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SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. EC SELECTION AND DATA METRICS FOR GRECS, CRECS AND MRECS (RELATED TO FIGURE 1, 2 AND 3) 

(A) FACS strategy to sort RECs from kidney cortex, medulla and glomeruli. cRECs and mRECs were puri-

fied by FACS, sorting CD45-CD102+ cells, excluding CD45+ leukocytes. gREC were isolated by FACS sort-

ing CD45-CD73-CD102+ cells, thereby excluding CD45+ leukocytes and CD73+ mesangial cells. (B) t-SNE 

plots of RECs from the three kidney compartments in control and dehydration conditions, color-coded 

for the expression of the indicated markers (Pecam1, Cdh5 and Icam2 for ECs; Hbb-a1, Hbb-a2 and Hbb-

bs for red blood cells that were excluded from downstream analyses). Red arrowheads indicate cells 

with high expression of the indicated marker on the t-SNE plot. Scale: light blue is low expression, red 

is high expression. (C-E) Bar graphs showing the number and percentage of analyzed RECs per cluster 

(left panel), and violin plots showing the number of genes and unique molecular identifiers (UMIs) (right 

panel) for gRECs (C), cRECs (D) and mRECs (E) in control conditions. 

Figure S2. IDENTIFICATION OF GREC AND CREC SUBCLUSTERS (RELATED TO FIGURE 2) 

(A) t-SNE plots of gRECs from the control condition, color-coded for the expression of the indicated 

markers. Red arrowheads indicate cells with high expression of the indicated marker on the t-SNE plot. 

Scale: light blue is low expression, red is high expression. (B) Expression level-scaled heatmap of cell-

cell interaction-related genes in gRECs from the control condition. (C) t-SNE plots of cRECs from the 

control condition, color-coded for the expression of the indicated markers. Red arrowheads indicate 

cells with high expression of the indicated marker on the t-SNE plot. Scale: light blue is low expression, 

red is high expression. (D) Representative images of mouse kidney sections used as negative controls 

for the micrographs displayed in Figure 2H. Incubation with CD105 (red), endomucin (grey) and CA-VIII 

(green) was omitted. Nuclei are counterstained with Hoechst (blue). Scale bar, 200 µm. 
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Figure S3. IDENTIFICATION OF MREC SUBCLUSTERS (RELATED TO FIGURE 3) 

(A) t-SNE plots of mRECs from the control condition, color-coded for the expression of the indicated 

markers. Red arrowheads indicate cells with high expression of the indicated marker on the t-SNE plot. 

Scale: light blue is low expression, red is high expression. (B) Representative images of mouse kidney 

sections used as negative controls for the micrographs displayed in Figures 3D-F. Incubation with CD105 

(red), PLVAP (grey) and CRYAB (green) was omitted. Nuclei are counterstained with Hoechst (blue). 

Scale bar, 200 µm. 

Figure S4. GREC, CREC AND MREC SUBCLUSTER ANALYSIS (RELATED TO FIGURES 2 AND 3) 

 (A,B) Expression level-scaled heatmap of interferon activated- and antigen presentation-related genes 

(A) and angiogenesis-related genes (B) in cRECs and mRECs from the control condition. Scale: light blue 

is low expression, red is high expression. (C) Correlation heatmap of all gREC, cREC and mREC subclus-

ters.  Scale: red indicates a high transcriptome similarity, blue indicates a low transcriptome similarity. 

Figure S5. REC MOLECULAR ADAPTATION TO DEHYDRATION (RELATED TO FIGURE 4 AND 6) 

(A) Body weight of mice subjected to control condition or water deprivation over time, expressed as 

percentage of initial body weight. (B-H) Urine osmolality (mOsm/kg) (B), plasma osmolality (mOsm/kg) 

(C), plasma sodium level (mM) (D), plasma total protein level (g/L) (E), plasma AST activity (U/L) (F), 

plasma LDH activity (U/L) (G), and plasma urea level (mg/dL) (H) of mice subjected to control condition 

or water deprivation over time. (I) Venn diagram of the top 50 up- (left) and downregulated (right) 

genes in RECs from the three kidney compartments at 12 hours of dehydration (top), 24 hours of dehy-

dration (middle) and 36 hours of dehydration (bottom). Note for the 36 hours timepoint: the cREC sam-

ple did not meet sequencing quality standards and was therefore not included in downstream analyses. 

