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Supplementary Figure S1. TRAP sample quality control. 
A. RNA integrity as determined by BioAnalyzer. N=7 for each group. B. Read depth and total 
gene detection in Lee et al1 compared with this study.  C. Venn diagram revealing the 
overlapping genes detected in this study and in Lee et al.1 D.Heatmap showing the correlation 
between each two samples. The scale bar represents the Pearson correlation coefficient. 
PTEC, proximal tubule epithelial cells. 
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Supplementary Figure S2. Sexually dimorphic genes in proximal tubule. 
A. Linear relationship of log fold change cutoffs and the number of detected DEG. B. Volcano 
plot visualizing the sexually dimorphic genes that have been validated by ISH and the published 
scRNA-seq datasets. 
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Supplementary Figure S3. Disease signature for kidney fibrosis. 
A. Venn diagram showing ~80% of the DE genes identified in fibrotic PT are overlapped at day 
5 and day 10 UUO. B. Very few differentially expressed genes are identified in the whole cortex 
from day 10 UUO and day 5 UUO kidneys. C. Venn diagram summarizing the overlap of the DE 
genes across pairwise comparisons. 
 
 
 
 
 
 
 

 



 

Supplementary Figure S4. Comparison of the DEG identified from this study and the 
published Six2-TRAP dataset 
A. Venn diagram showing ~65% of the DEGs identified in this study are overlapped with DEGs 
reported by Liu et al2 using a Six2 TRAP line. B. Venn diagram showing the upregulated genes 
unique in each study or shared by both datasets. C. GO enrichment analysis on the DEGs 
unique to each dataset, or shared by both datasets. 
 

 



 
Supplementary Figure S5. EMT marker expression in TRAP-seq and scRNA-seq. 
A. Expression of the EMT markers (RPKM value) are much higher in whole cortex than in PT. 
B. scRNA-seq3 revealed that less than 3% PT cells from the day 14 UUO kidney are expressing 
the EMT markers. 
 

 



 

 
Supplementary Figure S6. Proximal tubule pro-inflammatory gene expression and 
subtype composition revealed by scRNA-seq.  
A. Feature plot confirms the upregulation of Il34 and Pdgfd at day 14 UUO. B. Fraction of PT 
subtypes in the day 14 UUO kidney. C. Expression of immune cell markers in total cortex during 
UUO. Left: heatmap showing the marker expression in a publicly available PBMC dataset 
(https://satijalab.org/seurat/). Right: heatmap showing the expression of the same set of immune 
cell markers in our total cortex.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
Supplementary Figure S7. lincRNA expression in UUO kidneys. 
A. Venn diagram to compare the DE lincRNAs identified from this study (whole cortex) with a 
published dataset (whole kidney).4 B. Box plot showing the RPKM value for the selected 
lincRNAs Snhg18 and Gm20513 in proximal tubule. 
 
  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S8. Sample ordering validation by transcription factors known to 
be upregulated in proximal tubule during kidney fibrosis. 
The accuracy of sample ordering can be validated by the expression of the known TFs such as 
Stat3 (A) and Nfkb1 (B). 
 
  

 



