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IHC controls were used in our study. (a) Peptides for the 
protein of interest (green) were used to reveal off-target 
binding within the porcine ovarian tissue and  (b) no primary 
controls were used for each experiment to reveal non-spe-
cific binding of secondary antibodies (green). All were coun-
terstained with a nuclear stain (blue). Scale bar, 200 µm.
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Hematoxylin and eosin stained section of a peri-pubertal porcine ovary 
demonstrating follicles at all stages of maturation, but lacking corpus lutea. 
Inset images were taken from locations within the whole ovary scan with the 
matching letter. Clusters of primordial follicles (blue ovals) were present within 
0.5 mm from ovarian surface. Scale bar, 0.5 mm. Note: the ovaries shrunk to 
~ 50 - 60% of the original size through fixation, processing and embedding.
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Peptide reads represented by standard deviations from LS Means for (a) COL1, (b) COL4A2, (c) AGRN, 
(d) ECM1, (e) EMILIN1, (f) FN1, (g) TGFB, (h) VTN, (i) ZP3. These are represented across depths 0.5 - 
3.5 mm (n = 8 per slice, 4 ovaries with 2 technical replicates each); ND, not detected; bars represented 
as mean, SEM.

Supplemental Figure 3

a b c

d e f

st
. d

ev
. f

ro
m

 L
S 

m
ea

ns

ND st
. d

ev
. f

ro
m

 L
S 

m
ea

ns

st
. d

ev
. f

ro
m

 L
S 

m
ea

ns

g h i

st
. d

ev
. f

ro
m

 L
S 

m
ea

ns

st
. d

ev
. f

ro
m

 L
S 

m
ea

ns

st
. d

ev
. f

ro
m

 L
S 

m
ea

ns



Supplemental Table 1: Antibodies used for iPCR and IHC 
 

Target Manufacturer SKU Use 
AGRN Abcam ab85174 iPCR 
AGRN Lifespan Biosciences LS-G81348-20 IHC 
COL1 Abcam ab90395 iPCR 
COL1 EMD Millipore 234138-1MG IHC 
COL4 EMD MIllipore CC083 IHC 
COL4A2 Abclonal A7657 iPCR 
ECM1 Abcam ab234976 iPCR & IHC 
EMILIN1 Fisher Scientific PA551745 iPCR 
EMILIN1 ABNova H00011117P01 IHC 
FN1 Abcam ab23750 iPCR & IHC 
LMNA Proteintech 10298-1-AP iPCR & IHC 
TGFB Abcam ab92486 iPCR & IHC 
VTN Abcam ab140016 iPCR & IHC 
ZP3 Fisher Scientific 50-561-353 iPCR & IHC 

 
Supplemental Table 2: Primers used for qPCR 
 

Target Manufacturer  SKU 
AGRN Bio-Rad qBtaCID0012730 
COL1A1 Bio-Rad qSscCED10042976 
COL1A2 Bio-Rad qSscCED0020342 
EMILIN1 Bio-Rad qSscCED0008548 
COL4 Bio-Rad qSscCID0013145 
FN1 Bio-Rad qSscCID0003939 
ECM1 Bio-Rad qSscCID0013839 
VTN Bio-Rad qSscCED0021774 
ZP3 Bio-Rad qSscCID0013229 
TGFB Bio-Rad qSscCID0018090 
LMNA Bio-Rad qSscCID0012088 

 
Supplemental Table 3: Blocking peptides/proteins used for IHC controls 
 

Target Manufacturer  SKU 
AGRN LifeSpan Biosciences LS-G81348-20 
COL1 EMD Millipore 234138-1MG 
COL4 EMD Millipore CC083 
ECM1 R&D Systems 3937-EC-050 
EMILIN1 Abnova H00011117P01  
FN1 EMD Millipore 341631-1MG 
TGFB R&D Systems 7754-BH-005 
VTN STEMCELL Technologies 7180 

 



Supplemental Table 4: Matrisome proteins identified in the ovary 

Protein ID Previously identified in 
ovary Characterized in ovary Role in ovary 

COL1A2 1 (h) 2–4 (m), 5 (h), 6 (b) major structural component of organ 
COL2A1 * 7(r) in theca and GC 
COL3A1 8 (b) 5 (h) inner layers of capsular stroma 
COL4A1 1 (h), 9,10 (b) 5 (h), 3,4 (m), 6 (b) basal lamina component 
COL4A2 1 (h), 9,10 (b) 5 (h), 3,4 (m), 6 (b) basal lamina component 
COL5A1 11 (h culture, mRNA) none unknown 
COL5A2 12 (b GC and theca, mRNA) none unknown 
COL6A2 1,13 (h), 14 (mo), 15 (m) 16 (h, undefined subunit of α6), localized to theca 
COL6A5 * 16 (h, undefined subunit of α6) localized to theca 
COL14A1 1 (h), 14 (mo) none unknown  

