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SUMMARY

Most current tumor immunotherapy strategies
leverage cytotoxic CD8+ T cells. Despite evidence
for clinical potential of CD4+ tumor-infiltrating lym-
phocytes (TILs), their functional diversity limits our
ability to harness their activity. Here, we use single-
cell mRNA sequencing to analyze the response of
tumor-specific CD4+ TILs and draining lymph node
(dLN) T cells. Computational approaches to charac-
terize subpopulations identify TIL transcriptomic
patterns strikingly distinct from acute and chronic
anti-viral responses and dominated by diversity
among T-bet-expressing T helper type 1 (Th1)-like
cells. In contrast, the dLN response includes T follic-
ular helper (Tfh) cells but lacks Th1 cells. We identify
a type I interferon-driven signature in Th1-like TILs
and show that it is found in human cancers, in which
it is negatively associated with response to check-
point therapy. Our study provides a proof-of-concept
methodology to characterize tumor-specific CD4+

T cell effector programs. Targeting these programs
should help improve immunotherapy strategies.

INTRODUCTION

Immune responses have the potential to restrain cancer devel-

opment, and most immunotherapy strategies aim to reinvigorate

T cell function to unleash effective anti-tumor immune responses

(Borst et al., 2018; Gajewski et al., 2013; Ribas and Wolchok,

2018; Rosenberg and Restifo, 2015; Wei et al., 2017). Cytotoxic

CD8+ T lymphocytes are being exploited in clinical settings
This is an open access article und
because of their ability to recognize tumor neo-antigens and

kill cancer cells (Ott et al., 2017; Rosenberg and Restifo, 2015).

However, effective anti-tumor immunity relies on a complex

interplay between diverse lymphocyte subsets that remain

poorly characterized. CD4+ T helper cells, which are essential

for effective immune responses and control the balance between

inflammation and immunosuppression (Bluestone et al., 2009;

Borst et al., 2018; Sakaguchi et al., 2008; Zhu et al., 2010),

have recently emerged as potential therapeutic targets (Aarntzen

et al., 2013; Borst et al., 2018; Hunder et al., 2008; Malandro

et al., 2016; Mumberg et al., 1999; Ott et al., 2017; Tran et al.,

2014; Wei et al., 2017). CD4+ helper cells contribute to the prim-

ing of CD8+ T cells and to B cell functions in lymphoid organs

(Ahrends et al., 2017; Borst et al., 2018; Crotty, 2015). CD4+ T

helper type 1 (Th1) cells secrete the cytokine interferon (IFN)-g

and affect tumor growth by targeting the tumor microenviron-

ment (TME), antigen presentation through major histocompati-

bility complex (MHC) class I andMHC class II, and other immune

cells (Alspach et al., 2019; Beatty and Paterson, 2001; Bos and

Sherman, 2010; Kammertoens et al., 2017; Qin and Blanken-

stein, 2000; Tian et al., 2017). Conversely, T helper type 2 (Th2)

cells can promote tumor progression, whereas regulatory T

(Treg) cells mediate immune tolerance, suppressing the function

of other immune cells and thus preventing ongoing anti-tumor

immunity (Chao and Savage, 2018; DeNardo et al., 2009; Tanaka

and Sakaguchi, 2017).

Despite the anti-tumor potential of CD4+ T cells, disentangling

their functional diversity has been the limiting factor for pre-clin-

ical and clinical progress. Although several studies have as-

sessed the transcriptome of Treg cells or their tumor reactivity

(Ahmadzadeh et al., 2019; Chao and Savage, 2018; De Simone

et al., 2016; Malchow et al., 2013; Plitas et al., 2016; Zhang

et al., 2018; Zheng et al., 2017a), the functional diversity of con-

ventional (non-Treg) tumor-infiltrating lymphocytes (TILs) has
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remained poorly understood. Population studies have limited

power at identifying new, and especially rare, functional cell

states. Conventional single-cell approaches (e.g., flow or mass

cytometry) overcome this obstacle but are necessarily restricted

to hypothesis-based targets because of the number of parame-

ters they can analyze. Furthermore, most previous studies,

whether of human or experimental tumors, did not distinguish tu-

mor antigen-specific from bystander CD4+ T cells, even though

bystanders may form most conventional (non-Treg) T cells in

the TME (Ahmadzadeh et al., 2019; Azizi et al., 2018; Duhen

et al., 2018; Sade-Feldman et al., 2018; Simoni et al., 2018;

Zhang et al., 2018; Zheng et al., 2017a) and in draining lymphoid

organs where immune responses are typically initiated.

To address these challenges, we applied the resolution of sin-

gle-cell RNA sequencing (scRNA-seq) to a tractable experi-

mental system assessing tumor-specific responses both in the

tumor and in the lymphoid organs, and we designed computa-

tional analyses to identify transcriptomic similarities. Our ana-

lyses dissect the complexity of the CD4+ T cell response to tumor

antigens and identify broad transcriptomic divergences between

anti-tumor and both acute and chronic anti-viral responses.

Emphasizing the power of this approach, transcriptomic pat-

terns identified in the present study are also found in CD4+

T cells infiltrating human tumors and correlate with response to

checkpoint therapy in human melanoma.

RESULTS

Tracking Tumor-Specific CD4+ T Cells
We set up a tractable experimental system to study tumor anti-

gen-specific CD4+ T cells. We retrovirally expressed the lympho-

cytic choriomeningitis virus (LCMV) glycoprotein (GP) in colon

adenocarcinoma MC38 cells, using a vector expressing mouse

Thy1.1 as a reporter (Figure S1A). Subcutaneous injection of

the resulting MC38-GP cells produced tumors, allowing analysis

of immune responses by day 15 after injection. We tracked GP-

specific CD4+ T cells through their binding of tetramerized I-Ab

MHC class II molecules associated with the GP-derived GP66

peptide (Matloubian et al., 1994). Such CD4+ cells were found

in the tumor and draining lymph node (dLN) of MC38-GP tu-

mor-bearing mice but in neither non-draining LN (nLN) from

MC38-GP mice nor mice carrying control MC38 tumors (Fig-

ure S1B). TILs and dLN also included small numbers of CD8+

T cells specific for the GP-derived GP33 peptide complexed

with H-2Db MHC class I molecules (Figure S1C). As expected,

these cells expressed the transcription factor T-bet (Figure S1D).

To study the CD4+ T cell response to tumor antigens, we

aimed to produce genome-wide single-cell mRNA expression

profiles (scRNA-seq) in CD4+ TILs and CD4+ dLN cells. We

sorted GP66-specific T cells from dLN cells, because these

were the only dLN CD4+ T cells for which tumor specificity

could be ascertained. Among TILs, we noted that ~87% of

GP66-specific CD4+ T cells expressed programmed cell death

1 (PD-1), encoded by Pdcd1 and a marker of antigenic stimu-

lation (Agata et al., 1996), suggesting that it could serve as an

indicator of tumor specificity (Figure S1E). Alternatively, we

considered using CD39 to this end, because CD39 marks

CD8+ TILs specific to tumor antigens (Duhen et al., 2018; Si-
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moni et al., 2018). However, whereas CD39 expression was

detected on most Foxp3+ (Treg) GP66-specific TILs, it was

low or undetectable on their Foxp3� counterparts, most of

which were PD-1hi (Figure S1F); this is consistent with previ-

ous reports that CD39 is preferentially expressed in Treg cells

among CD4+ T cells (Bono et al., 2015). Thus, to obtain a

broad representation of antigen-specific TILs, not limited to

GP-specific cells, we used PD-1 expression as a surrogate

for tumor antigen specificity and purified tumor

CD4+CD44hiPD-1+ T cells (PD-1hi TIL) for scRNA-seq. We veri-

fied critical conclusions of the scRNA-seq analyses by flow cy-

tometry, comparing GP66-specific and PD-1hi TILs.

Tumor-Responsive CD4+ T Cells Are Highly Diverse
We captured GP66-specific dLN and PD-1hi TIL CD4+ cells using

the 10x Chromium scRNA-seq technology (Zheng et al., 2017b);

in addition, we captured GP66-specific spleen CD4+ T cells from

LCMV (Armstrong [Arm] strain)-infected mice (Matloubian et al.,

1994) as a technical and biological reference (Figure S1G, called

Arm cells here). After excluding cells of low sequencing quality

(low number of detected genes), potential doublets, and B cell

contaminants, we performed a first series of analyses on 566

dLN, 730 TIL, and 2,163 Arm CD4+ T cells (Table S1).

We defined groups of cells sharing similar transcriptomic

profiles using Phenograph clustering (Levine et al., 2015).