(J) (Top) Representative micrographs of kidney sections from mice subjected to control condition or 48 
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hours of water deprivation, stained for the hypoxia probe pimonidazole (brown). (Bottom) Pimonida-

zole staining quantification as expressed as percent of measured area for cortex and medulla from mice 

subjected to control condition or 48 hours of dehydration (DH). Data are mean ± SEM; n=3-6 mice/con-

dition. Statistical tests: unpaired t-test, One- and Two-way ANOVA/Bonferroni, Kruskal-Wallis/Dunn’s. 

*P<0.05. 

Figure S6. RESPONSE OF MRECS SUBPOPULATIONS TO DEHYDRATION. (RELATED TO FIGURE 5) 

(A) Principal component analysis plot of Jaccard similarity coefficient of mREC subpopulations in control 

and dehydrated mice. (B) scMap cluster projection of the control mREC phenotypes to all mRECs (i.e. 

including mRECs from the 12, 24, 36 and 48 hours of dehydration). Similarity scores of mRECs clusters 

are provided as boxplots. Unassigned cells are indicated in dark grey. 

Figure S7.  MOLECULAR AND METABOLIC ADAPTATION OF GRECS TO DEHYDRATION (RELATED TO FIGURE 5 AND 6) 

(A) Correlation heatmap of gRECs from the control condition and at different dehydration time points. 

Scale: red indicates a high transcriptome similarity, blue indicates a low transcriptome similarity.  (B) t-

SNE plot color-coded for gRECs from the control condition and at different dehydration time points. (C-

H) Expression level-scaled heatmaps of genes encoding heat shock proteins, or genes involved in cyto-

skeleton remodeling, DNA damage and growth arrest, and immediate early genes (C), cell volume reg-

ulation related genes (D), ribosome-related genes (E), proteasome-related genes (F), glycolysis-related 

genes (G) and oxidative phosphorylation-related genes (H), in gRECs from the control condition and at 

different dehydration time points. (I) Pathway map showing changes in transcript levels of metabolic 

genes from glycolysis, TCA cycle and OXPHOS in gRECs after 48 hours of dehydration compared with 

controls. Blue corresponds to low expression levels after dehydration; grey indicates that the change in 

gene expression did not reach the fold change threshold to be color-coded. 
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Figure S8.  IN VITRO DEHYDRATION MODEL CHARACTERIZATION (RELATED TO FIGURE 7) 

(A) Measurement of osmolyte content in control and hyperosmolarity (hyperosm)-exposed ECs: sorbi-

tol, taurine, alanine, glutamine and glycerophosphocholine (n=3). (B) Left: Representative blot of Na+/K+ 

ATPase α1 subunit and β-actin in control and hyperosmolarity (hyperosm)-exposed ECs. Right: Densi-

tometric quantification of the immunoblot signal of the Na+/K+ ATPase α1 subunit in control and hyper-

osmolarity (hyperosm)-exposed ECs (n=4). (C) Oxygen consumption rate (OCR) of control HUVECs pre-

treated with metformin (1 mM, 10 mM, 20 mM) or control vehicle for 1 hour. (n=3). Data are mean ± 

SEM. Statistical test: unpaired t-test, One-way ANOVA/Bonferroni. *P<0.05.  
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SUPPLEMENTAL METHODS 

METABOLIC ASSAYS 

Detection of organic osmolytes: Medium was removed and control HUVECs and hyperosmolarity-ex-

posed HUVECs (900mOsm/kg) were washed with ice cold 0.9% NaCl. Osmolytes were extracted by add-

ing 300 µL of a 80% methanol (in water) extraction buffer containing 2 µM of deuterated (d27) myristic 

acid (as internal standard) to the cells. Following extraction, precipitated proteins and insolubilities 

were removed by centrifugation at 20.000 x g for 15 min at 4°C. The supernatant was transferred to the 

appropriate mass spectrometer vials. Measurements were performed using a Dionex UltiMate 3000 LC 

System (Thermo Scientific) in-line connected to a Q-Exactive Orbitrap mass spectrometer (Thermo Sci-

entific). 15 µl of sample was injected and loaded onto a Hilicon iHILIC-Fusion(P) column (Achrom). A 

linear gradient was carried out starting with 90% solvent A (LC-MS grade acetonitrile) and 10% solvent 

B (10 mM ammoniumacetate pH 9.3). From 2 to 20 minutes the gradient changed to 80% B and was 

kept at 80% until 23 min. Next a decrease to 40% B was carried out to 25 min, further decreasing to 

10% B at 27 min. Finally, 10% B was maintained until 35 min. The solvent was used at a flow rate of 200 

