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Supporting Information Text

Design of experiments

For case 2 considered in the main text, we reconstruct the RVE corresponding to the ith DOE point (i.e., given
[vi, ri, ci]) as follows. First we randomly place ni = viL

2

100∗π∗r2
i
fibers of radius ri in a square RVE of side length

L = 200 µm. Then, we iteratively perturb the fiber locations until their spatial distribution satisfies ci. It is noted
that some combinations of [v, r, c] might correspond to infeasible RVEs or our iterative perturbation might stop
before ci is satisfied. The 3D input space of [v, r, c] along with the feasible DOE points are visualized in Fig. S1
where it can be observed that some regions of the [v, r, c] space do not correspond to realizable RVEs. Fig. S2 also
shows four sample RVEs for easier interpretation of microstructural differences. Note that the triplets [v, r, c] cannot
uniquely characterize a microstructure with randomly dispersed equally-sized fibers (1). Hence, we post-process
the reconstructed RVEs to extract four more morphological features that quantify the spatial distribution of fibers.
These features are the minimum, maximum, mean, and standard deviation of nearest neighbor distances across
the fibers: nn = [nn1, nn2, nn3, nn4]. That is, for the ith RVE, we calculate the nearest neighbor of all the fibers
(center-to-center distance) and then calculate the above-mentioned statistics. These seven non-temporal features
(along with the deformation path) are employed in our deep learning task as inputs. The deformation paths are
sampled as described in the main text, such that the stress response is learned by training the RNN on a wide range
of RVEs and deformation scenarios.

In summary, for case 2, Fig. S1 shows 5,000 sampling points obtained with Sobol sequence within the 3D space
defined by the three microstructural descriptors of the RVEs: volume fraction v (in percentage), fiber radius r (in
µm), and mean distance between fibers c (in µm). Fig. S2 shows four different samples of RVEs with different
microstructure descriptors (four of the 5,000 points in Fig. S1).

RNN architecture analysis

The three RNN architectures introduced in Fig. 2 to combine temporal and non-temporal features are extensively
tested and their training results are presented in Fig. S3 and Table S2 after 500 epochs of training on case 2 database.

Fig. 2A considers an architecture where non-temporal features are merged with temporal RNN outputs through
fully connected neural network (FCNN) layers that form a hybrid deep learning architecture. While this approach is
plausible for applications with fixed output length at the final time-step (i.e. deformation increment), its structure
does not provide a natural fit for constitutive law discovery of material systems as it restrains the temporal prediction
of the model to a fixed length and offers limited correlation between temporal and non-temporal features. Therefore,
the hybrid architecture, which combines temporal GRU outputs with non-temporal FCNN features (Fig. 2A) cannot
achieve accurate prediction on the training set and suffers from overfitting.

The second architecture shown in Fig. 2B has non-temporal features integrated into the RNN formulation as the
initial value for hidden states. As the dimensionality of non-temporal inputs and hidden states are often different, a
dense network can be used to perform this mapping. Although this approach has shown promising results for image
processing tasks (2, 3), it is not the most effective architecture for constitute laws because all information in the
hidden states are subject to change as they pass through GRU cells. That is, non-temporal inputs can get corrupted
with other hidden features which makes it excessively difficult for GRU cells to access them at downstream time steps.
Hence, this architecture with hidden state initialization performs moderately.

Finally, observing Fig. S3 and Table S2, we conclude that the proposed architecture with a secondary hidden state
(Fig. 2C) achieves significantly better accuracy consistently across different epochs and metrics.

RNN hyperparameter tests

The hyperparameters and configurations of the presented RNN models are studied and optimized in this work.
This analysis includes but is not limited to activation functions, optimization algorithms, cost functions, dropout
layers, normalization process, and addition of time-series dense layers. Fig. S4A depicts the results achieved by
varying number of neurons in each GRU cells. It can be seen that 100 neurons cannot provide enough computational
complexity to the model. While the model with 1000 neurons results in lower SAME on training set compared to the
model with 500 neurons, the models perform closely on the test set. Considering that the model with 1000 neurons
requires more computational resources and training time and overfits on the training set, RNNs with 500 neurons are
used in this work. Similarly, Fig. S4B suggests that a model with 3 layers of stacked GRU layers achieves the best
result when compared to models with 1 or 5 layers.
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Performance of proposed RNN architecture
We analyze the performance of the model with different sizes of training set to study the required database for
achieving certain error metrics, which is demonstrated in Fig. S5. As we increase the size of the training set, the
model with 3 layers of 500 neurons performs better in both training set and test set; however, larger databases lead
to an expected improvement of performance. Ultimately, the require size of database is dictated by the complexity of
the behavior of the RVE and the required accuracy. In this work, we demonstrate that one can achieve predictive
deep learning models for advanced plasticity behavior with databases that are computationally (or experimentally)
built in a feasible time frame.

Note that once trained, our data-driven constitutive model performs far faster than the finite element method. As
an example, the developed data-driven model predicts the behavior of one RVE in the second case study in 0.108
seconds on a Nvidia Titan black GPU while it takes 7.48 minutes on four cores of Intel Xeon CPU E5-2687 for
the finite element method to complete the simulation. While the exact number highly depends on the hardware
and simulated physics, it can be confidently stated that the data-driven approach offers orders of magnitude faster
evaluation. This has important implications on multi-scale simulations where the constitutive laws at each point of
the macro-scale material can be given by RNN models, instead of expensive RVE analyses. Furthermore, we note
that the two approaches scale differently, given the type of hardware they require and application. For instance,
calculating the response of 100 different RVE cases via the data-driven approach using the same hardware takes only
0.547 seconds, which is due to the batch processing capability of GPUs. Finite element methods, on the other hand,
scale by distributing sub-domains over multiple CPUs to obtain performance gains through parallel computing. These
gains often saturate due to the communication overhead between processing units.