Consistent with previous studies (Ciucci et al., 2019), Arm cells

segregated into T follicular helper cells (Tfh cells, providing

help to B cells) and Th1 cells, among other subsets (Figure S2A).

Tfh cells expressed Tcf7 (encoding the transcription factor Tcf1),

Cxcr5, and Bcl6, whereas Th1 cells expressed Tbx21 (encoding

the transcription factor T-bet), Ifng (IFNg), and Cxcr6. Low-reso-

lution clustering identified 5 groups of TILs and dLN cells (Fig-

ure S2B). Group I had features of Th1 cells, whereas group II

differed by lower expression of Tbx21 and Ifng and expressed

the chemokine receptor Cxcr3 and the transcription factor Irf7.

Group III expressed genes typical of Treg cells, including

Foxp3 and Il2ra, encoding CD25 (IL-2Ra). Group IV expressed

Ccr7, which preferentially marks memory cell precursors at the

early phase of the immune response (Ciucci et al., 2019; Pepper

and Jenkins, 2011), whereas group V expressed Tfh cell genes,

including Bcl6 and Cxcr5.

To further dissect these populations, we developed a user-

independent, data-driven approach to increase clustering

resolution while controlling for false discovery. Applying such

high-resolution clustering separately to TILs and dLN cells,

we identified 15 clusters (TIL clusters t1–7 and dLN clusters

n1–8), refining the original five main groups (Figure 1A).

Revealing unexpected diversity among Th1-like TILs, groups I

and II resolved into 5 subpopulations, including a distinct cluster

(t5) expressing higher levels of Il7r (encoding IL-7Ra) and lower

levels of Tbx21 and Ifng. Only cluster group III (Treg cells)

included both TIL and dLN cells, which expressed variable

levels of Tbx21. Groups IV and V, the bulk of dLN cells, resolved

into 5 and 2 clusters, respectively. Consistent with these results,

flow cytometric analysis showed that most dLN cells expressed

low or undetectable amounts of T-bet, the product of Tbx21; in

contrast, most TILs expressed T-bet, even if at various levels

(Figures 1B and 1C).



Figure 1. Characterization of CD4+ TIL, dLN, and Arm Transcriptomes by scRNA-Seq

(A–D) TILs and dLN cells from wild-type (WT) mice at day 14 after MC38-GP injection analyzed by scRNA-seq and flow cytometry.

(A) Heatmap shows row-standardized expression of selected genes across TIL and dLN clusters. Bar plot indicates the percentage of cells in each cluster relative

to the total TIL or dLN cell number.

(B) Flow cytometry contour plots of Foxp3 versus T-bet in CD44hi GP66+ dLN cells (left) and in CD44hiCD4+ splenocytes from tumor-free control mice (right).

(C) Flow cytometry contour plots of Foxp3 versus T-bet in PD-1+ and GP66+ TILs (left) and in CD44hi CD4+ splenocytes from tumor-free control mice (right).

(B and C) Data representative from 18 tumor-bearing mice analyzed in four separate experiments.

(D) t-SNE display of TILs and dLN cells, shaded gray by tissue origin (left) or color coded by main group (right, as defined in A).

(E) t-SNE (TIL and dLN cell positioning as shown in B) display of normalized expression levels of selected genes.

(F) Heatmap shows Pearson correlation between cluster fold change vectors (as defined in the text) across the two replicate experiments for TILs (left) and dLN

cells (right).

See also Figures S1 and S2 and Tables S1 and S6.
To support these observations, we analyzed pooled TILs and

dLN cells by t-Distributed Stochastic Neighbor Embedding

(t-SNE), a dimensionality reduction approach that positions cells

on a two-dimensional grid based on transcriptomic similarity

(van der Maaten and Hinton, 2008). Although performed on the

pooled populations, t-SNE recapitulated the minimal overlap

between TIL and dLN transcriptomic patterns (Figure 1D, left), ir-

respective of parameter selection (Figure S2C) and even after

controlling for potential confounders (Figures S2D and S2F–

S2H; STAR Methods). Cluster groups I–V segregated from
each other when projected on the t-SNE plot (Figure 1D, right).

Overlay of gene expression confirmed co-localization of cells ex-

pressing cluster-characteristic genes (Figure 1E).

To verify the robustness of these observations, we analyzed

an additional biological replicate consisting of 1,123 TILs, 675

dLN GP66-specific cells, and 2,580 Arm cells captured from

a separate set of animals (Figure S2E; Table S1). Because

batch-specific effects can confound co-clustering from distinct

experiments, we separately clustered cells from each replicate.

To compare these clusters, we evaluated the correlation
Cell Reports 29, 3019–3032, December 3, 2019 3021



between cluster-specific fold change vectors; these vectors,

defined internally to each replicate, recorded the expression

of each gene in a cluster relative to all other clusters in that

replicate. This strategy corrects for experiment-specific biases

to allow effective comparison of cell subsets. We found signif-

icant inter-replicate matches for most clusters (Figure 1F),

supporting the reproducibility of the underlying transcriptomic

patterns. Thus, scRNA-seq analysis of tumor-specific CD4+

T cells identifies an unsuspected diversity of transcriptomic

programs in the TME and dLN.

Correlation Analyses Mitigate Tissue-Context-Specific
Factors
Comparison of TILs, dLN cells, and Arm cells showed little over-

lap, including between TILs and dLN cells (Figure S3A, left).

Thus, we considered that the impact of tissue of origin could

be the primary driver of clustering and mask commonalities in

effector programs. Indeed, most TIL subpopulations had attri-

butes of tissue residency, including low S1pr1 and Klf2 expres-

sion and high Cd69 expression, contrasting with Arm and most

tumor dLN clusters (Figure 2) (Mackay and Kallies, 2017). Only

group III Treg cells, and separately cells undergoing cell cycle,

clustered together regardless of origin (Figure S3A, right). This

prompted us to search for potential underlying similarities

among these disparate transcriptomic patterns. We found that

data integration approaches designed to uncover similarities

across experimental conditions could not overcome the separa-

tion resulting frombiological context (Figure S3B) and couldmiss

functionally relevant differences (e.g., between Foxp3+ and

Foxp3� TILs) (Figure S3C) (Butler et al., 2018). Thus, we consid-

ered the correlation analysis used earlier for cluster matching,

where Pearson correlation coefficients quantify similarities

between cluster-specific fold change vectors. This analysis

distributed the 40 reproducible clusters (out of 47 from all exper-

iments) into 6 meta-clusters (with manual curation attaching

meta-cluster 1b to 1a), of which fourmeta-clusters (meta-clusters

1, 3, 5, and 6) contained cells of more than one tissue context

(Figure 3A; Table S1). Thus, the correlation analysis established

relatedness among transcriptomic patterns identified by con-

ventional clustering.

Characterizing Transcriptomic Similarities
We further characterized the meta-clusters by identifying their

defining overexpressed genes. In addition to Foxp3 and Il2ra,

genes driving meta-cluster 3 (Treg cell group III) included Ikzf2,

Tnfrsf4, encoding Ox40, and Icos, the latter of which we verified

by flow cytometry (Figures 2, 3A, S3D, and S3F). In contrast,

Gzmb (encoding the cytotoxic molecule granzyme B) and Lag3

were overexpressed in TIL Treg cells relative to dLN Treg cells

(and to Foxp3� TIL subsets) (Figures S3D–S3F). Thus, the simi-

larity analysis both confirmed the shared Treg circuitry across

TILs and dLN and identified TIL-specific Gzmb cytotoxic gene

expression in TIL Treg cells.