Supplementary Methods 
In Situ Hybridization  
Primers were as follows: Cndp2, SP6: 5’-
CATTTAGGTGACACTATAGCTCCCTGCATGGGATCGAAG – 3’; T7: 5’ – 
TAATACGACTCACTATAGGGTTCTCATTCTGCGAGTGGGC – 3’; Hao2, SP6; 5’ - 
CATTTAGGTGACACTATAG GGCAGACTTTAAGGCACAAGC – 3’; T7: 5’ – 
TAATACGACTCACTATAGGGCTCTCCAGGGGATCGGAGAT – 3’; Cstb, SP6; 5’ – 
CATTTAGGTGACACTATAGGCCAGGTTTTTCTAGGGTCCA – 3’; T7; 5’ – 
TAATACGACTCACTATAGGGCAAAGGAGCCCCGAATCAGA – 3’; S100a10, SP6; 5’ - 
CATTTAGGTGACACTATAG GAGTGCTCATGGAACGGGAG – 3’; T7; 5’ - 
TAATACGACTCACTATAGGG TTGAGGGCAATGGGATGCAAA – 3’; Carhsp1, SP6; 5’ – 
CATTTAGGTGACACTATAGCTGGAGGAGTAGGACGTGTCG – 3’; T7: 5’ – 
TAATACGACTCACTATAGGGGGTCTCATGCTTGGTCCCTG – 3’; RhoC: 5’ – 
CATTTAGGTGACACTATAGATCGAAGTGGATGGCAAGCA – 3’; T7: 5’ – 
TAATACGACTCACTATAGGGCTTGGGGCTGGGAAACTCAT – 3’; Slc22a8, SP6; 5’ – 
CATTTAGGTGACACTATAGCTGGCTACAGTTGTCCGTGT – 3’; T7: 5’ – 
TAATACGACTCACTATAGGGGACAGGCATCCCTTCCCAAA – 3’; Snhg18, SP6; 5’ – 
CATTTAGGTGACACTATAGTCGCCTGGAAGAGACCTTCT – 3’; T7: 5’ – 
TAATACGACTCACTATAGGGTAAAACCGAAGCAGCACCGA – 3’; Gm20513, SP6: 5’ – 
CATTTAGGTGACACTATAGGAGGAGCAACCTTCCCTGGT – 3’; T7: 5’ – 
TAATACGACTCACTATAGGGATGTTCCCCAAATCAACTGCAT – 3’. In vitro transcription was 
then performed to generate digoxigenin (DIG)-labeled sense and antisense riboprobes DIG 
labeling mixture (cat #11277073910, Roche) by SP6 and T7 RNA polymerases, respectively. 
 
Bioinformatic analysis 
1. Differential expression analysis 

Genes with fewer than 0.3 RPKM (Reads Per Kilobase of transcript, per Million mapped 
reads) in one sixth of the samples were excluded from further analysis. The filtered gene-level 
counts were imported into the R/Bioconductor package edgeR.5 Raw counts were normalized 
using the TMM (Trimmed Mean of M-values) technique. P values were reported using a 
negative binomial test in edgeR, followed by a Benjamini–Hochberg multiple testing correction 
to derive FDR. Only differentially expressed genes with FDR < 0.05 and absolute log2 fold 
change >1 were considered for downstream analysis. Performance of the samples was 
assessed with a Pearson correlation matrix and multi-dimensional scaling (MDS) plots. Unless 
otherwise noted, we used R packages heatmap.2, VennDiagram and ggplot2 to generate the 
heatmaps, venn diagrams and all other plots in this study. 
 
2. Gene-set enrichment and pathway analysis 

GSEA (http://software.broadinstitute.org/gsea/index.jsp) was used to estimate the enriched 
gene ontology (GO) terms from the differentially expressed (DE) genes. We used the DE gene 
list ranked by log2 fold change as a ranked list, and a gene sets database downloaded from 
Bader Lab (http://download.baderlab.org/EM_Genesets/) that contained all mouse GO terms as 
gene set file input to GSEA. We then used 1,000 gene label permutations to identify the 
significantly enriched gene-sets as defined by adjusted p value < 0.05. Pathway analysis results 
were obtained from the ToppGene suite6 (https://toppgene.cchmc.org) using the DE genes 
derived from pairwise comparison as input. 

