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Supplementary Information Text 

 

Materials and Methods 

Animal protocols. Hepatocyte-specific Shp2 KO mice (SKO), Pten KO mice (PKO) and 

Shp2 and Pten double-knockout (DKO) mice were generated and characterized as described 

previously 1-3. All animal experimental protocols (S09108) have been approved by the 

Institutional Animal Care and Use Committee (IACUC) of the University of California, San 

Diego, following NIH guidelines. 

 

RNA sequencing and data analysis. Total RNAs were extracted from liver tissues using 

QIAGEN RNeasy columns, and RNA-sequencing (RNA-seq) was performed using the multiplex 

analysis of polyA-linked sequence and the Illumina Hiseq2000 machine. Raw reads generated by 

RNA-seq experiments were mapped to the mm9 mouse reference genome using Star (2.3.0). The 

expression level of each gene under different conditions was obtained using cuffdiff. Quality 

control of RNA-seq data was performed by calculating Pearson’s correlations between samples 

and analyzing expression level changes of Shp2/Ptpn11 and Pten in WT and mutant livers. We 

retained 16230 genes that had a non-zero expression level in at least 12 of all the samples for the 

following analyses. Differentially expressed genes between mutant and WT livers at different 

time points were identified using statistical test (t-test, q values<0.05). In order to identify when 

and how these differentially expressed genes were changed during liver tumorigenesis in SKO, 

PKO and DKO mice, we selected genes that have differential expression in at least two mutant 

livers. We also performed targeted analysis of the expression of ligands/receptors and epigenetic 

regulators during HCC development. Ligand and receptor genes were collected from Database of 

Ligand-Receptor Partners (DLRP), and epigenetic genes were collected from EpiFactors 

database. Changes in gene expression levels were visualized using heatmaps, which were 

generated using the heatmap package in R. Based on differentially expressed genes, top-enriched 

biological processes and pathways of mutant livers at different ages were identified by 

performing gene set enrichment analysis (GSEA). In order to identify when and how these 

biological processes and pathways were changed during the course of tumorigenesis in PKO 



liver, we selected biological processes and pathways that have significant changes in at least two 

time point at PKO liver.  

 

Significantly changed TF clusters between WT livers and tumors 

Transcription factors (TF) and their downstream target genes often co-express to control 

specific cell activities. We downloaded and integrated gene-gene correlative relationships from 

Cellnet database (http://cellnet.hms.harvard.edu/downloads/) and geneFriend database 

(http://www.genefriends.org/RNAseq/about/). Correlation threshold was set as 0.5, genes that 

have high positive correlation with each TF were identified and defined as a TF cluster. In total, 

1568 TF clusters have been collected and defined. We further assessed the ability of these genes 

in TF cluster to capture key features of a given TF. We tested TF clusters by comparing their 

well-documented functions and the top-enriched biological processes of the co-expressed genes. 

For example, consistent to the known function of E2F1 in control of cell cycle progression, gene 

ontology analysis of the E2F1 cluster members identified cell cycle as the top-enriched 

biological process. In a similar way, we tested other TFs by comparing their well-documented 

functions and the top-enriched biological processes of the co-expressed genes (Table S6). 

R package GSA has improved GSEA based on Kolmogorov-Smirnov-like statistics to 

identify differentially expressed genes from the transcriptomes. Using the gene list of each TF 

cluster and gene expression profiles of WT livers and tumors as input, GSA evaluated whether 

each TF cluster was differentially expressed between the two groups of samples by calculating a 

set score and p value for each TF cluster. We set the set score >0.8 and p-value <0.05 to identify 

significantly up-regulated TF clusters and set score <-0.8 and p-value <0.05 to identify 

significantly down-regulated TF clusters. In total, 36 up-regulated and 25 down-regulated TF 

clusters from WT livers to tumors were identified. Regression analysis method LASSO (least 

absolute shrinkage and selection operator) was performed using Glmnet package in R, and 

Random Forests was performed using Random Forests package in R.  

 

Human data and prognosis analysis 

Gene expression profiles, tumor stages, survival information, gender, genetic alterations, 

age, gender information of samples are available in 371 HCC samples in the TCGA dataset. 



Transcriptomes and clinical information of human HCC patients in TCGA were downloaded 

from The Cancer Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/). 

Gene expression profiles, tumor stages, survival information, gender, age, cirrhosis status, 

one or more nodules, tumor sizes and AFP levels of samples are available in 247 HCC samples 

in the GSE14520 dataset. Transcriptome and clinical information of HCC patients in GSE14520 

dataset were downloaded from National Center for Biotechnology Information (NCBI) using 

GEO accession ID. Gene expression profiles, tumor stages, survival information, gender, age, 

cirrhosis status, one or more nodules, tumor sizes and AFP levels of samples are available for 

100 HCC samples in GSE16757 dataset. Transcriptomes and clinical information of human HCC 

patients in GSE16757 dataset was kindly provided by J. Lee (MD Anderson). Kaplan-Meier 

plots and log-rank test were used to determine the significant difference between survival curves. 

 

Inferring correlations between TF clusters 

First, we calculated Pearson’s correlations and p-values between TFs using expression 

levels of TFs in all samples. As each TF cluster included a list of genes, we further calculated 

correlations between genes in each TF cluster. The medium of these correlations was used to 

define the relationship between TF clusters. We set a threshold to obtain significant negative 

correlation (Pearson’s correlations <-0.5 and p-value <0.05, and medium correlation <0) and 

positive correlation (Pearson’s correlations >0.5 and p-value <0.05 and medium correlation >0) 

between TF clusters. Correlations between TF clusters were visualized using network. 

