar gene embedding. It is defined
as the expectation of whether a pair of genes (g, c) that are nearest neighbors in the embedding
space share at least one same GO term:

NN accuracy = Eec2NN(eg) [1 (GO(g) \GO(c) 6= ;)] , (S7)

where 1(statement) is the indicator function; GO(g) the set of GO terms assigned to gene g;
NN(eg) the set of nearest neighbors of eg. The expectation E is approximated by iterating over
all possible pairs of genes. The higher NN accuracy, the functionally similar genes are more
close to each other in the embedding space.

GO enrichment: Apart from the NN accuracy, which only reflects the functional simi-
larities between two adjacent genes in embedding space, we also evaluated whether a cluster
of genes close in an embedding space share GO annotations through “GO enrichment”, which
is defined as:

enrichment =
EClust(eg)=Clust(ec) [1(GO(g) \GO(c) 6= ;)]

Eg,c2G [1(GO(g) \GO(c) 6= ;)] , (S8)

where Clust(g) is the cluster that gene g belongs to. GO enrichment considers the functional
similarities of genes that are close in the embedding space. The larger it is, the higher correlated
are the GO functions and clusters (and it equals to 1 in random case).



S5. Performance of GIT on real and shu✏ed data

We plotted both F1 score and accuracy on the test set as the function of trained epochs
(Figure S1 “real data”), which indicate that the model gains the capability of predicting
DEGs as training proceeds, and finally reaches a stable state.

In order to validate that GIT is able to extract real statistical relationships between SGAs
and DEGs, we randomly shu✏ed the positions of DEGs in the DEG vector of a tumor, i.e.,
randomly relabel DEG names, and then trained a GIT to predict DEGs from SGAs. We
compared the performance of models trained with random datasets, by plotting F1 score and
accuracy during the training of the models (Figure S1 “shu✏ed data”). Note that, since most
DEGs in the data are zeros, a trivial solution is to call every DEG as 0, which can also achieve
good overall accuracy and minimize loss, but that will result in a low F1 because of low recall.
Indeed, the test F1 score in the DEG-permutation case drops to a very low value due to the
same reason.

(a) (b)

Fig. S1. The change of F1 score and accuracy on the test set as GIT trains on real
data or DEG-permuted data.



S6. Enriched functions of gene clusters

See Table S1 for the enriched functions of gene clusters. Fisher’s exact test with Bonferroni
correction (p-value<0.05) was implemented on genes that belong to 40 clusters. 12 clusters of
genes show to be significantly involved in at least one biological process. The genes in cluster
14, referred to as “IFN pathway”, was further analyzed as a case study in Sec. 3.2, which is
involved in viral defense response, immune response and cell surface signaling.

Table S1. Enriched gene ontologies in the “biological process” domain of human beings
(Homo sapiens).

Cluster ID Enriched gene ontology Enriched biological process p-value
2 GO:0038003 Opioid receptor signaling pathway 2.09e-02
3 GO:0050911 Detection of chemical stimulus involved in sensory perception of smell 3.16e-31

GO:0007186 G protein-coupled receptor signaling pathway 5.27e-21
4 GO:0007156 Homophilic cell adhesion via plasma membrane adhesion molecules 5.26e-03

GO:0001568 Blood vessel development 4.64e-02
GO:0048666 Neuron development 4.02e-02
GO:0009653 Anatomical structure morphogenesis 3.17e-04

8 GO:0045995 Regulation of embryonic development 3.77e-02
GO:0007155 Cell adhesion 4.28e-02

14 (IFN pathway) GO:0033141 Positive regulation of peptidyl-serine phosphorylation of stat protein 9.07e-30
GO:0002323 Natural killer cell activation involved in immune response 6.02e-29
GO:0042100 B cell proliferation 1.65e-26
GO:0043330 Response to exogenous dsrna 1.05e-25
GO:0002286 T cell activation involved in immune response 2.22e-24
GO:0060337 Type i interferon signaling pathway 2.93e-21
GO:0030183 B cell di↵erentiation 1.40e-21
GO:0051607 Defense response to virus 2.85e-18
GO:0007596 Blood coagulation 5.77e-14
GO:0006959 Humoral immune response 4.82e-15
GO:0002250 Adaptive immune response 1.61e-12
GO:0010469 Regulation of signaling receptor activity 2.83e-12

16 GO:0050727 Regulation of inflammatory response 4.13e-02
23 GO:0003272 Endocardial cushion formation 3.61e-02

GO:0003179 Heart valve morphogenesis 9.79e-03
GO:0007156 Homophilic cell adhesion via plasma membrane adhesion molecules 4.87e-02
GO:0035295 Tube development 2.32e-03
GO:0051960 Regulation of nervous system development 4.73e-02
GO:0007399 Nervous system development 1.88e-02

