Supporting Information Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors

Ruibin Liu,[†] Zhi Yue,^{†,‡} Cheng-Chieh Tsai,[†] and Jana Shen^{*,†}

† Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201

‡ Current address: Department of Chemistry, University of Chicago, Chicago, IL 60637

E-mail: jana.shen@rx.umaryland.edu

Supplementary Tables

PDB	Kinase	Kinase	Inhibitor	р <i>K</i> _a	р <i>K</i> _a	р <i>K</i> _a
ID	name	group	type ^a	catalytic Lys ^b	other Lys ^b	reactive Cys ^c
2G2F	ABL1	ΤK		8.5 (K271)	-	8.0 (C305)
5U8L	EGFR	ΤK	II	7.3 (K745)	8.2 (K852)	8.1 (C781)
5UG8	EGFR(mt)	ΤK	II	7.1 (K745)	-	8.1 (C781)
4MXC	MET	ΤK	II	7.7 (K1110)	-	-
3V5Q	NTRK3	ΤK	II	9.7 (K572)	-	-
5K9I	c-SRC	ΤK	II	8.1 (K295)	-	6.8 (C277)
4TPT	LIMK2	TKL	III	9.1 (K360)	-	5.8 (C365)
4ITJ	RIPK1	TKL	III	6.7 (K45)	-	8.3 (C53)
4USD	LOK	STE	II	9.0 (K65)	-	7.6 (C206)
4ZLO	PAK1	STE	II	9.7 (K299)	-	5.0 (C411) ^d
3NAX	PDK1	AGC	II	7.0 (K111)	-	6.0 (C260)
2YZA	AMPKa2	CAMK	II	8.3 (K45)	-	-
1G3N	CDK6	CMGC	None	6.1 (K43)	6.0 (K147)	7.9 (C15)
4JAI	Aurora	Other	II	7.9 (K162)	-	5.4 (C290) ^d
4YZ9	$IRE1\alpha$	Other	II	8.8 (K599)	-	5.8 (C715)
						7.9 (C747) ^d
2XNM	NEK2	Other	II	7.8 (K37)	-	-
4X7N	PEK	Other	II	7.6 (K622)	7.3 (K151)	5.2 (C261)
6FDZ	ULK3	Other	II	9.2 (K44)	-	-

Table S1: Calculated pK_a 's of the catalytic lysines as well as reactive lysines and cysteines in the kinase dataset studied by continuous CpHMD

^a Inhibitor type is defined in the main text. Inhibitors were removed in the simulations.

^b The first 0.2 ns (per replica) was discarded in the lysine pK_a calculations.

^c For the cysteine pK_a calculations, the first 1 ns (per replica) was discarded due to the need for longer equilibration time and slower convergence. We note, since the cysteine pK_a obtained from the second half of the simulation was always lower than that from the first half, the conclusion regarding reactivity was not affected. A large-scale validation study for cysteine pK_a calculations will be conducted in the future.

^d These residues were missing in the crystal structures and their positions were built using SWISS-MODEL.¹

Table S2: Calculated and experimental cysteine and lysine pK_a 's in the validation systems

Protein	PDB	Residue	Expt ^a	CpHMD	Propka ^b
Kinase	110E	C283	5.6	5.5	10.4
V74K	3RUZ	K74	7.4	6.8	9.1
V99K	4HMI	K99	6.5	5.8	7.5
L125K	3C1E	K125	6.2	5.6	7.3

^a The experimental pK_a of Cys283 in creatine kinase is taken from ref.² The pK_a 's of lysines in the SNase mutants are taken from ref.³

^b Propka3.1⁴ was used.

Table S3: Calculated pK_a 's for lysines in the V74K mutant of SNase and cysteine in creatine kinase

SNase (F	PDB: 3RUZ)	Creatine kinase (PDB: 1I0E)		
Residue	$pm{K}_{\mathrm{a}}$	Residue	$pm{K}_{\mathrm{a}}$	
K9	11.5	C74	>11	
K16	10.1	C146	10.8	
K24	8.7	C254	> 11	
K28	11.1	C283	5.5	
K53	10.8			
K63	10.7			
K64	11.0			
K70	10.9			
K71	10.7			
K74	7.2			
K78	10.5			
K84	10.6			
K97	10.9			
K110	10.9			
K116	10.4			
K127	10.6			
K133	11.3			
K134	10.6			
K136	11.2			

Supplementary Figures

Figure S1: **Data from the CpHMD simulations of creatine kinase and V74K SNase.** a) Cumulatively calculated unprotonated fraction versus time at different pH for Cys283 in creatine kinase (PDB: 110E). b) Cumulatively calculated unprotonated fraction versus time at different pH for Lys74 in V74K SNase (PDB: 3RUZ).