3. Comparative analysis of the differential genes from TRAP-seq, microdissection RNA-seq and 
TRAP microarray 
        To compare the differential gene list produced from this study to the genes from the public 
cell-type specific profiling datasets, we re-analyzed a study reported by Lee et al1 (GSE56743; 



http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56743) where each tubular segment 
was profiled using microdissection RNA-seq, and a study published by us using TRAP and 
microarray to profile the Six2 cells in the ischemia-reperfusion kidney disease model2 
(GSE52004; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52004). To minimize the 
bias arising from different analytical pipelines and parameters chosen, we used the same 
pipeline and cutoffs to generate the differential gene lists. For the microdissection RNA-seq 
dataset, we removed the lowly expressed genes using the same cutoff reported in this study 
(i.e. RPKM>0.3 in at least 1/6 samples), followed by the edgeR package to produce the 
differential gene list. For the Six2-TRAP microarray data, since edgeR was not a suitable tool to 
analyze microarray data due to the underlying statistical model (negative binomial) but limma 
can analyze both microarray and RNA-seq data (if the normalized counts were transformed by 
voom),7we therefore re-analyzed our TRAP data using limma. In this analysis, 95% of 
differential genes generated by edgeR and limma were overlapped, confirming the similar 
performance of both pipelines on our TRAP data. We then used the same cutoffs to select the 
DEGs (log fold change >1 and FDR <0.05) for the comparison. 
 
4. scRNA-seq re-analysis 

To validate genes with sexually dimorphic expression, we re-analyzed three independent 
scRNA-seq datasets generated by three different laboratories.3, 8, 9 The proximal tubule 
population was extracted from these datasets and the percentage of cells expressing the 
sexually dimorphic genes were compared between male and female. In total, we obtained PT 
single cell transcriptomes from 3 female and 10 male mice (Park et al8: 6 male; Wu et al3: 2 
male + 2 female; and Schaum et al9: 2 male + 1 female). Selected genes were reported from the 
gene list that passed the significance threshold (p<0.05, student t-test). To confirm the 
existence of a proinflammatory PT state, we re-clustered the PT population obtained from a 
D14UUO snRNA-seq data using the Seurat package. PT subtype identities were annotated 
based the marker genes identified from each subtype. Pathway analysis was carried out on the 
proinflammatory PT subtype using the ToppGene suite mentioned above. We then applied the 
single cell deconvolution algorithm BSeq-sc10 to estimate the proportion of each PT subtype 
identified from scRNA-seq in the D5 and D10 UUO PT bulk RNA-seq data. The marker genes 
for each PT subtype and the RPKM normalized gene expression matrix from TRAP were used 
as input according to the tutorial from BSeq-sc package 
(https://shenorrlab.github.io/bseqsc/vignettes/bseq-sc.html). To obtain the marker gene list for 
each immune cell types, we downloaded the precomputed Seurat R object from PBMC scRNA-
seq in Satija’s lab (https://satijalab.org/seurat/). We then used FindAllMarker function in Seurat 
to produce the marker gene list. 
 
5. Cytokine-receptor interaction analysis 

To study ligand-receptor interactions between PT and other cell types within the UUO 
kidney, we used a ligand–receptor list comprising 2,557 ligand–receptor pairs curated by the 
Database of Ligand−Receptor Partners (DLRP), IUPHAR and Human Plasma Membrane 
Receptome (HPMR).11, 12 To determine the ligand-receptor pairs to plot on the heatmap, we 
required that (i) the ligands were significantly upregulated in the PT fraction and receptors were 
only enriched in the total cortex fraction (FDR<0.05 and |logFC|>1); (ii) Each receptor should 
have at least one corresponding ligand. To highlight paracrine interactions, we further reduced 
the gene list using the cytokine-receptor pairs documented in the iTALK package.13  
 
