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Construction of WGCNA and other clustering methods
To compare ManiNetCluster clusterings with WGCNA clustering, we also construct

the weighted gene co-expression networks and clustering as follows:

We constructed the gene co-expression networks by connecting all possible gene

pairs by edges whose weights are the combination of Pearson correlations and Eu-

clidean distance of their time-series gene expression profiles. The reason for this

combination is that Pearson correlations well capture the “shape” of the data (up

or down of the expression) while Euclidean distance well capture the “scale” of the

data (low or high of the expression). First, we constructed a similarity matrix S of

a dataset X as follows [1]:

S = sgn(ρ (X))
|ρ(X)|+

(
1− log(d(X)+1)

max(log(d(X)+1))

)
2

where ρ(X) depicts the pairwise Pearson correlation and d(X) depicts the pairwise

Euclidean distance of the input dataset. The first term of the equation is the sign

of the Pearson correlation, preserving the sign of the interaction. The second terms

combine the Pearson correlation and the “Euclidean closeness”, which is the log

inverse Euclidean distance. The result S, measuring the similarity between two

genes, is a number, ranging from -1 to 1, indicating the strength of correlation and

its sign of interaction, i.e., positive or negative [1].

Next, we construct the adjacency matrix from the similarity matrix. We use the

power transformation, as suggested by Zhang et al. [2] to reduce the number of

spurious correlations in the data and to transform the network into a scale-free

topology [2]. The resulted adjacency matrix A = {aij} is computed from similarity

matrix S = {sij} as follows:

aij =

(
1

2
(1 + sij)

)β
The gene co-expression networks were then clustered into modules by using the

cuttreeDynamicTree function in WGCNA (weighted correlation network analysis)

R package [3].

Clustering results of k-means, hierarchical clustering, and expectation maximiza-

tion is obtained directly from functions kmeans(), cutree(hclust()), and Mclust()
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respectively in R packages cluster [4] and Mclust [5]. These methods are not for

simultaneous clustering, so we perform these on light period genes and dark period

genes separately. The number of cluster (k) is 34 for light period genes and 30 for

dark period genes.

Supplemental Figures and Tables

ManiNetCluster WGCNA k-means
time O(m2d) O(m2d) O(nkdi)
space O(m2) O(m2) O(nd+ kd)

Table S3:

Asymptotic complexity of ManiNetCluster, WGCNA, and k-means. Given m

points in Rd, MainNetCluster consists of these main steps: (1) constructing the

kNNGraphs and creating joint structures Z,W,D,L as in algorithm 1, (2) solving

the general eigenvalue problem, (3) clustering the transformed joint dataset. The cost

of step (1) is O(m2d) which is dominated by the constructing of adjacency matrices.

Solving the eigendecomposition in step (2) requires O(m2k) operations. The runtime

complexity of step (3) is O((m− n)2n) where n is the number of clusters. Asumming

that n, k � m, the overall time complexity of ManiNetCluster is O(m2d). WGCNA

also needs three sequential steps: (1) constructing the adjacency matrices and obtain-

ing a soft threshold, which has a complexity O(m2d), (2) calculating TOM matrices,

which also has a complexity O(m2d) (3) hierarchical clustering, which has a complexity

O(m logm). Overall, the time complexity of WGCNA is O(m2d). Thus, the running

times of ManiNetCluster and WGCNA are asymptotically the same. Their space com-

plexities are also equal, O(m2), since the TOM matrices of WGCNA and the Laplacian

of ManiNetCluster are maintained in memory. However, in practice, the memory re-

quired by ManiNetCluster can be two times of the memory required by WGCNA. This

is due to the fact that WGCNA is not designed for comparative analysis and that it can

be run sequentially dataset by dataset. In contrast, ManiNetCluster is used for compar-

ative analysis, which need to store the two datasets, i.e. the joint Laplacian, at the same

time, resulting in more space needed. The time and space complexity of k-means are

O(nkdi) and O(nd+ kd) respectively where the parameter i is the number of iteration

used in Lloyd’s algorithm. It is worth to note that, unlike k-means, the clustering results

of WGCNA and ManiNetCluster are not from raw data, but from a biologically enriched

representation of data, i.e. gene co-expression network in WGCNA and manifold in Ma-

niNetCluster. Also, in contrast to ManiNetCluster, additional complicated procedures

are required in WGCNA to detect the conserved or specific modules.
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NA CCA MW k=1

NA = no alignment

CCA = canonical correlation

analysis

MW = manifold warping (k=3)

         = manifold alignment

k=2 k=3 k=4 k=5 k=6 k=7

Figure S1:

ManiNetCluster performs better with small values of k. The results of manifold

alignment with different parameters k (number of nearest neighbors in neighborhood

network) compared to other methods. We keep the same value of dimension (d = 3) and

experiment with values of k, ranging from 1 to 7. The results show the best performance

(distances between corresponding pairs of the two species) in the case of k = 3 and

k = 6
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canonical correlation analysisno alignment manifold alignment

Figure S2:

ManiNetCluster performs better with small values of d. The results of manifold

alignment with different parameters d (the dimension of manifold) compared to other

methods. We keep the same number of nearest neighbors (k = 3) and experiment with

values of d, ranging from 2 to 12. The results show that the lower dimension is, the better

manifold alignment performs. According to the manifold hypothesis, ManiNetCluster

works best with a value of d being much smaller than 12, which is the ambient dimension.

In fact, with value of d being 2 or 4, the alignment results are significant better than

CCA. Starting from d = 8, the results of ManiNetCluster are roughly similar to that of

CCA since, in a higher dimension space, the intrinsic geometry of the data cannot be

retrieved.
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Figure S3:

Characterization of module types according to Jaccard indices and Condition

number. The 60 modules in the span of Jaccard similarities and Condition number. As

indicated by equation (4), (5), (6), conserved modules dominate the upper side, dark-

and light specific modules are in the lower left and lower right side respectively; func-

tional linked modules are in lower side, concentrating around where condition number

is 1.
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Figure S4:

Cross-heatmap demonstrating the relationship between modules in each condi-

tion (i.e. light period-specific or dark period-specific), which reveals the module types.

The off-diagonal module (depicted in blue) which has corresponding modules in both

light and dark clusters is an example of a functionally linked module, and the on-diagonal

module (depicted in green) which has corresponding modules in both light and dark

clusters is an example of condition-specific module.
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Figure S5:

Expression patterns of example functionally linked modules. Expression patterns

of light, dark, and shared genes of modules 34, 6, 15, and 40 are shown.
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