Contrasting with the Treg clusters, the correlation analysis

failed to detect similarities among three other groups charac-

terized by heterogeneous Tbx21 levels and distributed into

meta-clusters 2 (TIL group II t3-4), 4 (Arm cells), and 6 (TIL

group I t1-2) (Figure 3A). The two TIL meta-clusters showed
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multiple differences relative to Arm-responsive Th1 cells,

including higher expression of Il12rb, Il7r, and Il10ra and

distinct patterns of transcription factor, chemokine, and che-

mokine receptor expression (Figure 2). TIL group I t1-2 clusters

(Th1 hereafter) specifically expressed Lag3 and killer cell lectin

(Klr) genes (Figures 3B, right, 3C, and S3G), characteristic of

terminally differentiated effector cells (Joshi and Kaech,

2008), and differed from Arm Th1 by the expression of multiple

activation molecules (Figure S3H). Accordingly, flow cytometry

verified expression of CD94 and NKG2A (encoded by Klrd1 and

Klrc1, respectively) in a subset of GP66-specific TILs, whereas

no expression was detected among GP66-specific Arm or dLN

cells (Figure 3D, top). TIL group II t3-4 cells differed from the

other T-bet-expressing cells by high expression of multiple

type I IFN-induced genes, including transcription factors Irf7

and Irf9 (Figures 3B, left, 3C, and S3G). Accordingly, we desig-

nated group II t3-4 as IFN-stimulated cell (Isc) clusters. Consis-

tent with the scRNA-seq analysis, flow cytometry detected

IRF7 protein expression among GP66-specific TILs, but not

Arm-responding CD4+ T cells (Figure 3D, bottom); furthermore,

flow cytometry distinguished the IRF7hi (Isc) from NKG2A+ (Th1)

TIL subsets (Figure 3D). We noted that NKG2A+ cells had

higher expression of T-bet protein than other Foxp3� TILs (Fig-

ure 3E). Thus, because T-bet normally represses genes

induced by type I IFN (Iwata et al., 2017), we verified co-

expression of T-bet and IRF7 by intra-cellular staining and

flow cytometry (Figure 3F). Consistent with high expression of

the Ifng gene by Th1 TILs, NKG2A+ TILs produced IFNg protein

when stimulated, unlike NKG2A� TILs (Figure 3G). Th1 TILs did

not express the natural killer (NK) T cell-specific transcription

factor PLZF, indicating they were not NK T cells (Figure S3I).

Compared with Isc, Th1 clusters had higher expression of

Bhlhe40, encoding a transcription factor controlling inflamma-

tory Th1 fate determination (Figures 2 and S3G) (Sun et al.,

2001; Yu et al., 2018). A recent study of human colon cancer

identified a CD4+ TIL Th1 subset with elevated Bhlhe40 expres-

sion (Zhang et al., 2018). This subset is clonally expanded in

tumors with microsatellite instability, suggesting specificity for

tumor antigens. The mouse Th1 TILs identified in our study had

higher expression of 40 genes from the human colon TIL Th1

signature, including Bhlhe40 and Lag3 (Table S2), with signifi-

cant (p = 0.001) skewing toward this signature detected by

gene set enrichment analysis (GSEA) (Subramanian et al.,

2005). However, mouse Th1 TILs lacked expression of other

components of the human signature, including Gzmb and Irf7,

suggesting that the impact of Bhlhe40 expression on TIL tran-

scriptomes is partly context specific.

Meta-cluster 6 unexpectedly associated Th1 TILs and a dLN

Ccr7+ cluster (the group IV n5 cluster) (Figure 3A), suggesting a

potential link between TILs and dLN cells. The association was

driven by transcriptional regulators Bhlhe40 and Id2 and tumor

necrosis factor (TNF) superfamily members Tnfsf8 (encoding

CD30L) and Tnfsf11 (RANKL) (Figures 2 and 4A). The potential

connection between Ccr7+ dLN cells and Th1 TILs was specific

to Ccr7+ cluster n5, which segregated from n6 and other dLN

subsets (Tfh and Treg cells) based partly on higher expression

of Cd200 (Figure 4B). Flow cytometry identified a corresponding

CD200hi subset among Cxcr5lo Ccr7+, but not Cxcr5+ Ccr7�



Figure 2. Transcriptomic Patterns of TILs,

dLN Cells, and Arm Cells

TILs, dLN cells, and Arm cells from replicate ex-

periments I and II analyzed by scRNA-seq. Heat-

map shows row-standardized expression of

selected genes across clusters. Group II (purple)

t5 separated into a distinct component from t3-4

(as defined in the text). Of note, high-level

expression of T-bet and other genes in Arm cells

(included in this dataset), reduces the Z score (row

normalized) expression value for such genes in

TILs or dLN cells, accounting for their apparent

lower relative expression compared with that in

Figures 1A and S2B.

See also Figure S2 and Table S2.
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Figure 3. Th1-like Transcriptomic Patterns

(A) Heatmap defines meta-clusters based on Pearson correlation among TIL, dLN, and Arm cluster fold change vectors (as defined in the text) (left). Tables show

tissue origin and cell-type color code per cluster (right).

(B and C) Comparison of TIL Th1 and Isc (clusters t1-2 and t3-4, respectively, as shown in Figure 1A), as well as Arm Th1 (as shown in Figures 2 and S2A).

(B) Contour plots of Th1 (orange) and Isc (blue) TIL distribution according to scRNA-seq-detected normalized expression of Irf7 versus Ifit3b (left) andKlrc1 versus

Lag3 (right).

(C) Heatmap shows row-standardized expression of differentially expressed genes across TIL group II Isc, TIL group I Th1, and Arm Th1.

(legend continued on next page)
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(Tfh), GP66-specific cells (Figures 4C, S4A, and S4B). dLNCcr7+

clusters n5-6 shared features with central memory precursor

CD4+ T cells (Tcmp cells) identified in Arm infection (Ciucci

et al., 2019) (Table S2). This includes expression of Tcf7, a tran-

scription factor important to prevent T cell terminal differentiation

and for CD8+ T cell responsiveness to PD-1 blockade (Brummel-

man et al., 2018; Gattinoni et al., 2009; Im et al., 2016; Jeannet

et al., 2010; Kurtulus et al., 2019; Nish et al., 2017; Siddiqui

et al., 2019; Zhou et al., 2010). However, the correspondence be-

tween the MC38-GP dLN Ccr7+ clusters and the Arm Tcmp

signature was only partial (Table S2).

Meta-cluster 1 consisted of Arm Tfh clusters and dLN group V

Tfh clusters (Figure 3A). We verified that the abundance of dLN

Tfh cells was similar in mice carrying MC38-GP and MC38 tu-

mors (Figure S4C), indicating that this response is not a conse-

quence of GP expression. Flow cytometric analysis confirmed

key Tfh attributes in dLN and Arm cells, including Bcl6 expres-

sion (Figures 4C, 4D, and S4A), although dLN Tfh cells differed

from Arm-responsive Tfh cells by lower expression of Icos and

the upregulation of the transcription factor Maf (Figures 2, 4E,

and S4D). Unexpectedly, meta-cluster 1 associated the dLN

and Arm Tfh clusters with TIL group II cluster t5, characterized

by Il7r expression (Figures 1A and 3A), based partly on slightly

higher expression of Tcf7 (1.6-fold) relative to other TIL subpop-

ulations (Figure 4F). Flow cytometric analysis confirmed the

presence of GP66-specific IL-7R+ TILs (Figure 4G). In addition,

the Tcf7int t5 cluster showed expression of the transcription fac-

tor Klf2 and its downstream target Sphingosine-1-phosphate re-

ceptor 1 (S1pr1, Figures 2 and 4F). This indicated the retention of

a cell-trafficking transcriptional program (Carlson et al., 2006)

and contrasted with the IFN-driven Isc TILs. Thus, we desig-

nated cluster t5 of group II TILs as putative non-resident cells

(nRes hereafter).

To further delineate the relationships between cell clusters, we

used reversed graph embedding (Trapnell et al., 2014), which

has been used to estimate progression through transcriptomic

states. This placed the dLN Tfh and TIL Th1 and Isc at the end

of an inferred path (Figure 4H), nRes TILs in the middle of the

continuum, and Ccr7+ dLN cells between Tfh and nRes. These

analyses, combinedwith the similarities described bymeta-clus-

tering, support the notion that the tumor-responsive CD4+ T cell

response may be characterized as a transcriptomic continuum;

they confirm the transcriptomic distance between Th1 and Isc
(D) (Left) Flow cytometry contour plots of NKG2A versus CD94 (top) or IRF7

NKG2A+CD94+ cells (top) and IRF7hi NKG2A� cells (bottom) among Foxp3�GP6

(E) Overlaid protein expression of T-bet in NKG2A+ and NKG2A� Foxp3�GP66+ T

intensity, MFI) of T-bet in each subset, expressed relative to naive CD4+ splenocy

lines indicate pairing.

(F) Flow cytometry contour plots of T-bet versus IRF7 in Foxp3�GP66+ dLN, TILs,

is shown as a control (right plot).

(D–F) Each plot is representative from 10 tumor-bearing and 9 Arm-infected mi

represents one mouse.

(G) (Left) Overlaid protein expression of IFNg in NKG2A+ versus NKG2A� TILs an

Foxp3+ cells is shown as a negative control (shaded gray). (Right) Graph shows the

Arm CD4+ T cells and summarizes a single experiment with 5 tumor-bearing and

tumor-bearing and 5 Arm-infected mice. Each symbol on summary graphs repre

Two-tailed unpaired (D and G) or paired (E) t test; *p < 0.05, **p < 0.01, and ****p

See also Figure S3 and Table S2.
TILs, even though both subsets express T-bet, the Th1-defining

factor.