µl/min, the column temperature was kept constant at 25°C. The mass spectrometer operated in nega-

tive ion mode, settings of the HESI probe were as follows: sheath gas flow rate at 35, auxiliary gas flow 

rate at 10 (at a temperature of 260°C). Spray voltage was set at 4.8 kV, temperature of the capillary at 

300°C and S-lens RF level at 50. A full scan (resolution of 140.000 and scan range of m/z 70-1050) was 

applied. For the data analysis we used an in-house library and sorbitol, glycerophosphocholine, taurine, 

alanine and glutamine were quantified (area under the curve) using the XCalibur 4.0 (Thermo Scientific) 

software platform. Measured values were normalized to protein content.  
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WESTERN BLOT 

Protein lysates were separated by SDS-PAGE under reducing conditions, transferred to a nitrocellulose 

membrane, and analyzed by immunoblotting. Primary antibody used was rabbit anti-Na+/K+ ATPase α1 

subunit (1/1000, 3010, Cell Signaling) and mouse anti-β actin (1/1000, A5441, Sigma) in 5% bovine se-

rum albumin (BSA), appropriate secondary antibody was from Cell Signaling Technology (1:2000, Anti-

Rabbit IgG HRP-linked #7074; 1:2000, Anti-Mouse IgG HRP-linked #7076) in 5% bovine serum albumin 

(BSA). Signal was detected using the ECL system (Pierce) according to the manufacturer’s instructions. 

Densitometric quantifications of bands were done with Fiji software (https://fiji.sc).  

HISTOLOGY AND IMMUNOHISTOCHEMISTRY 

Renal Hypoxia: Renal hypoxia was detected after injection of 60 mg/kg pimonidazole hydrochloride 

(Hypoxyprobe kit, Chemicon-Millipore, Merck) into 48h-dehydrated and normally hydrated mice (kid-

neys were collected 2 hours after injection). To visualize the formation of pimonidazole adducts, kidney 

paraffin sections were immunostained with Hypoxyprobe-1-Mab1 following the manufacturer’s in-

structions and counterstained with hematoxylin. Pimonidazole staining was quantified using Leica Met-

aMorph AF 2.1 morphometry software package (Leica). 
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SUPPLEMENTARY TABLES 

Table S1.  SCRNA-SEQ DATA PROCESSING AND VISUALIZATION (RELATED TO FIGURE 1-5, FIGURE S1-S3; S6) 

Table S2.  TOP 50 MARKER GENES FOR GRECS, CRECS AND MRECS IN CONTROL (RELATED TO FIGURE 1) 

Table S3.  MOLECULAR TAXONOMY OF PHENOTYPES OF FRESHLY ISOLATED MOUSE RECS IN CONTROL (RELATED TO FIGURE 

2-3, FIGURE S2-S4) 

Table S4.  TOP 50 MARKER GENES FOR GREC, CREC AND MRECS PHENOTYPES IN CONTROL (RELATED TO FIGURE 2-3, 

FIGURE S2-S3) 

Table S5.  GENESET VARIATION ANALYSIS OF CREC AND MREC PHENOTYPES IN CONTROL (RELATED TO FIGURE 2-3, FIGURE 

S2-S4) 

Table S6.  DIFFERENTIAL ANALYSES OF CRECS, MRECS AND GRECS IN CONTROL VS DIFFERENT TIMEPOINTS OF DEHYDRATION 

(RELATED TO FIGURE 4, FIGURE S5) 

Table S7.  GENESET ENRICHMENT ANALYSES OF MRECS IN CONTROL VS 48 HOUR DEHYDRATION (RELATED TO FIGURE 6) 
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Table S3: Molecular taxonomy of phenotypes of freshly isolated mouse RECs in control conditions. Related to Figures 2 and 3.  

 
NOTE  1: Expression patterns of all genes in Tables S4, S5 and S6 (also of those not listed in the text, figures or Tables S4, S5 and S6) can be 
explored via the accompanying online web tool available from https://endotheliomics.shinyapps.io/rec_dehydration/ 
(username: RECdehydration@gmail.com; password: scRECpaper). 
 