6. Long noncoding RNA and G protein-coupled receptor (GPCR) analysis 

We extracted lncRNAs from the DE gene list based on the categories in Ensembl 
NCBIM38 annotations. lncRNA-mRNA interaction was predicted by a publicly available 
database LncRRIdb (http://rtools.cbrc.jp/LncRRIsearch/). We used network visualization 



software Cytoscape (version 3.4.0)14 to visualize lncRNA-mRNA interactions. To compare the 
lncRNAs identified from this PT-TRAP line to those reported by a bulk transcriptomic study (14), 
we set the same cutoffs to select the differentially expressed lncRNAs (|logFC|>1 and FDR 
<0.05). The number of overlapped and non-overlapped lncRNAs were visualized by venn 
diagram. To catalog the GPCRs expression in PT, we obtained a mouse GPCR gene list 
curated by IUPHAR/BPS Guide to PHARMACOLOGY database 
(http://www.guidetopharmacology.org/GRAC/GPCRListForward?class=A), and crossed it to the 
whole gene list detected in our TRAP dataset. Differential gene test was performed on the 
detected GPCRs (UUO vs CLK), and all differentially expressed GPCRs were reported if they 
passed the statistical threshold (|logFC|>1 and FDR <0.05).  
 
7. Transporters, ion channels and NFκB target gene analysis. 
        To categorize the genes that were enriched in PT, we obtained a complete mouse list of 
transporters and ion channels from the PHARMACOLOGY database 
(http://www.guidetopharmacology.org/targets.jsp). This gene list was crossed to the DEG list 
produced from the comparison of PT and total cortex. Using a similar approach, we generated 
the data for the NFκB target genes by crossing the complete NFκB target gene list curated by 
Thomas Gilmore’s lab (http://www.bu.edu/nf-kb/gene-resources/target-genes/) to the DEG list 
from this study (PT UUO versus PT CLK). 
 
8. Reconstruction of disease progression trajectory with Monocle 

We used Monocle215 to draw a minimal spanning tree connecting the PT samples from 
CLK, D5UUO and D10UUO kidneys. As input into Monocle2, we selected the highly variable 
genes for sample ordering as described in the Monocle2 tutorial (http://cole-trapnell-
lab.github.io/monocle-release/). We then reduced the data space to two dimensions using the 
reduceDimension function with ‘DDRTree’ method and ordered the samples using the 
orderCells function in Monocle2. Individual sample were color-coded based on the kidneys 
where they were collected. To identify the genes whose expression were dynamically changing 
across the trajectory from healthy to fibrotic kidneys, we performed differentially expression test 
on the samples across pseudotime using the differentialGeneTest function in Monocle2 with the 
fullModelFormulaStr parameter set to ‘Psudeotime’. The output gene list was used for the 
downstream TF analysis.  
 
9. Transcription factor and motif enrichment analysis 

To identify the TFs, we cross referenced differentially expressed genes obtained from 
Monocle to the mouse TF list downloaded from AnimalTFDB16 
(http://bioinfo.life.hust.edu.cn/AnimalTFDB/). We selected important TFs that have been 
reported by the literature as key regulators of proximal tubule injury and visualized them by 
heatmap or line chart. We then used a mogrify algorithm to score the TFs. The top 25 
upregulated and downregulated TFs were selected and visualized by bar chart. To identify 
the TF binding motif enriched in the 10kbp regions of transcription start site (TSS) for the 
DE genes, we implemented an R package RcisTarget17 on the differential gene list with the 
following steps: 1) A precomputed mouse motif database with scores for each gene-motif 
pair was downloaded from Aerts Lab (https://resources.aertslab.org/cistarget/). In this 
analysis, we used a motif database named mm9-tss-centered-10kb-7species.mc9nr.feather 
which ranked the motifs enriched in 10kbp upstream and 10kbp downstream of the TSS. 2) 
A motif annotation database (motifAnnotations_mgi) was used to associate the motif to 
transcription factors. 3) Over-representation of each motif on the gene-set is estimated by 
computing the Area Under the Curve (AUC) for each pair of motif-geneset using the 
calcAUC function provided by the RcisTarget package. 4) The significantly enriched motifs 
with normalized enrichment score greater than 3 were reported and annotated to 



transcription factors using the RcisTarget functions addMotifAnnotation and 
addSignificantGenes.  
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