TIL Subpopulation-Specific Dysfunction Gene Programs
We reasoned that expression of a dysfunction-exhaustion pro-

gram (Thommen and Schumacher, 2018; Wherry and Kurachi,

2015) may account for the limited relatedness between Arm

and TIL Th1 cells, because TILs processed for scRNA-seq anal-

ysis expressed the exhaustion marker PD-1 and multiple genes

associated with T cell exhaustion dysfunction (Figure 5A). To

address this issue, we used flow cytometry to directly compare

GP66-specific TILs from MC38-GP tumors to GP66-specific

CD4+ T harvested 21 days after inoculation with the clone 13

strain of LCMV (clone 13 hereafter). This strain establishes

chronic infection in wild-type mice (Oldstone, 2002), resulting

in typical dysfunctional CD4+ and CD8+ T cell responses (Craw-

ford et al., 2014). Most clone 13-responding CD8+ T cells

expressed PD-1 and the surface receptor 2B4 (Figure S5A),

characteristic of the dysfunction-exhaustion status of cells re-

sponding to persistent antigenic stimulation. Accordingly, PD-

1 was expressed on most clone 13-responding spleen CD4+

T cells (Figure S5B), unlike among Arm-responding CD4+

T cells, in which PD-1 expression was specific to Cxcr5hi Tfh

cells (Figure 4D). Expression of PD-1 in GP66-specific TILs

was similar to that in clone 13-responding cells (Figure 5B)

and higher than in dLN GP66-specific cells (of which only the

Cxcr5+ subset was PD-1hi, Figure 4D). However, clone 13-re-

sponding CD4+ T cells failed to express key members of the

TIL Th1 (CD94 and NKG2A) and Isc (IRF7) signatures (Fig-

ure 5C). Of note, clone 13-responding cells expressed lower

amounts of T-bet compared with Arm- or MC38-GP-specific

cells (Figure S5C). We conclude from these observations that

the Th1 and Isc signatures of GP66-specific TILs are distinct

from the dysfunction state generated by persistent antigen

exposure.

Nonetheless, since CD4+ TILs expressed exhaustion marks

(Figure 5A), we assessed the impact of exhaustion on TIL

subpopulations. We defined TIL Th1, Isc, nRes, and Treg gene

signatures as the genes preferentially expressed in each

subpopulation relative to all other TILs (Table S3).We found a sig-

nificant overlap between the multiple viral-response exhaustion

gene signatures (Molecular Signatures Database [MSigDB]) (Lib-

erzon et al., 2015) and the Th1 and Treg signatures (Table S4).
(bottom) in Foxp3�GP66+ dLN, TIL, and Arm cells. (Right) Percentage of

6+ CD4+ T cells; each symbol represents an individual mouse.

ILs (left). The graph on the right summarizes quantification (mean fluorescence

tes from tumor-free control mice. Each symbol represents an individual mouse;

and Arm cells; data from naive CD4+ splenocytes from tumor-free control mice

ce, analyzed in two separate experiments. Each symbol on summary graphs

d Arm cells. Data are shown for Foxp3�GP66+ cells (plain lines); expression on

percentage of IFNg+ cells out of NKG2A+ or NKG2A� Foxp3� TILs or of GP66+

3 Arm-infected mice. Data are representative of two such experiments, with 15

sents one mouse.

< 0.0001.
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Figure 4. Transcriptomic Continuum between TIL and dLN Tumor-Reactive Cells

(A) Violin plots of differentially expressed genes across TIL group I Th1 and dLN group IVCcr7+ (clusters t1-2 and n5, respectively, as shown in Figure 1A), as well

as all other TIL and dLN populations. Unpaired t-test; ***p < 0.001.

(B) Heatmap shows row-standardized expression of differentially expressed genes across dLN Ccr7+ clusters (group IV n5-6) and other dLN clusters (Treg and

Tfh clusters n1 and n7-8, respectively).

(C) Flow cytometry contour plots of Cxcr5 versus Ccr7 in Foxp3� dLN cells (top). Overlaid protein expression of Bcl6 and CD200 in Ccr7+ and Cxcr5+ dLN cells

and naive CD4+ splenocytes from tumor-free control mice (bottom). Data are representative of 17 mice analyzed in three experiments.

(D) Flow cytometry contour plots of Cxcr5 versus PD-1 in dLN and Arm cells. Data are representative of 10 mice analyzed in two experiments.

(E) Contour plot of dLN (red, clusters n7-8) and Arm (blue) Tfh cell distribution according to scRNA-seq-detected normalized expression of Icos versusMaf (top).

Overlaid protein expression of ICOS in dLN and Arm PD-1+Cxcr5+ (Tfh) cells and naive CD4+ splenocytes from tumor-free control mice (bottom).

(F) Heatmap shows row-standardized expression of differentially expressed genes across TIL Isc and nRes clusters (as defined in the text, group II t3-4 and t5,

respectively) and all other TIL clusters (Th1 and Treg clusters t1-2 and t6-7, respectively).

(G) Percentage of IL7R+Foxp3� cells out of total PD-1+ or GP66+ TILs. Nine mice analyzed in two experiments.

(H) Trajectory analysis of PD-1+ TILs and GP66+ dLN cells, indicating individual cells’ assignment into a transcriptional continuum trajectory. nRes cluster (t5) is

color coded orange in contrast to annotations in other figures.

See also Figure S4 and Table S2.
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Figure 5. Dysfunction Transcriptomes of Th1, Isc, and Treg TILs

(A) Heatmap shows row-standardized expression of selected exhaustion genes across TIL, dLN, and Arm clusters from replicate experiments I and II.

(B) Overlaid protein expression of PD-1 in GP66+ clone 13 (red trace) and GP66+ TILs (left) or dLN cells (right) (cyan trace). Gray-shaded histograms show PD-1

expression on CD44+CD4+ splenocytes from tumor-free control mice.

(C) Flow cytometry contour plots of NKG2A versus CD94 (top) or IRF7 (bottom) in TILs and clone 13 Foxp3�GP66+ T cells. Graphs on the right summarize data

from two experiments; each symbol represents one mouse. Two-tailed unpaired t test; ***p < 0.001 and ****p < 0.0001.

(B and C) Data are from 10 mice of each condition, analyzed on two separate experiments.

(D) Analysis of interleukin-27 (IL-27) signature genes overlapping with TIL subpopulation-characteristic genes. Heatmaps showPearson correlation (left) and row-

standardized expression of overlapping genes across TIL Th1, Treg, Isc, and nRes cells (clusters t1-2, t6-7, t3-4, and t5, respectively, as shown in Figure 1A)

(right).

See also Figure S5 and Tables S3 and S4.
Separate analysis of a previously reported gene signature char-

acterizing CD4+ T cell dysfunction during chronic infection

(Crawford et al., 2014) indicated a significant overlap with the

Isc signature, but not with Th1 and Treg signatures (Figure S5D;

Table S4). The latter result suggested heterogeneous expression

of exhaustion genes among TIL subsets. We tested this possibil-

ity using a broader set of exhaustion genes shared across cancer

and chronic infection (Chihara et al., 2018). Fifty-five genes

from this set were also part of TIL Th1, Isc, or Treg signatures.

However, the overlap was heterogeneous, identifying dysfunc-

tion programs specific to TIL subpopulations (Figure 5D; Table

S4).We did not detect overlap between any dysfunction-exhaus-

tion signature and nRes TILs (Figure 5D; Table S4). This is in line

with these cells’ residual expression of Tcf7, which in CD8+

T cells marks cells with conserved responsiveness to checkpoint

blockade (Brummelman et al., 2018; Im et al., 2016; Siddiqui

et al., 2019; Wu et al., 2016).
The Isc IFN Signature Correlates with Poor Clinical
Prognosis in Human Tumors
Finally, we examined whether MC38-GP TIL transcriptomic pat-

terns were observed in human tumors. We analyzed published

CD4+ human liver cancer TIL (TILHLC) scRNA-seq data pooled

across six treatment-naive patients (Zheng et al., 2017a). High-

resolution clustering separated the TILHLC cells into 11 clusters,

which could be combined into groups displaying features of Th1,

Isc (of which 36% are PDCD1+), and Treg TILs and cells under-

going cell cycle (Figure 6A). Although pooled analysis of CD4+

PD-1+ TILs from MC38-GP tumors (TIL) with TILHLC only identi-

fied similarities between cells undergoing cell cycle (Figures

S6A and S6B), cluster correlation analysis indicated significant

similarities between Treg cells, cell cycle, and Isc clusters

from TIL versus TILHLC (Figure 6B, top). We focused on the Isc

pattern, which differed the most from previously reported Th1

and Treg transcriptomic profiles. We found significant overlap
Cell Reports 29, 3019–3032, December 3, 2019 3027



Figure 6. Correspondence to Human Data

and Dysfunction Gene Signatures

(A) Analysis of human liver cancer TILHLC. Heatmap

shows row-standardized expression of selected

genes across TILHLC clusters.