KIDNEY     
COMPARMENT ASSIGNED PHENOTYPES 

CLUS
-TER 
NR 

EXPRESSED GENES TYPICAL OF FIG. TABLE 

GLOMERULI 

afferent arteriole G1 

• arterial ECs (Sox17, Sema3g, Gja4) (Corada et al., 2013; Fang et al., 2017; Kutschera et al., 2011)  
• vascular integrity & elastic fiber assembly (Ltbp4, Fbln5, Bmp4) (Noda et al., 2013; Tojais et al., 2017) 
• tight junctions (Cldn5) (Morita et al., 1999) 
• Connexin 37 (Gja4), known to be present in gRECs from afferent arterioles but not efferent arterioles (Zhang and 

Hill, 2005) 
• vasotone regulation (Edn1, Alox12, S1pr1)  (Cantalupo et al., 2017; Ma et al., 1991; Takeya et al., 2015; Yiu et al., 

2003) 

S2A 
S2A 

 
 
 

2B, S2A 

S4 

portion of the 
afferent arteriole 
associated with 

the juxtaglomerular      
apparatus 

G2 
 

• intermediate capillary-like and arterial-like EC phenotype (Kdr, CD300lg, Efnb2, Dll4, Gja4, Gja5) (Buschmann et al., 
2010; Fang et al., 2017; Kamba et al., 2006; Rosivall and Peti-Peterdi, 2006; Shutter et al., 2000; Wang et al., 1998; 
Zhao et al., 2018) 

• gap junctions (Gja5), known to be present in gRECs from afferent arterioles but not efferent arterioles (Zhang and 
Hill, 2005), may contribute to the tubuloglomerular feedback in the juxtaglomerular apparatus (Just et al., 2009; 
Kurtz et al., 2010; Sorensen et al., 2012) 

• chemokine receptor, described to be expressed by RECs in contact with renin+ cells at this location (Cxcr4)  
(Takabatake et al., 2009) 

• cell-cell interaction (Dkk2, Gja5, Dll4, Efnb2, Cx3cl1, Cxcr4, Ntn4, Lifr, Nrp1, Fas, F2r, Cdh5, Tbxa2r, Unc5b) 
(Cunningham et al., 2000; Davis et al., 2019; Imaizumi et al., 2004; Just et al., 2009; Komhoff et al., 1998; Kurtz et 
al., 2010; Lejmi et al., 2008; Min et al., 2011; Sata et al., 2000; Shutter et al., 2000; Sorensen et al., 2012; 
Takabatake et al., 2009; Wang et al., 1998; Welti et al., 2013; Yamaguchi et al., 2012) 

2B 
 S2A, S2B 

 
S2A 

 
 

2B, S2A, 
S2B 

2B, S2B 

capillary G3 

• capillary ECs (Kdr) (Kamba et al., 2006) 
• known glomerular capillary EC marker (Ehd3) (Patrakka et al., 2007) 
• Tgfβ/bmp signaling pathways (Eng, Smad6, Smad7, Xiap, Hipk2), involved in glomerular capillary formation (Cai et 

al., 2012; Liu et al., 1999; Shang et al., 2013; Ueda et al., 2008; Van Themsche et al., 2010) 

2B, S2A 
2B 

portion of the 
efferent arteriole 

G4 
 

• intermediate capillary-like and arterial-like EC phenotype (Kdr, Sox17)  (Corada et al., 2013; Kamba et al., 2006) 
• absence/low expression of connexins 37 and 40 (Gja4, Gja5) (Zhang and Hill, 2005) 

S2A 
S2A 
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associated with the 
juxtaglomerular 

apparatus 

• immune cell adhesion & extravasation, endothelial permeability (CD9, Rdx, Gas6, Podxl, Sgk1, Pde2a, Clic1, Icam2, 
Endrb) (Halai et al., 2014; Horrillo et al., 2016; Koehl et al., 2017; Koss et al., 2006; Ni et al., 2019; Reyes et al., 2018; 
Su et al., 2014; Surapisitchat et al., 2007; Xu et al., 2016) 

efferent arteriole G5 

• arterial ECs (Sox17) (Corada et al., 2013) 
• absence/low expression of connexins 37 and 40 (Gja4, Gja5) (Zhang and Hill, 2005) 
• vasotone regulation (Calca) (Reslerova and Loutzenhiser, 1998)  
• prevention of coagulation (Thbd) (Isermann et al., 2001) 
• hyperosmolarity-responsive genes (Klf4, S100a4, Slc6a6, Cryab, S100a6, Ptprr, CD200, Ebf1, Slc38a2) (Alfieri et al., 

2001; Izumi et al., 2015; Maallem et al., 2008; Schulze Blasum et al., 2016) 

S2A 
S2A 

2B, S2A 
2B 

CORTEX 

large artery C1 

• arterial ECs (Sox17, Sema3g, Gja4, Gja5, Jag1) (Buschmann et al., 2010; Corada et al., 2013; Fang et al., 2017; High 
et al., 2008; Kutschera et al., 2011)  