Yield surface construction and microstructural influence
The yield surfaces presented in Fig. 5 are constructed by applying 40 linear strain paths, which are uniformly
distributed in strain space starting from the initial strain condition. To construct the original yield surface (Fig. S6A),
strain paths start from the unloaded condition and experience elastic and plastic deformation in different directions.
We record the stress state in which each linear path exceeds a plastic energy threshold of 1 mJ, which constructs the
yield surface. The plastic energy is defined as the integral of stress times plastic strain over volume and over the
deformation path:

∫ τ
0

∫
V
σ · εp dV dτ . The yield surface of an RVE after it undergoes a certain loading (Fig. S6B) is

constructed by initially applying the main load (blue solid line in Fig. S6B) for all 40 linear strain paths and then
loading the RVE in different directions until we detect the stress state where they reach the plastic energy threshold.
Note that although all the applied loadings for yield surface constructions are linear and uniform in strain space, the
stress responses are neither linear nor uniform which is due to the plasticity of the RVE.

In addition, we also illustrate the influence of the microstructure on the response of the material, as shown in Fig.
S7, by considering the same loading condition applied to two different RVEs (C and D in Fig. S2). This clarifies the
non-trivial relationship of microstructure and plastic response.
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Fig. S1. Design of experiments with 5,000 points in the 3D space of [v, r, c]. v is in percent while r and c are in µm.
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Fig. S2. Four sample RVEs. Side lengths are all 200 µm and the triplet below each RVE corresponds to [v, r, c]. v is in percent while r and c are in µm.
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Fig. S3. Cost function evolution as a function of training epochs for three different RNN architectures.
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Fig. S4. Hyperparameter analysis of the RNN model over 200 epochs of training on case 1 database for (A) number of neurons in GRU cells and (B) number of stacked GRU
layers.
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Fig. S5. Convergence test for the RNN over 200 epochs of training on case 1 database.
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Fig. S6. Yield surface construction process for (A) original yield surface and (B) yield surface after loading.
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Fig. S7. Additional result for illustrative example 2. In this case considering two RVEs with different microstructures but undergoing the same loading history. The RVEs are
labeled as MC ≡ [35%, 8 µm, 5 µm] and MD ≡ [5%, 6 µm, 5 µm] in order to refer to the microstructures C and D in Fig. S2, respectively.
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Table S1. Parameter ranges for RVE reconstruction and load-path design for case 2.

v (%) r (µm) c (µm) E = [e11, e22, e12]

Min 5 3 8 [−0.02, −0.02, −0.02]
Max 40 10 20 [0.02, 0.02, 0.02]
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Table S2. Metrics comparison between trained RNN architectures after 500 epochs of training for case 2.

RNN architecture Train set SMAE Test set SMAE Train set SMPED Test set SMPED

Configuration A – hybrid mix 0.00557 0.00888 0.00233 0.00243
Configuration B – hidden state initialization 0.00345 0.00367 0.00130 0.00144
Configuration C – secondary hidden state 0.00242 0.00256 0.00104 0.00104
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Table S3. Matrix and fiber material properties for case 1.

Matrix Young’s Modulus (Em) 68.9 GPa

Matrix Poisson’s ratio (νm) 0.33

Matrix Voce isotropic hardening A = 74.4 MPa
σiso,m = B − (B −A) exp(−nε) B = 144.98 MPa

n = 7.25

Fiber density (ρf ) 1.0 g/cm3

Fiber Arruda shear coefficient (µf ) 166 MPa

Fiber Arruda locking stretch (λf ) 2.8

Fiber Arruda compressibility coefficient (Df ) 0.0025

M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao and M. A. Bessa 13 of 16



Table S4. Matrix and fiber material properties for case 2.

Matrix Young’s Modulus (Em) 4.07 GPa

Matrix Poisson’s ratio (νm) 0.34

Matrix Voce isotropic hardening A = 16.44 MPa
σiso,m = B − (B −A) exp −nε B = 69.08 MPa

n = 102.5

Matrix kinematic back-stresses (nkin,m) 2

Fiber Young’s Modulus (Ef ) 15 GPa

Fiber Poisson’s ratio (νf ) 0.2

14 of 16 M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao and M. A. Bessa



Table S5. Tabular values of the hardening law for the matrix.

strain stress (MPa)

0 16.44623084
1.82E-04 19.0853206
3.49E-04 21.86697699
8.62E-04 24.69504529

0.00163815 27.43028185
0.00240308 30.20861866
0.00317509 33.0632108
0.00395132 36.08357382
0.00493514 39.04757864
0.00636065 41.87896426
0.00790903 44.82970433
0.00952196 47.81359834
0.01127912 50.84390993
0.01319586 53.77807359
0.01545202 56.71886509
0.01774464 59.87847969
0.02049382 62.86237823
0.02939382 65.87610888

0.04376 68.174796
0.0987 69.088644

1 70
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