(B) Heatmap defines meta-clusters based on

Pearson correlation between TILHLC and MC38-

GP TIL clusters (top). Overlap of genes charac-

teristic of human liver TIL Isc cluster with mouse

TIL Isc gene signature (bottom).

(C) Analysis of human melanoma TILMel. Boxplots

show the percentage of cells expressing selected

IFN signaling-characteristic genes in CD4+CD3+

cells across responding and non-responding le-

sions. Unpaired Wilcoxon test; *p < 0.05, **p <

0.01, and ***p < 0.001.

See also Figure S6 and Table S5.
of overexpression patterns between TIL Isc and their human

counterpart, including type I IFN-induced genes and Irf7 (Ikush-

ima et al., 2013) (Figure 6B, bottom; Table S5). Thus, the Isc

signature identified among mouse CD4+ TILs is found in human

tumors.

These finding were not unique to liver tumors, because anal-

ysis of CD4+CD3+ human melanoma TILs (TILMel) across 48 le-

sions (Sade-Feldman et al., 2018) identified a cluster enriched

in Isc-characteristic genes (of which 27% are PDCD1+), among

other populations (Figure S6C). To investigate the relationships

between Isc transcriptomic program and clinical prognosis, we

evaluated the association between expression in TILMel of Isc

signature genes (defined inMC38-GP TILs) and patient response

to checkpoint therapy. Relative to responsive tumors, non-

responsive tumors had significantly higher fractions of cells

expressing Isc signature genes (49 of 108 genes, adjusted

p < 0.05), including Stat1, Irf7, and Irf9 (Figure 6C; Table S5).

This indicated negative association between the Isc transcrip-

tomic program and patient response to checkpoint therapy.

Thus, the methods used in the present study identify transcrip-

tomic programs shared by multiple tumor types and of potential

prognostic significance.

DISCUSSION

In summary, using scRNA-seq and data-driven computational

approaches, the present study identifies an unsuspecteddiversity

among tumor-responding CD4+ T cells. Although recent scRNA-

seq studies had shed light on the Treg component of CD4+ TILs

(Ahmadzadeh et al., 2019; Azizi et al., 2018; Zhang et al., 2018;

Zheng et al., 2017a), our study assessed the transcriptomes of
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both regulatory and conventional compo-

nents, in the tumor itself, and in draining

lymphoid organs. We identified transcrip-

tomic patterns among these cells and

found a heterogeneous distribution of

exhaustion gene signatures among TIL

subtypes, highlighting the need for exten-

sive analyses of cell-specific effects of

treatments targeting exhaustion genes.
One key objective of our study was to compare the transcrip-

tome of CD4+ T cells responding to tumors, whether in the tumor

itself or in draining lymphoid organs, to that of cells responding to

infection. To this end, we studied T cell responses to a viral an-

tigen, LCMV GP, ectopically expressed in a mouse colon cancer

cell line. This approach directly compares cells responding to the

same antigen, expressed during viral infection or by tumor cells.

In addition, because the Arm versus the clone 13 strains of

LCMV, respectively, result in effective versus dysfunctional

T cell responses, with chronic viral persistence after clone 13

strain infection, we could compare antigen-specific responses

in each context with those against tumor cells. We considered

that the potentially greater GP immunogenicity compared with

that of spontaneously occurring tumor neo-antigens would

skew GP-specific TILs toward specific transcriptomic patterns.

Consequently, we extended our key conclusions beyond the

limited set of TILs responding to the ectopic GP antigen, identi-

fying PD-1 as a reliable marker of antigen-responsive cells and

showing a broad correspondence between expression of key

signature markers between PD-1hi and GP-responsive TILs.

Even though most conventional (Foxp3�) tumor-responsive

TILs express the Th1-defining transcriptional regulator T-bet,

our study identified transcriptomic patterns with unexpectedly

little similarity to prototypical virus-responsive Th1 cells. Thus,

conventional helper effector definitions, derived from studies of

responses to infection, are potentially inaccurate descriptors of

responses to tumors. The Th1-like transcriptome with marks

of type I IFN stimulation, a driver of inflammation and immuno-

suppression in cancer (Snell et al., 2017), highlights this conclu-

sion: it was observed among TILs, but not LCMV-responding

cells, even though acute LCMV infection drives a strong type I



IFN innate immune response (Cousens et al., 1999). The tran-

scriptomic definition of signatures had important functional

correlates, because the type I IFN response signature was

associated with lesser IFNg production compared with cells ex-

pressing the Th1 signature. Future studies will determine

whether any of these signatures, or those characteristic of tu-

mor-responsive cells in the draining lymphoid organs, are asso-

ciated with provision of help to CD8+ T cells, which is essential

for efficient anti-tumor responses (Ahrends et al., 2017; Bos

and Sherman, 2010).

We considered the possibility that the distinct CD4+ T cell re-

sponses to tumors versus infection resulted from differences in

the kinetics of antigen exposure: transient during acute viral

infection versus persistent exposure to tumor antigens. Expres-

sion of dysfunction-exhaustion genes, exemplified by PD-1, was

a shared attribute of cells responding to tumor and chronic viral

infection. However, the expression of type I IFN-responsive

genes (Isc signature) was specific to tumor-responsive cells

and not shared by anti-viral dysfunctional cells; the same was

true of Klr-family receptors (Th1 signature). Our analyses point

to the importance of these findings in the response to human

cancer, because we could project the IFN-responsive transcrip-

tomic pattern onto human tumors, overcoming potential sample

disparity, and demonstrate its association with response to

checkpoint therapy.

Investigating tumor-specific T cell responses in draining

lymphoid organs revealed striking differences with TILs. The

absence of Th1 cells from tumor dLN was unexpected and con-

trasted with infections, including with LCMV or with Leishmania

major, a typical Th1-driving parasite with kinetics of clinical pro-

gression similar to that of experimental tumors and in which Th1

dLN cells are important contributors to the response (Belkaid

et al., 2000). In contrast, the tumor elicited strong, tumor-specific

Foxp3-negative Tfh-like responses in dLN. Similar populations of

Tfh-like cells have been observed in human tumors (Crotty, 2019).

Although Tfh differentiation may divert T cells from more efficient

(e.g., IFNg-producing) anti-tumor differentiation, it provides sup-

port for the tantalizing possibility that tumor-elicited B cell re-

sponses could be exploited against cancer (Carmi et al., 2015).

It is also possible that this subset includes a stemcell-like compo-

nent similar to the Cxcr5+ CD8+ dLN T cells that serve as targets

for immunotherapy targeting PD-1 signaling (Im et al., 2016) or

cells with similar properties in the TME (Siddiqui et al., 2019).

In conclusion, this study provides a high-resolution charac-

terization of tumor-reactive CD4+ T cell responses in lymphoid

organs and the TME. We identify previously unrecognized

transcriptomic patterns among tumor-specific T cells and pro-

vide an extensive mapping of the CD4+ T cell immune

response against cancer. We describe analytical approaches

of broad applicability, including to clinical data, that combine

high-resolution dissection of transcriptomic patterns and syn-

thetic data integration to identify correspondences between

apparently unrelated cell differentiation states.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
6-12 weeks C57BL/6 mice were purchased from Charles River laboratories and housed in specific pathogen-free facilities.

ScRNaseq was performed onmalemice for sequencing consistency; flow cytometry was performed indifferently onmale and female

mice, with no observable difference. Animal procedures were approved by the NCI Animal Care and Use Committee.

Cell Lines and Constructs
MC38 murine colon cancer cell lines (Corbett et al., 1975) were obtained from Jack Greiner’s lab and cultured in DMEM that con-

tained 10% heat-inactivated FCS, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 0.292mg/ml L-glutamine, 100 pg/ml
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streptomycin, 100 U/mL penicillin, 10mM HEPES. MC38-GP cells were generated as follows: LCMV-gp gene was amplified from

pHCMV-LCMV-Arm53b (addgene#15796) and inserted into pMRX-IRES-Thy1.1 by BamH1 and Not1 (Saitoh, 2002; Sena-Esteves,

2004). Then pMRX-Thy1.1 contained LCMV-gp gene was transfected into Plat E cell to package retrovirus. MC38 cell line was trans-

duced by above retrovirus collection and followed by single cell sorting in 96-well plate after 48hs. The monoclonal cell lines were

identified by flow cytometry and western blot.