• suppression of calcification (Mgp) (Bjorklund et al., 2018) 
• tight junction (Cldn5) (Morita et al., 1999) 
• vascular integrity & elastic fiber assembly (Eln, Ltbp4, Fbln5, Fbln2, Bmp4) (Chapman et al., 2010; Noda et al., 2013; 

Tojais et al., 2017; Wagenseil and Mecham, 2012; Walker et al., 2015) 
• vasotone regulation (Ace, Edn1, S1pr1) (Arendshorst et al., 1990; Ma et al., 1991; Yiu et al., 2003) 
• response to shear stress (Pi16) (Hazell et al., 2016) 

S2C 
 
 
 

2E 

S4 

arteriole C2 
• arteriolar ECs (Sox17, Cxcl12) (Corada et al., 2013; Poulos et al., 2018)  
• vasotone regulation (Alox12)  (Cantalupo et al., 2017; Ma et al., 1991; Takeya et al., 2015; Yiu et al., 2003) 
• kidney function biomarker & angiostatic mediator (Cst3) (Benndorf, 2018; Li et al., 2018; Shlipak et al., 2013)  

S2C 

efferent arteriole C3 

• arteriolar ECs (Sox17, Kitl) (Corada et al., 2013; Poulos et al., 2018)  
• vasotone regulation (Calca) (Reslerova and Loutzenhiser, 1998)  
• prevention of coagulation (Thbd) (Isermann et al., 2001) 
• shared marker genes with cluster G5 (Calca, Thbd, Rpl8, S100a6, CD200, Rplp0, Ifi27l2a…) 

S2C 
S2C 

 
2E 

capillary #1 C4 
• fenestrated capillaries ECs (Kdr, Plvap) (Dimke et al., 2015; Stan et al., 1999) 
• lipid metabolism (Plpp3, Apoe, Thrsp) (Busnelli et al., 2018; Huang and Mahley, 2014; Yao et al., 2016)  
• microvascular remodeling (Id3) (Lee et al., 2014) 

S2C 
2E, S2C 

 

capillary #2 C5 

• fenestrated capillaries ECs (Kdr, Plvap) (Dimke et al., 2015; Stan et al., 1999) 
• VEGF receptors (Kdr, Flt1, Nrp1) (Welti et al., 2013)  
• Insulin-growth factor binding (Igfbp5, Igfbp3, Insr)  (Pollak, 2012) 
• blood volume & sodium excretion regulation (Npr3) (Matsukawa et al., 1999; Potter, 2011)  

2E, S2C 
2E, S2C 

postcapillary venule C6 

• intermediate fenestrated capillary-like and vein-like EC phenotype (Kdr, Plvap, Nr2f2) (Dimke et al., 2015; Stan et 
al., 1999; You et al., 2005) 

• regulation of endothelial permeability (Jup) (Nottebaum et al., 2008) 
• extracellular matrix (Tnxb, Hspg2, Ltbp1) (Gubbiotti et al., 2017; Ikuta et al., 2001; Robertson et al., 2015; Unsold et 

al., 2001; Valcourt et al., 2015) 

S2C 
 
 

2E 
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• vascular development/angiogenesis (Pbx1, Arghap31) (Caron et al., 2016; Charboneau et al., 2005) 

vein C7 
• vein ECs (Nr2f2, Plvap) (Stan et al., 1999; You et al., 2005)  
• immune cell adhesion & extravasation, endothelial permeability (Cd9, Gas6) (Ni et al., 2019; Reyes et al., 2018) 

S2C 

capillary/angiogenic C8 
• fenestrated capillary ECs (Kdr, Plvap) (Dimke et al., 2015; Stan et al., 1999) 
• angiogenic EC markers (Gpihbp1, Esm1, Col4a1, Col4a2, Trp53i11, Apln, Aplnr, Plk2, Fscn1) (del Toro et al., 2010; 

Yang et al., 2015; Zhao et al., 2018) 

S2C 
2E, 

S2C, S4B 

capillary/interferon C9 
• fenestrated capillary ECs (Kdr, Plvap) (Dimke et al., 2015; Stan et al., 1999) 
• interferon-stimulated genes (Isg15, Ifit1, Ifit3, Ifi203, Ifit3b, Ifit2, Irf7, Ifi204) (Schneider et al., 2014) 

