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Appendix 1. Arm retraction.S1,S2

 This model often used for graft and star polymers and is based on the tube model. The stress 
relaxation has three contributions, Rouse-like motions, arm retraction and reptation, 
therefore:

G(t) = Gretraction(t)+ Greptation(t)+ GRouse(t) (1)

The fraction of the stress relaxing by arm retraction can be expressed as:

Gretraction(t) = (2)∫𝑥𝑑

0 𝑑𝑥
𝑑𝐺(Ф(𝑥))

𝑑𝑥 exp ( ― 𝑡/𝜏(𝑥))

with 0 ≤ x ≤ 1, the fractional distance from the free end of a chain to the middle of the chain. 
Here in case of linear polymer the chain is considered a two-arm star polymer with equal arm 
size. Xd is the crossover between the arm retraction time scales and reptation. The volume 
fraction  of unrelaxed material is given by .Ф Ф(𝑥) = 1 ― 𝑥

This means in case of graft polymers the stress relaxation starts from the outermost segments 
of the arms and by time the deeper segments of the chain relax first via Rouse-like motions 
and contour length fluctuations (CLF) and then via reptation. After the arms are relaxed, the 
backbone relaxes in a dilated tube as the relaxed arms can act as a solvent. 



The retraction is an activated process and depends on the length of the chain. For small 
fluctuations closer to the chain ends, the branches perform a Rouse-like motion along the 
primitive path and the early retraction time ) (  for the backbone) is considered. 𝜏𝑎𝑒(𝑥𝑎 𝜏𝑏𝑒(𝑥𝑏)
Whereas for deeper segments an activated fluctuation is needed to overcome the unfavorable 
entropy effects. Therefore, at longer times  is considered. The transition to an activated 𝜏𝑎𝑙(𝑥𝑎)
relaxation time, occurs at a certain value of the coordinate xa and the potential U(xa) becomes 
effective. The arm relaxation time can be expressed as:

 = (3)𝜏𝑎(𝑥𝑎)
𝜏𝑎𝑒(𝑥𝑎)𝑒

𝑈𝑎(𝑥𝑎)

1 + 𝜏𝑎𝑒(𝑥𝑎)𝑒
𝑈𝑎(𝑥𝑎)

/𝜏𝑎𝑙(𝑥𝑎)

And the backbone relaxation can be calculated using:

 = (4)𝜏𝑏𝑏(𝑥𝑏𝑏)
𝜏𝑏𝑒(𝑥𝑏)𝑒

𝑈𝑏(𝑥𝑏)

1 + 𝜏𝑏𝑒(𝑥𝑏)𝑒
𝑈𝑏(𝑥𝑏)

/𝜏𝑏𝑙(𝑥𝑏)

Appendix 2. Modified time marching algorithm and hindered 
fluctuations (by van Ruymbeke et al.).S3

For the detailed description of the model we refer the reader to the original theory.S3 Here 
briefly the modification of the theory to the supramolecular systems is discussed. 

The relaxation modulus of the supramolecular system follows the basic mechanism for the 
linear covalent chains:

(1)
𝐺(𝑡)

𝐺0
𝑁

= Ф(𝑡)Ф𝛼
𝐶𝑅(𝑡) + Ф𝑅𝑜𝑢𝑠𝑒(𝑡)

Where  is the chain survival probability or unrelaxed fraction of the tube.  is the Ф(𝑡) Ф𝛼
𝐶𝑅(𝑡)

global tube relaxation (e.g: based on constraint release (CR) motions).  is the Ф𝑅𝑜𝑢𝑠𝑒(𝑡)
contribution of the low frequency Rouse-like motions and α is the dilution exponent. 

The relaxation of the chain within a tube starts from the free end of the polymer chain (x=1) 
towards the center (x=0) assuming the polymer chain is a 2-arm star polymer. Therefore, the 
relaxation occurs using contour length fluctuations (CLF) as well as reptation: 

 (2)Ф(𝑡) =  ∫1
0𝜑𝑟𝑒𝑝𝑡𝑎𝑡𝑖𝑜𝑛(𝑥,𝑡).𝜑𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 (𝑥,𝑡)𝑑𝑥

The Rouse-like dynamics at high frequencies follows the basic Rouse-like relaxations limited 
by sticker association-dissociations. Therefore, the Rouse contribution in equation 1, can be 
calculated based on sticky Rouse model as follows:

(3)Ф𝑅𝑜𝑢𝑠𝑒(𝑡) =  
5

4𝑍 [∑𝑁
𝑗 = 𝑧𝑎𝑝𝑝 + 1𝑒𝑥𝑝( ― 𝑗2𝑡

𝜏𝑅 ) + ∑𝑍𝑎𝑝𝑝

𝑗 = 𝑍𝑒𝑥𝑝( ― 𝑗2𝑡
𝜏𝑆.𝑅 )]

where (  )-1 is the Rouse relaxation time in the absence of the stickers and (  )-1 is the Rouse-
𝑗2

𝜏𝑅

𝑗2

𝜏𝑅

relaxation time for longer segments after dissociation of the stickers:



(4) 𝜏𝑅 =  𝜏𝑒𝑍2

and 

(5)𝜏𝑆.𝑅 =  𝜏𝑠𝑡𝑖𝑐𝑘𝑒𝑟𝑍𝑎𝑝𝑝
2

where τe and τsticker are the Rouse relaxation time of an entanglement and the association 
lifetime of stickers, respectively.