METHOD DETAILS

LCMV Infection Model and Tumor Model
23 105 pfu of LCMV Armstrong (Matloubian et al., 1994) were injected intra-peritoneal in 6-12 weeks old C57BL/6 mice. Mice were

analyzed 7 days post infection. 2 3 106 pfu of LCMV Clone 13 were injected intra-venously in 6-12 weeks old C57BL/6 mice. Mice

were analyzed 21 days post infection. MC38 and MC38-GP tumor cells (0.5 3 106) were subcutaneously injected into the flank of

C57BL/6 mice.

Cell Preparation and Flow Cytometry
Lymph node and spleen were prepared and stained as previously described (Wang et al., 2008). For TIL preparation, tumors were

dissected 14 to 18 days post-injection, washed in HBSS, cut into small pieces, and subjected to enzymatic digestion with

0.25mg/ml liberase (Roche) and 0.5mg/ml DNAase I (SIGMA) for 30 minutes at 37 degrees. The resulting material were passed

through 70um filters and pelleted by centrifugation at 1500rpm. Cell pellets were resuspended in 44% Percoll (GE Healthcare) on

an underlay of 67%Percoll, and centrifuged for 20min at 1600 rpmwithout brake. TILs were isolated from the 44%/67%Percoll inter-

face. Following isolation, cells were blocked with anti-FcgRIII/FcgRII (unconjugated, 2.4G2) and subsequently stained for flow

cytometry. Staining for AS15:I-Ab tetramer (Grover et al., 2012), GP66:I-Ab tetramer and Cxcr5 was performed at 37 degrees for 1

hour prior to staining for other cell surface markers. For intracellular staining, cell surface staining were preformed first, following

fixation using the Foxp3-staining kit (eBioscience). For cytokine staining, cells were incubated in the presence of PMA (25ng/ml)/Ion-

omycin (1ug/ml) andGolgi stop for 3 hours, followed by surface staining and intracellular staining. Flow cytometry data were acquired

on LSR Fortessa cytometers (BDBiosciences) and analyzedwith FlowJo (TreeStar) software. Dead cells and doublets were excluded

by LiveDead staining (Invitrogen) and forward scatter height by width gating. Purification of lymphocytes by cell sorting was per-

formed on a FACS Aria or FACS Fusion (BD Biosciences).

Single-Cell RNA-Seq
For each of the two separate biological replicates, 3000-13000 T cells sorted from one Arm infected and 10 tumor-bearing mice were

loaded on theChromium platform (10XGenomics) and libraries were constructed with a Single Cell 30 Reagent Kit V2 according to the

manufacturer instruction. Libraries were sequenced on multiple runs of Illumina NextSeq using paired-end 26x98bp or 26x57bp to

reach a sequencing saturation greater than 70% resulting in at least 49000 reads/cell. Cell recovery rate averaged 19%.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental Data
Flow cytometry was analyzed using FlowJo 10.5.0. GraphPad Prism (Version 7) was used for graphical representation and statistical

analysis of cytometry data. Flow cytometry data are presented as mean ± SEM. Unpaired two-sided Student’s T–test was used

throughout to measure statistical significance of protein expression by flow cytometry. Statistical significance annotation is denoted

in figure legends.

scRNA-Seq Data Pre-processing
De-multiplexing, alignment to the mm10 transcriptome and unique molecular identifier (UMI) calculation were performed using the

10X Genomics Cellranger toolkit (v2.0.1, http://software.10xgenomics.com/single-cell/overview/welcome). Pre-processing, dimen-

sionality reduction and clustering analyses procedures were applied to each dataset (that is, specific tissue origin in each experiment)

independently to account for dataset-specific technical variation such as sequencing depth and biological variation in population

composition, as follows. We filtered out low quality cells with fewer than 500 detected genes (those with at least one mapped

read in the cell). Potential doublets were defined as cells with number of detected genes or number of UMIs above the 98th quantile

(top 2% owing to up to 2% estimated doublets rate in the 10X Chromium system). Potentially senescent cells (more than 10% of the

reads in the cell mapped to 13 mitochondrial genes) were also excluded. Cell numbers pre- and post-filtering are found in Table S1.

Library size (LSj, number of UMIs in cell j) normalization and natural log transformation were applied to each cell library, i.e., normi
j =

lnð100003ðrawi
j =LSjÞ + 1Þ, to quantify the expression of gene i in cell j, where rawi

j is the number of reads for gene i in cell j.

Transcriptomic Effects of TCR Engagement as a Result of GP66-Tetramer-Based Purification
GP66-tetramer binding results in potential cross-linking of and signaling by the TCR of GP66-specific T cells. To model the transcrip-

tomic effect of TCR engagement as a result of GP66-tetramer-based purification, we sought to compare Arm-specific CD4+ T cells
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obtained either after GP66-tetramer purification or without tetramer-based purification. To enrich in such cells without tetramer stain-

ing, we noted that ~94% of GP66-specific CD4+ splenocytes from Arm-infected mice express little or no IL7R [IL-7 receptor a chain]

(Figure S2F). Thus, we considered that most CD44hiCD4+IL7R+ splenocytes were not Arm-specific, and sorted CD44hi IL7R– (Arm

IL7R–) T cells for scRNaseq; in addition to antigen-specific CD44hi GP66-tetramer purified (Arm GP66+) T cells (Figure S2G). Pooled

clustering of the two samples revealed 2 (out of 6) clusters heavily dominated by tetramer-stained cells (Figure S2H, top), suggesting

that the bias introduced by tetramer staining was limited to those clusters. As expected from GP66 tetramer engagement with the

TCR, GP66-specific clusters were characterized by genes involved in T cell receptor signaling and NFKB signaling (Table S6), while

clusters containing cells from both samples displayed features of Tfh and Th1 cells (Figure S2H, bottom). We designated the GP66-

characteristic genes as the TCR engagement GP66 signature (Table S3) and regressed the activation scores of the signature from the

expression matrix using a linear regression model fitted to each gene.

Dimensionality Reduction
Highly variable genes were defined as genes with greater than one standard deviation of the dispersion from the average expression

of each gene. However, to account for heteroscedasticity, variable genes were identified separately in bins defined based on average

expression. PCA analysis was performed on the normalized expression of the set of dataset-specific highly variable genes. We

selected the top PCs based on gene permutation test (Buja and Eyuboglu, 1992). ‘Barnes-hut’ approximate version of t-SNE (van

der Maaten, 2014) (perplexity set to 30, 10k iterations) was applied on the top PCs to obtain a 2D projection of the data for

visualization.

Gene Signature Activation Quantification
Gene signature activation was quantified relative to a technically similar background gene set as described in (Haber et al., 2017).

Briefly, we identify the top 10 most similar (nearest neighbors) genes in terms of average expression and variance, then define the

signature activation as the average expression of the signature genes minus the average expression of the background genes.

The GP66 tetramer staining signature is defined above. Additionally, we defined lists of ribosomal, mitochondrial, and cell cycle

genes (Kowalczyk et al., 2015) for confounder controls (Table S3).

High-Resolution Clustering
Phenograph clustering (Levine et al., 2015) using the top PCs (see dimensionality reduction) was performed independently on each

dataset to allow full control of the clustering resolution based on dataset-specific coverage and heterogeneity features. The clus-

tering resolution (number of clusters) is controlled by the K nearest neighbor (KNN) parameter. We designed a simulation analysis

to estimate the optimal clustering resolution, i.e., at what resolution the clustering is superior in quality to clustering driven by tech-

nical biases inherent to scRNaseq, as follows. Here we define the clustering quality as the clustering modularity reported by Pheno-

graph, which indicates intra-cluster compactness and inter-cluster separation. The simulations consist of repeating the clustering

analysis on 100 shuffled expression matrices to estimate the ‘null’ distribution of the clustering quality, where the gene expression

measurements are permutedwithin each cell to retain the cell-specific coverage biases.We repeated this process for varying value of

the KNN parameter k to compare the clustering modularity of the originalOk to the shuffled Sk data. The final resolution was defined

as the maximal resolution where ðOk =SkÞR2. Following this strategy, k was set to 22, 27, 29, 22, 64 and 51, for dLN experiment 1

and 2, TILs experiment 1 and 2 and Arm experiment 1 and 2, respectively. All clustering analysis was performed for each sample

separately, except of the low-resolution clustering of TILs and dLN (Figure S2B), where dLN and TILs from experiment 1 were

analyzed jointly via pooled clustering. Pooled clustering analysis (joint rather than separated by dataset) and visualization was

performed using PCA on the aggregate list of highly variable genes defined on each dataset. Clustering was done with and without

controlling for confounding factors (number of UMIs, number of detected genes and gene signatures activation of ribosomal, mito-

chondrial, cell cycle and GP66 staining signature). Clustering analysis of TILs, dLN, and Arm cells showed little overlap even after

correcting for potential confounders.