S2C 
2E, S2C 

MEDULLA 

arteriole M1 

• arteriolar ECs (Sox17, Fbln5, Kitl) (Corada et al., 2013; Poulos et al., 2018) 
• vascular integrity & elastic fiber assembly (Ltbp4) (Noda et al., 2013) 
• similar marker genes found in arterioles from cortex and glomeruli: G1, G5, C2 and C3 (Thbd, Calca, Klf4, Tgfb2, 

Tm4sf1, Tsc22d1, Id1, Slc6a6, Cd24a, Kitl) 
• shear stress (Pi16, Klf2, Klf4) (Clark et al., 2011; Hazell et al., 2016; Wang et al., 2010) 

S3A 
 

3B, S3A 

S4 

descending vasa recta M2 

• arteriolar ECs (Sox17, Gja4, Fbln5, Cxcl12) (Corada et al., 2013; Poulos et al., 2018) 
• water and urea transport (Aqp1, Slc14a1) (Kim et al., 2002; Pallone et al., 2000)  
• vasotone regulation (Hpgd, Edn1, Adipor2) (Fesus et al., 2007; Silldorff et al., 1995) 
• tight junctions (Cldn5) (Morita et al., 1999) 

S3A 
3B, S3A 

papillary portion of 
the descending vasa 

recta 
M3 

• arterial ECs (Sox17, Fbln5) (Corada et al., 2013) 
• vasotone regulation (Alox12) (Ma et al., 1991) 
• hyperosmolarity-responsive genes (s100a4, s100a6) (Nielsen et al., 1995; Schulze Blasum et al., 2016) 

S3A 
 

3B, S3A 

capillary M4 

• fenestrated capillary ECs (Kdr, Plvap) (Dimke et al., 2015; Stan et al., 1999) 
• fatty acid transport and metabolism (Cd36, Plpp3) (Busnelli et al., 2018; Son et al., 2018) 
• VEGF receptors (Kdr, Flt1, Nrp1) (Welti et al., 2013) 
• blood volume & sodium excretion regulation (Npr3) (Matsukawa et al., 1999; Potter, 2011) 

S3A 
 

S3A 

postcapillary venule M5 

• intermediate fenestrated capillary-like and vein-like EC phenotype (Kdr, Plvap, Nr2f2, Ephb4) (Dimke et al., 2015; 
Stan et al., 1999; Wang et al., 1998; You et al., 2005) 

• regulation of endothelial permeability (Jup, Bmpr2, Il6st) (Alsaffar et al., 2018; Benn et al., 2016; Nottebaum et al., 
2008) 

S3A 

ascending vasa recta M6 
• vein ECs (Nr2f2, Plvap) (Pannabecker and Dantzler, 2006; Stan et al., 1999; You et al., 2005)  
• angiopoietin receptor (Tek), necessary for ascending vasa recta development (Kenig-Kozlovsky et al., 2018) 
• immune cell adhesion & extravasation, endothelial permeability (Gas6) (Ni et al., 2019) 

S3A 

papillary portion of 
the ascending vasa 

recta 
M7 

• vein ECs (Nr2f2, Plvap) (Stan et al., 1999; You et al., 2005) 
• hyperosmolarity-responsive genes (Cryab, Fxyd2, CD9) (Izumi et al., 2015; Sheikh-Hamad et al., 1996) 
• anaerobic glycolysis (Ldha, Aldoa, Gapdh) (Chen et al., 2017; Eelen et al., 2015) 

S3A 
3B, S3A 

capillary/angiogenic M8 • fenestrated capillary ECs (Kdr, Plvap) (Dimke et al., 2015; Stan et al., 1999) S3A 
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• angiogenic EC markers (Gpihbp1, Col4a1, Col4a2, Trp53i11, Esm1, Aplnr, Plk2) (del Toro et al., 2010; Yang et al., 
2015; Zhao et al., 2018) 

3B, S3A, 
S4B 

capillary/interferon  M9 
• fenestrated capillary ECs (Kdr, Plvap) (Dimke et al., 2015; Stan et al., 1999) 
• interferon-stimulated genes (Isg15, Ifi203, Ifit3b, Ifit2, Irf7, Ifitm3, Ifi204) (Schneider et al., 2014) 

S3A 
3B, S3A 

ascending vasa 
recta/interferon 

 
M10 

• vein ECs (Nr2f2, Plvap) (Stan et al., 1999; You et al., 2005) 
• interferon-stimulated genes (Ifit3, Ifit1, Ifi44, Iigp1, Irgm1, Ifi35) (Schneider et al., 2014) 

S3A 
S3A 
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