Finally, the number of entanglements has contributions from chain entanglement (Z) and the 
number of stickers along the chain (Ns):

Zapp = Z + Ns (6)

The model considers both the fluctuations and reptation but is modified to take into account 
the extra friction or extra penalty arising from stickers. Due to the presence of the stickers the 
CLF of the chains slows down to the rhythm of the sticker association/dissociations. 

In the extra penalty approach, the stickers along the chain start to blink after which a portion 
of the chain is free to fluctuate and relax the stress. Of course, the chain ends have more time 
to fluctuate as one end is free of constraints. Therefore, the relaxed fraction of the chain via 
(hindered) fluctuations can be expressed as:

 = exp (7)𝜑𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 (𝑥,𝑡) ( ―
∆𝑡(𝑥,𝑡)

𝜏𝑓𝑙𝑢𝑐(𝑥,𝑡))
where Δt(x,t) is the accumulated time during which a segment x could fluctuate.

On the other hand, in the extra friction approach the linear associative polymer is considered 
like a comb-like polymer. Therefore, an extra friction comes from the side groups (whether it 
is a sticker or side branch in comb-polymer) and the total friction is expressed by:

total = Ni 0 +  (8)𝜉 𝜉
2(𝑖 ― 1)𝑘𝑇𝜏𝑠𝑡𝑖𝑐𝑘𝑒𝑟

𝑎2

where 0 is the monomeric friction, Ni is the number of mobile monomeric units at mode i, 𝜉
and a is the tube diameter. It has to be pointed out that no tube dilation exists unlike comb 
polymers in which the relaxation of the branches leads to a solvent-like effect and consequent 
tube dilation.

Similarly, reptation has contributions from the entanglements and the stickers leading to the 
equation 9 as follows:

𝜏rept = 3𝜏eZ3  + (9)𝜑 
𝑎
𝑎𝑐𝑡𝑖𝑣𝑒(𝑡)

2𝑁𝑠𝜏𝑠𝑡𝑖𝑐𝑘𝑒𝑟

𝜋2 𝜑 
2𝑎
𝑎𝑐𝑡𝑖𝑣𝑒(𝑡)

where is the fraction of the polymer not yet relaxed by fluctuations.𝜑 𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) 

Appendix 3. Modified mean-field percolation theory of Rubinstein 
and Semenov (by Chen et al.).S4



For the detailed description of the theory it is encouraged to refer to the paper by Chen et 
al.S4 This theory based on the chemical sol-gel transition with a few modifications. The gel 
point is predicted from the growth of the sol, generation by generation to an infinite size:

(1)𝑝𝑐 =  1 (𝑁 ― 1)

where N is the functionality, N–1 corresponds to the available (potential) functionalities and 
the extent of gelation can be expressed by:

(2)𝜀 = (𝑝 ― 𝑝c) 𝑝c

with p being the degree of reaction. Depending on different values of a regime can be 𝜀 
defined. For ε = -1 the behavior of an unentangled polymer is predicted by   (where n 𝐺′~ 𝜔𝑛

= 0.5 and 1 before and after the Rouse relaxation time). Therefore:

(3) the precursor chain molecular weight 𝑀𝑋 =  𝑀0𝑁𝑋

(4) the precursor chain size𝑅𝑋 =  𝑁1/2
𝑋 𝑏

(5) the precursor chain Rouse relaxation time𝜏𝑋 =  𝜏0𝑁2
𝑋

with b the segmental size, the number of segments, the segment molecular weight, and 𝑁𝑋 𝑀0 
the relaxation time of one segment.𝜏0 

If  clusters are formed via mean-field (MF) percolation and the Rouse ―1 < 𝜀 < ― 𝜀G,
relaxation of the cluster leads to  before the terminal relaxation ( is the extent of the 𝐺′~𝜔1 𝜀G 
reaction at Ginzburg point).  

For the third regime  where MF and critical percolation (CP) apply in shorter ―𝜀G ≤ 𝜀 < ―𝜀c

and longer times than  and with n = 1 and 0.67 for MF and CP, respectively. 𝜏X𝑁X 𝐺′~𝜔𝑛 

In the fourth regime where , a time called “effective breakup time” is taken into ―𝜀c ≤ 𝜀 < 𝜀c

account. The effective breakup time is defined as the time the cluster takes to breakup into 
two comparable clusters after the stickers are broken (after that sticker lifetime is reached). 
Since there is a competition between the cluster dissociation time  and cluster  (𝜏life = 𝜏s𝜀)
relaxation time , comparing and  one can calculate as: (𝜏char = 𝜏X|𝜀| ―3) 𝜏life 𝜏char 𝜏c 

 (6)𝜏c = 𝜏1/4
x 𝜏3/4

s (if ― 𝜀c ≤ 𝜀 < 𝜀c)

with  being the sticker lifetime. For 1 < ε sticky-Rouse model applies.𝜏s
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