After obtaining the initial clusters and identifying the overexpressed genes in each cluster, we apply two filters: (1) we exclude small

clusters of B cells (CD79+ populations) from each dataset. (2)We identify PCs driven by B cell marker genes and remove the individual

cells whose expression profile has high scores for those PCs (outliers). We then repeat the entire processing and clustering to prevent

detecting highly variable genes and PCs driven by contaminations, which may in turn reduce the signal of other small populations of

interest.

Differential Expression Analysis and Population Matching
Differential expression was performed using Limma (version 3.32.10). Cluster defining genes reported throughout passed FDR-cor-

rected (Benjamini–Hochberg procedure) differential expression tests independently in the two replicates (Fold change > 1.25,

Q-value < 0.1). Statistical significance is indicated in relevant figures and supplementary tables. We initially performed differential

expression analysis between each cluster against the pool of all other clusters within a given dataset. Identified clusters were labeled

as a known T cell subtype if the majority of the known subtype-defining genes were differentially overexpressed in that cluster. We

then matched populations across experiments to assess the reproducibility of the populations and to uncover similarities across da-

tasets that are masked due to overall tissue-context-specific differences. To reduce the effects of tissue-context-specific effects on
e4 Cell Reports 29, 3019–3032.e1–e6, December 3, 2019



the similarity calculation, we used the fold change (FC) measure of each gene FCc
g = ðCforegroundgD=CbackgroundgDÞ (average of gene

g in cluster c (foreground) relative to all other clusters (background) of the same dataset). Then we measured the Pearson correlation

between the FC vectors of all pairs of clusters across datasets. Unlike common batch correction approaches which match the mean

and variance of each gene across batches, the FC vectors describe the deviation intensity of each gene relative to the sample mean,

without skewing those deviations to match across samples, thereby not removing biologically relevant factors. We compare this

approach with an alternative approach that uses Euclidean distances between the average expression vectors, defined as average

expression of all genes in a cluster and a recent data integration approach (Butler et al., 2018) following tutorial specifications [https://

satijalab.org/seurat/immune_alignment.html; version 2.0.1].

Robust Cluster Calling and Robust Population Comparisons
For each dataset, we defined ‘robust clusters’ as those that had highly similar match in the biological replicate. High similarity is

defined as Pearson correlation coefficient greater than e1:28 standard deviations from the mean for each dataset, corresponding

to nominal p value of 0.1. Hierarchical clustering was performed on the identified robust clusters using the inter-cluster similarity ma-

trix, where the similarity was defined as above using the Pearson correlation between the FC vectors. Using the vector of average

expression vectors did not achieve similar result; specifically, using hierarchical clustering of the Euclidean distances between the

clusters average expression vector retained the grouping of clusters based on origin tissue (Figure S3B). We then analyzed differen-

tial expression patterns for clusters belonging to each meta-cluster, excluding cell cycle clusters. For a given pair of clusters of in-

terest, A and B in datasets X and Y respectively, we performed three differential expression analyses: (1) differential expression in A

relative to other clusters in X, (2) differential expression in B relative to other clusters in Y, and (3) differential expression in A relative to

B. In addition to average expression differences, we quantified the detection rate of gene X as proportion of cells where 1 or more

reads was mapped to X and prioritized differentially expressed genes exhibiting also differential detection across conditions. This

analysis was performed for the two replicates separately and the results interpreted jointly; a gene was deemed as overexpressed

in cluster A in tissue X if it is overexpressed relative to other clusters in X as well as relative to B, in both replicates.

scRNaseq Contour Plots
Normalized scRNaseq expression measurements were visualized as contours, where zero (0) values were assigned random value

drawn from a normal distribution centered around 0.

scRNaseq Violin Plots
Violin plots were used to visualize the scaled expression distribution per cluster or group of clusters, where scaled expression cor-

responds to Min-Max scaling of the normalized UMIs to the range of [0,1], i.e., Xnorm = ðX�Xmin =Xmax �XminÞ, where Xmin and Xmax are

the minimum and maximum value, respectively, of each gene.

Reversed Graph Embedding
Trajectory analysis of TIL populations (group I and II, excluding group III Tregs) was performed using Monocle (version 2.9.0, param-

eters max_components = 2, method = DDRTree).

Gene Signature Definition
For each TIL subpopulation (group I Th1, group II Isc, group II nRes and group III Treg) we selected overexpressed genes exhibiting

differential detection (as defined above) relative to all other TILs across both experiments (Table S3).

Correspondence to Human Data
Human liver cancer TIL scRNaseq counts were downloaded from GEO [GSE98638]. Non-CD4+ T cells were filtered based on the

classification in the original publication (Zheng et al., 2017a). Human gene symbols were translated to Mouse gene symbols using

package biomaRt (version 2.37.8). Pre-processing, clustering, and population matching analysis were applied as described above.

Human melanoma TILs data scRNaseq counts were downloaded from GEO [GSE120575]. We selected CD4+ T cells as cells with at

least one mapped read to CD4 and [CD3D or CD3E or CD3G], following the authors definition (Sade-Feldman et al., 2018). 108 out of

136 Isc signature genes were mapped to human gene symbols. The detection rate of each Isc signature gene (as defined above) in

each lesion were used to assess differential detection across responders and non-responders. We used two-sided Wilcoxon test to

quantify the significance of differential activation.

Correspondence with External Gene Signatures
Gene set enrichment analysis of immunologic gene signatures was performed usingMSigDB (Liberzon et al., 2015) [C7: immunologic

signatures database with clusterProfiler package (version 3.4.3). All other gene signatures were downloaded from the original pub-

lication’s supplementary materials. Correspondence to Tcmp signature was performed by differential expression of dLN Ccr7+ clus-

ters n5-6 relative to other dLN and TIL (n1, n7-8, t1-7) rather than dLN subpopulations alone to satisfy the background conditions
Cell Reports 29, 3019–3032.e1–e6, December 3, 2019 e5
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used in the original publication. The heterogeneity of the IL-27 co-inhibitory gene signature (Chihara et al., 2018) was evaluated by

analyzing differential gene expression across Th1, Isc, and Treg TIL, indicating which genes are preferentially expressed in one sub-

population versus the others.

DATA AND CODE AVAILABILITY

The accession number for the sequencing data (scRNAseq) reported in this paper is GEO:GSE124691.

The computational pipeline is available on https://github.com/asmagen/RobustSingleCell. The code is archived by Zenodo and

can be cited via https://doi.org/10.5281/zenodo.3239269.

The pipeline requires access to Slurm high-performance computing core for efficient simulation analyses.
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Figure S1. Characterization of antigen-specific CD4+ T cell responses in MC38 colon adenocarcinoma 
tumors, Related to Figure 1. 

(A) Overlaid protein expression of Thy1.1 in MC38 and MC38-GP cells (left). Immunoblot analysis of GP 
protein expression in HEK293T cells, HEK293T cells transfected with pMRX-GP-IRES-Thy1.1 plasmid, MC38 
cells or MC38-GP cells (right). 

(B) C57BL/6 mice were subcutaneously injected MC38 or MC38-GP cells and analyzed at day 14 post-
injection. Left panel shows flow cytometry contour plots of GP66 vs. control (AS15 peptide from T. gondii) class II 
tetramer staining in TILs, dLN and nLN from MC38 and MC38-GP tumor-bearing mice. Right panel shows the 
number of GP66+ TILs per gram of tumor and total number of GP66+ dLN and nLN cells, separately for MC38 and 
MC38-GP tumor-bearing mice (Unpaired Mann-Whitney U test, ** p < 0.01, *** p < 0.001, NS: not significant). 
Data is from 8 mice of each condition analyzed in two experiments.  

(C) Flow cytometry analysis of CD8 expression vs. GP33 class I tetramer staining in nLN ,dLN and TILs from 
MC38-GP tumor-bearing mice (left). Total number of GP33+ dLN and nLN cells, and number of GP33+ TILs per 
gram of tumor (right). Data is from 13 mice analyzed in three experiments.  