AEBP1 none none unknown 
AGRN none none unknown 
DPT 17(h, “faint” mRNA) none unknown 
ECM1 18 (p), 19 (h) 19 (h) downregulated in insulin resistant PCOS, potential antral arrest 
EFEMP1 18 (p) 20 (h) increased tumor angiogenesis, tumor progression 
EMILIN1 1,13 (h) none unknown 
EMILIN3 none none unknown 
FBN1 1 (h), 8 (b) 21 (fetal b, h), 22 (p), 23,24 (b), 24 (h) TGFB regulation, structural component of elastin fibers and microfibrils, CC apoptosis 
FN1 1 (h), 18 (p) 3,4,25 (m), 6 (b) luteinization and CC expansion 
IGFBP7 * 26,27 (r) steroidogenesis 
LAMB1 1 (h) 28 (p), 19 (h), 3,4 (m) cell proliferation, migration, downregulated in PCOS, 
LAMC1 1 (h) 28 (p), 19 (h), 3,4 (m) associated with premature ovarian failure, cell proliferation, migration 
LTBP1 * 29,30 (m), 23 (b) modulation of TGFB1 
MFAP2 1 (h) none unknown 
MFGE8 * 31–33 (m) phagocytosis of apoptotic GC, gonadogenesis 
SRPX2 18 (p) none unknown 
TGFB1 1 (h), 18 (p), 8 (b) 34 (r), 35 (m), 36 (p) cell growth, proliferation, inflammation, differentiation, apoptosis 
VTN 1 (h), 18 (p) 37,38(h), 39,40 (h cells), 41 (p), IGF binding, integrin binding and adhesion, cancer progression and metastasis 
VWA1 * 42 (m), 43–47(h) interacts with ERK5-PI3K/Akt axis, increased expression in PCOS, cancer, and during pregnancy, 

stimulates platelet aggregation 
ZP2 * 48 (h, CHO), 49–52 (h), 53 (c), 54 (mo), 55 (m, mo,h), 56,57 (m) oocyte maturation, fertilization 
ZP3 * 48 (h, CHO), 49–52 (h), 53 (c), 54 (mo), 55 (m, mo,h), 56,57 (m) oocyte maturation, fertilization 
ZP4 14 (mo) 48 (h, CHO), 49–52 (h), 53 (c), 54 (mo), 55 (m, mo,h), 56,57 (m) oocyte maturation, fertilization 

A2M 1 (h), 18 (p) 58–60 (h serum), 61 (r) expressed in GC, increased in women with inflammatory conditions including neoplastic lesions, 
reduced expression in ovarian cancer  

AMBP 18 (p) 62 (h) interacts with ITIH family genes in solid tumor cancers 
CTSD * 63,64 (h) lysosome activation in late corpus luteum, oxidative stress in ovarian cancer 
HRG 14 (mo) 65 (h), 66 (p), 67 (h follicle, embryo) 68 (h cells) in vitro maturation, cancer cell invasion 
ITIH1 1 (h), 18 (p), 69 (b FF) 62 (h) solid tumor cancer progression, covalent linkage to hyaluronan for ECM stability 
ITIH2 1 (h), 18 (p), 69 (b FF) 62 (h) solid tumor cancer progression, covalent linkage to hyaluronan for ECM stability 
KNG1 * 70 (b), 71 (h serum, cells) ovulation, stimulated by progesterone 
LOX * 72 (p GC), 73 (h FF, h GC, r), 74 (h FF), 75 (h GC), 76–78 (m), 

77 (b), 79 (r) 
follicle development, angiogenesis in GC, TGFB, estrogenesis 

SERPINA1 1 (h), 18 (p) 80 (m), 81 (h FF), 82 (h GC) plasminogen activator inhibitor, upregulated in PCOS reducing plasmin levels 
SERPINA3 1 (h) 80 (m) plasminogen activator inhibitor 
SERPINC1 1 (h), 18 (p) 80 (m), 83 (r serum) plasminogen activator inhibitor 
SERPIND1 1 (h), 18 (p) 80 (m) plasminogen activator inhibitor 
TGM2 14 (mo), 84 (b, mRNA) none unknown 



 
 
 
 
 
 
 
  

Protein ID Previously identified in 
ovary Characterized in ovary Role in ovary 

ANXA1 1,13 (h), 14 (mo), 18 (p) none implicated in both cancer and PCOS, target of GNRH in gonadotrope cells, CL regression 
ANXA2 1,13 (h), 14 (mo) none unknown 
ANXA4 1,13 (h), 14 (mo) none unknown 
ANXA5 1,13 (h), 14 (mo), 85 (h blood) 86 (r) in GC after hCG 
ANXA7 none none unknown 
ANXA11 13 (h) none unknown 
GPC1 none none unknown 
LGALS1 14 (m) 87 (b),88,89 (m), 90 (h cells), 91 (b), 92 (p gc) lutealization, regression of CL 
SDC2 93 (o CC, mRNA) 94 (h) confined to stroma of normal and benign tissue     

BGN 15 (m, mRNA) none unknown 
DCN 1 (h); 14 (mo), 18 (p), 8 (b) 95 (m), 72 (p GC) signaling molecule in ovarian ECM 
FMOD 1 (h); 14 (mo) none unknown 
LUM 1 (h); 14 (mo), 18 (p), 96 (b) 97 (fetal b), 98 (CHO) stromal expansion, cell migration, expression in CC 
PRELP 1 (h), 14 (mo), none unknown 
VCAN 18 (p) 99(h serum), 100–102 (h CC), 103 (m, r) binds hyaluronan, decreased in PCOS, CC, oocyte competency, development quality of oocytes 
Abbreviations: b, bovine; c, canine; CC, cumulus cells; CHO, Chinese hamster ovarian cells; CL, corpus luteum; GC, granulosa cell; FF, follicular fluid; h, human; m, mouse; mo, monkey; o, ovine; p, 
porcine; PCOS, polycystic ovarian syndrome; r, rat; *, see characterization;   
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