25 GO:0051179 Localization 1.19e-02
30 GO:0000904 Cell morphogenesis involved in di↵erentiation 4.15e-02

GO:0007155 Cell adhesion 2.93e-02
GO:0007275 Multicellular organism development 2.21e-03

35 GO:0007156 Homophilic cell adhesion via plasma membrane adhesion molecules 1.60e-09
36 GO:0040011 Locomotion 3.42e-02
40 GO:0035589 G protein-coupled purinergic nucleotide receptor signaling pathway 4.50e-03



S7. Top genes by attention mechanism and mutation rates

See Table S2 for the full list of top 100 genes that are assigned by the attention mechanism.
Table S3 shows the top 5 genes that are most frequently mutated in both pan-cancer and
single cancer types. It serves as the control group, in comparison to the attention mechanism
results (Table 3,S2; experiment group).

Table S2. List of candidate drivers whose corresponding SGAs have top 100 highest
attention weights. Boldfaced genes are known drivers according to TumorPortal3 and IntOGen34

database.
Rank Gene Rank Gene Rank Gene Rank Gene
1 TP53 26 MUC5B 51 KRTAP4-11 76 CNTNAP3B
2 PIK3CA 27 LMTK3 52 CYP4F11 77 NKRF
3 RB1 28 AHNAK 53 EP400 78 SETD2

4 PBRM1 29 VHL 54 XRN1 79 LAMA2

5 PTEN 30 FGFR3 55 MBD6 80 AARS
6 CDH1 31 PHF20 56 AR 81 SPON1
7 CASP8 32 STK11 57 ANKRD30BP2 82 WRN
8 KRAS 33 OCA2 58 PRICKLE2 83 LHX1
9 SLC1A6 34 GATA3 59 RGAG1 84 STAG2

10 POMC 35 PCNX 60 KRT23 85 KSR1
11 RRN3P2 36 KRTAP4-9 61 UGT1A1 86 GCDH
12 TFAM 37 LRRIQ3 62 PARP8 87 E2F3
13 CD163 38 MRGPRF 63 TMPRSS6 88 PDHX
14 WDFY3 39 HSP90AA1 64 FMN2 89 CLUH
15 WDR44 40 CNTN3 65 CDKN2A 90 PRICKLE4
16 CYP51A1 41 WNK3 66 DIP2B 91 GLUD2
17 ADARB2 42 PTPRD 67 TBP 92 CROCC
18 C9orf53 43 PCDHB16 68 ZNF624 93 IDH1

19 BAP1 44 RPLP0P2 69 FEM1B 94 GRIA1
20 TMPRSS13 45 COL6A1 70 CDKN2B 95 DLG5
21 SV2C 46 TTC39B 71 PDE4D 96 SMURF2P1
22 MYCBP2 47 PGR 72 ISLR2 97 CACNA1C
23 MED24 48 TBC1D4 73 FLRT3 98 KIAA1377
24 CYLD 49 ANKRD36C 74 ZFAT 99 PTPRZ1
25 CYLC2 50 GPATCH8 75 SMARCA4 100 PCSK5

Table S3. Top five SGA-a↵ected genes for Pan-Cancer and a few selected
cancer types, ranked according to alteration frequency, as the control
group to GIT. The corresponding experiment group, which is the selected candi-
date drivers of GIT model, is shown in Table 3. The known cancer drivers according
to TumorPortal3 and IntOGen34 are marked in bold font.

Rank PANCAN BRCA HNSC LUAD GBM BLCA
1 TP53 TP53 TP53 TTN CDKN2A TTN
2 TTN PIK3CA CDKN2A TP53 CDKN2B TP53

3 PIK3CA TTN TTN CSMD3 C9orf53 ARID1A

4 CSMD3 POU5F1B PIK3CA PCDHAC2 EGFR DNAH5
5 MUC4 TRPS1 LINC00969 MUC16 MTAP CDKN2A



S8. Survival analysis based on raw SGAs

SGAs alone as tumor representations are not informative of predicting survival profiles. See
Fig. S2 for survival analysis based on raw SGAs.

p=0.37

(a) (b) (c)
p=0.0060
CI=0.617

Fig. S2. (a) PCA plot showing k -means clustering of BRCA tumors using their SGA vectors. Most
tumors merge around the origin (Cluster 1; with a small number of SGAs), while others (Cluster
2,3; with a large number of SGAs) are outliers and far away from the origin. (b) KM estimators and
log-rank test on the three BRCA tumor groups in the SGA space. (c) Cox regression using SGAs
(top mutated 474 genes are used).