(D) Overlaid protein expression of Tbet in GP33+ CD8+ dLN and TILs; grey shaded histogram shows T-bet 
expression in naive CD8+ splenocytes from tumor-free control mice; histogram shows concatenated data from 6 
individual mice analyzed in one experiment. Graph on the right shows T-bet MFI in GP33+ dLN and TILs; data is 
from 9 tumor bearing mice analyzed in two experiment and is expressed relative to naive CD8+ splenocytes from 
tumor-free control mice. Each symbol represents an individual mouse.  

(E) Flow cytometry contour plots of GP66 tetramer vs. PD-1 staining in TILs (left) and percentage of PD-1+ 
cells out of GP66+ TILs (right). Data is from 16 mice analyzed in three experiments. 

(F) Right two columns show flow cytometry expression of PD-1 vs. CD39 in GP66+CD4+ TILs or dLN, gated 
on all such cells (top row) or Foxp3+or Foxp3– subsets (bottom rows). Top left plot shows staining of naïve 
splenocytes from tumor-free mice. Data is representative from 11 mice analyzed in three experiments. 

(G) GP66-specific CD44hi CD4+ splenocytes were isolated from WT animals 7 days post-infection with LCMV 
Armstrong. Protein expression contour of populations used for scRNAseq captures from MC38-GP tumor-bearing 
mice (TILs PD-1 vs. CD44, dLN GP66 vs. AS15 control) and LCMV Armstrong infected mice (GP66 vs. CD44). 
Data is representative from >50 mice analyzed in >10 experiments. 
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Figure S2. Characterization of immune responses to Arm and MC38-GP by scRNAseq, Related to figures 1 
and 2. 

(A) GP66-specific CD4+ splenocytes from WT animals 7 days post-infection with LCMV Armstrong analyzed 
by scRNAseq. Heatmap shows row-standardized expression of selected genes across Arm clusters. 

(B-E) TILs and dLN cells from WT mice at day 14 post MC38-GP injection analyzed by scRNAseq. (B) 
Heatmap shows row-standardized expression of selected genes across main TIL and dLN groups (as defined in text). 
(C) tSNE display of TILs and dLN cells generated using different parameter combination of perplexity and number 
of iterations, grey-shaded by tissue origin. (D) tSNE displays of TILs and dLN cells, grey-shaded by tissue origin, 
post confounder correction for number of unique molecular identifiers (UMIs) and expression of ribosomal and 
mitochondrial coding genes (left) or TCR engagement on dLN cells as a result of GP66-tetramer-based purification 
(right). (E) scRNAseq analysis of TILs and dLN cells from replicate experiment II. Heatmap shows row-
standardized expression of selected genes across TIL and dLN clusters (left). tSNE display of TILs and dLN cells, 
grey-shaded by tissue origin (right). 

(F-H) Analysis of CD4+ splenocytes from C57BL/6 animals 7 days post-infection with LCMV Armstrong 
(Arm). (F) Flow cytometry contour plot of GP66 tetramer staining vs. IL7R in CD4+ Arm cells. (G) Flow cytometry 
contour plots of IL7R vs. CD44 (for Arm IL7R- sample, left) and GP66 vs. CD44 (for Arm GP66+ sample, right). 
(H) Arm IL7R- and Arm GP66+ cells analyzed by scRNAseq. Heatmap shows row-standardized expression of selected 
genes across pooled Arm IL7R- and Arm GP66+ clusters (bottom). Bar plot indicates the number of Arm IL7R- and 
Arm GP66+ cells in each cluster relative to the total number of cells (top). 
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Figure S3. Assessment of tissue-context-specific effects on clustering analyses and TILs-dLN heterogeneity, 
Related to Figure 3. 

 (A-C, G,H) TILs, dLN and Arm cells from replicate experiments I and II analyzed by scRNAseq. (A) tSNE 
plots show TILs, dLN, and Arm cells, grey-shaded by origin (left) or color-coded by Treg or cell-cycle (Cycle) 
clustering assignment (grey for all other clusters) (right). (B) Heatmap shows Euclidean similarity between cluster-
specific average expression vectors (as defined in text) (left) annotated with cluster origin and cluster group or type 
(right). (C) Bar plot shows relative cluster composition of Foxp3+ or Foxp3- TILs and Foxp3- Arm (no Foxp3+ cells 
found in GP66+ Arm) after applying a data integration approach (Butler et al., 2018). 

(D-E) Comparison of dLN Tregs and TIL Tregs (respectively clusters t6-7 and n1 as shown in Fig. 1A). (D) 
Contour plots of dLN Treg (orange) or TIL Treg (blue) cell distribution according to scRNAseq-detected normalized 
expression of Icos vs. Tnfrsf4 (left) and Gzmb vs. Lag3 (right). (E) Violin plot of Lag3 and Gzmb scRNAseq 
expression in Treg vs. non-Treg TIL and dLN populations (Unpaired T test, ** p < 0.01, *** p < 0.001); bands 
indicate quartiles (25th, 50th and 75th quantile).  
      (F) Overlaid flow cytometry expression of ICOS in Foxp3+ TILs and dLN cells and Foxp3+ or Foxp3- CD4+ 
splenocytes from tumor-free control mice (left). Data is representative from 11 mice analyzed in three experiments. 
Flow cytometry contour plots of Granzyme B vs. LAG3 in Foxp3+ TILs or Foxp3+ dLN cells (middle), and Foxp3– 
TILs or Foxp3– dLN (right). Graphs were generated from 5 concatenated files, each of them representing a single  
mouse and processed in parallel in one experiment. Data is representative of 2 such experiments.  

(G) Heatmap shows row-standardized expression of TIL Isc and Th1 characteristic genes across TIL, dLN and 
Arm clusters. 

(H) Gene detection statistics (% expressing cells) of differentially expressed genes by scRNAseq in TILs Th1 
and Arm Th1. 

(I) Overlaid protein expression of PLZF in GP66+ and PD-1+ TILs and CD44hi NK1.1+ DN (double negative 
CD4-CD8-) thymocytes from tumor-free control mice. Data is representative from 10 mice analyzed in two 
experiments. 
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Figure S4. dLN cell diversity, Related to Figure 4. 
(A) Mean fluorescence intensity (MFI) of BCL6 and CD200 in CXCR5+ or CCR7+GP66+ dLN cells relative to 

naive CD4+ splenocytes from tumor-free control mice. (Unpaired t-test, ** p < 0.005, **** p < 0.0001).  
(B) Percentage of CD200hi cells out of CCR7+CXCR5+ dLN cells. 
(C) Top panel shows flow cytometry contour plots of CXCR5 vs. PD-1 in CD44hi CD4+ dLN cells from MC38 

and MC38-GP tumor-bearing mice. Bottom panel shows percentage of Tfh cells out of total CD44hi CD4+ T cells in 
dLN (left) and total number of Tfh cells (right). (A-C) Data is representative of 17 mice analyzed in three 
experiments. 
(D) Mean fluorescence intensity (MFI) levels of ICOS in Arm Tfh and dLN Tfh relative to naive CD4+ splenocytes 
from tumor-free control mice (Unpaired t-test, p < 10-5). (A-C) Data is representative of 10 mice analyzed in two 
experiments. 
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Figure S5. Characterization of the exhaustion status in clone 13 cells and TILs, Related to Figure 5. 
 
(A) Overlaid protein expression of PD-1 or 2B4 in GP33+ CD8+ splenocytes from Arm- or Clone 13-infected 

mice.  
(B) Overlaid protein expression of PD-1 in GP66+ CD4+ splenocytes from Arm- or Clone 13-infected mice. 

Grey shaded trace (A, B) is control from tumor-free mice. 
(C) Flow cytometry contour plots of Tbet vs. IRF7 in Foxp3 GP66+ TILs, Clone 13, or Arm cells, and in naive 

CD4+ splenocytes from tumor-free control mice. (A-C) Data is representative of 10 mice analyzed in two 
experiments. 

(D) Heatmap shows row-standardized expression of selected exhaustion genes across TIL Th1, Treg and Isc 
clusters (respectively clusters t1-2, t6-7 and t3-4 as shown in Fig. 1A). 
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Figure S6. Correspondence to human data and dysfunction gene signatures, Related to Figure 6. 
(A-B) Analysis of TILHLC and TILs (as defined in text). (A) tSNE plots show cells grey-shaded by origin. (B) 

tSNE plots show cells color-coded by cell cycle signature activation level. 
(C) Analysis of TILMel (as defined in text). Heatmap shows row-standardized expression of selected TIL 
characteristic genes across TILMel clusters. 
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