Figure S2: Data from the CpHMD simulations of the wild-type EGFR kinase (PDB: **5U8L)**. a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) and d) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysines.

Figure S3: Data from the CpHMD simulations of the mutant EGFR kinase (PDB: 5UG8). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysine.

Figure S4: Data from the CpHMD simulations of the MET kinase (PDB: 4MXC). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysine.

Figure S5: Data from the CpHMD simulations of the c-SRC kinase (PDB: 5K9I). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysine.

Figure S6: Data from the CpHMD simulations of the RIPK1 kinase (PDB: 4ITJ). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysine.

Figure S7: Data from the CpHMD simulations of the PDK1 kinase (PDB: 3NAX). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysine.

Figure S8: Data from the CpHMD simulations of the CDK6 kinase (PDB: 1G3N). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) and d) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysines.

Figure S9: Data from the CpHMD simulations of the NEK2 kinase (PDB: 2XNM). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysine.

Figure S10: Data from the CpHMD simulations of the Aurora kinase (PDB: 4JAI). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysine.

Figure S11: Data from the CpHMD simulations of the PEK kinase (PDB: 4X7N). a) Calculated pK_a 's for all lysines. The dashed line represents the model pK_a of lysine. b) Titration plots (unprotonated fractions at different pH) for the reactive lysines. c) Cumulatively calculated unprotonated fraction versus time at different pH for the reactive lysines.

Figure S12: Data from the preliminary CpHMD simulations to compare with the hyper-reactive lysine/cysteine residues discovered by chemical proteomic experiments.^{5–7} Titration plots for a) C22 of the MAP3 kinase ZAK (PDB: 5X5O) and b) K88 (K71 in the PDB file) of the Adenosine kinase ADK (PDB: 1BX4). These simulations were performed on a GPU card using our newly developed GPU-accelerated CpHMD implementation (Harris and Shen, manuscript submitted). Instead of pH replica-exchange, single-pH simulations were used. Otherwise, the simulation setup was identical to the one described in the main text. For ZAK, 5 10-ns simulations were run at each of the following pH values: 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, and 9.0. For ADK, 6 10-ns simulations were run at each of the following pH values: 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, and 9.0. For each simulation, an unprotonated fraction was calculated from the second half of the trajectory (5–10 ns). A data point represents the average unprotonated fraction calculated from multiple simulations at the same pH. The fitting pK_a was obtained from the best fit of the average unprotonated fraction the second-halfs for the different pH to the generalized Henderson-Hasselbalch equation.

References

- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F. T.; de Beer, T. A.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. *Nucleic Acids Res.* 2018, 46, 296–303.
- (2) Wang, P.-F.; McLeish, M. J.; Kneen, M. M.; Lee, G.; Kenyon, G. L. An Unusually Low pK_a for Cys282 in the Active Site of Human Muscle Creatine Kinase. *Biochemistry* 2001, *40*, 11698–11705.
- (3) Isom, D. G.; Castañeda, C. A.; Cannon, B. R.; García-Moreno E., B. Large shifts in pK_a values of lysine residues buried inside a protein. *Proc. Natl. Acad. Sci. USA* 2011, 108, 5260–5265.
- (4) Søndergaard, C. R.; Mats H. M. Olsson, M. R.; Jensen, J. H. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pK_a Values. *J. Chem. Theory Comput.* **2011**, *7*, 2284–2295.
- (5) Wang, C.; Weerapana, E.; Blewett, M. M.; Cravatt, B. F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. *Nat. Methods* **2014**, *11*, 79–88.
- (6) Backus, K. M.; Correia, B. E.; Lum, K. M.; Forli, S.; Horning, B. D.; González-Páez, G. E.; Chatterjee, S.; Lanning, B. R.; Teijaro, J. R.; Olson, A. J.; Wolan, D. W.; Cravatt, B. F. Proteome-wide covalent ligand discovery in native biological systems. *Nature* **2016**, *534*, 570–574.
- (7) Hacker, S. M.; Backus, K. M.; Lazear, M. R.; Forli, S.; Correia, B. E.; Cravatt, B. F. Global profiling of lysine reactivity and ligandability in the human proteome. *Nat. Chem.* **2017**, *9*, 1181–1190.