 

Quantitative description and analysis of a coarse-grained model 

 Quantitative description of the coarse-graining model in Fig. 4C consists of a set of 

differential equations. 
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 Where [TF_WT] and [TF_HCC] denote expression levels of activated TF clusters in WT 

liver and HCC, respectively (Fig. 2C). The right-hand side of the equation is given by the sum of 

basal production rate, integrated nonlinear production rate and linear natural degradation rate. 



Integrated nonlinear production rate was determined by the combined effects of regulatory 

interactions. Each parameter in the equations has a specific biological meaning. 𝐵9	 denotes the 

basal production rate of cluster 𝑖. Activations and inhibitions are modeled using sigmoidal form 

functions in a standard way. 𝑉9	denotes the maximal production of cluster 𝑖 , 𝑘9  and the 

expression level of cluster 𝑖  at which 𝑉 = 𝑉9/2 , 𝑛  denotes the cooperative coefficients. 𝜏9 

denotes the time constant of cluster 𝑖 normalized to the degradation rate. We assumed that the TF 

expression levels were regulated at similar time scale. As it is difficult to obtain accurate values 

of these parameters, we used a dimensionless modeling framework in which the activation level 

of each protein was normalized to a range from 0 to 1, 0 denotes minimal activation, 1 means full 

activation. Therefore 𝑉"#_%" = 1, 𝑉"#_788 = 1 by definition. Simulation result in Fig. 2D was 

obtained using time constant 𝜏"#_%"	𝑎𝑛𝑑	𝜏"#_788  as 1, cooperative coefficients as 3 (as most 

cooperative coefficients in biochemical reactions ranged from 2 to 4), and 𝑘9	𝑎𝑠	1/8. This 

modeling framework provided a coarse-graining description of network topology, and the 

microscopic detail and parameter values are not required to be overly precise. Given parameters 

in the model, calculations of attractors from equations and simulations were conducted as 

described previously 4.  

 

A multi-layer computational framework to calculate index from the transcriptomes 

 Establishing a multi-layer model consisting of model training and testing, we first outline 

these steps and then provide detailed description of each step. 

Model training: 

1. Collect transcriptomic data of adult livers and HCCs for model training. 

2. Calculate significantly up/down-regulated TF clusters in HCCs compared with the WT 

adult livers. 

3. Calculate optimized weights of TF cluster’s target genes to determine the changes of TF 

clusters between adult livers and HCCs. 

4. Calculate the activities of TF clusters in each training WT adult liver or HCC sample. 

5. Calculate the tumor-promoting and -inhibiting strengths in each training WT liver or 

HCC sample using the averaged activities of up- and down-regulated TF clusters of each 

sample. 

6. Calculate the weight of tumor-promoting and -inhibiting strengths to define a TI score.  



Model testing: 

7. Using the trained model and the RNA-seq data in query, we calculated the activity of 

each TF cluster, averaged activity of up/down-regulated TF cluster, and TI score.  

Step 1, Data collection for model training. We divided the collected samples into four 

groups (Fig. 1A). The transcriptomic data of WT adult livers and HCC samples were used for 

model training. 

Step 2, Identification of significantly changed TF clusters. Based on the whole 

transcriptomes of training samples and the gene list of each TF cluster, we identified 36 up-

regulated (p-value <0.05 and set score >0.8) and 25 down-regulated TF clusters (p-value <0.05 

and set score <-0.8) in HCC. These 61 significantly changed TF clusters were used as nodes in 

the second layer.  

Step 3, Calculation of an optimized gene weight to define the changes of TF clusters. For 

each significantly changed TF cluster, we used its target genes as predictor variables and 

calculated the optimized weight of each target genes, to define the change of a TF cluster 

between WT adult liver and HCC using Random Forests. We used 𝑤9,E to denote the weight of 

gene 𝑗 to distinguish TF cluster 𝑖. 

Step 4, Quantification of TF clusters’ activities in each WT adult liver or tumor tissue. 

We identified significantly up/down-regulated TF clusters in HCC samples compared to WT 

adult livers. To quantify the activity of these TF clusters in each sample, we reasoned that the 

gene expression profile of a WT adult liver should fall within a range determined by the 

expression profiles of all WT adult liver tissues, and the expression profile of a HCC sample 

should fall within a range determined by the expression profiles of all HCC tissues. We 

formulated a notion called gene expression deviation/difference to quantify the differences 

between each and all WT adult liver samples or HCC samples. First, we normalized the 

expression level of each gene in the query sample using expression distribution of each gene in 

all WT adult liver samples or HCC samples as reference/background. The normalized expression 

level of each gene was calculated using Z score. The difference/deviation of TF cluster between 

gene expression patterns in query and WT liver/HCC expression pattern can be defined by 

adding contribution, according to weight and expression deviation, for each gene. Therefore, the 

deviation of TF cluster i in a query q, compared with that in WT liver samples can be quantified 

using equation: 



𝑇𝐹9%"(𝑞) =JK|𝑧E%"(q)| ∗ 𝑤9,EO
2P

EQR

 

Where 𝑛9  denotes the number of target genes in a TF cluster 𝑖  and 𝑧9,E%"(𝑞)  denotes 

normalized expression level of gene 𝑗 in sample 𝑞	with gene expression level distribution of gene 

𝑗 in the complete adult WT liver samples as reference/background. 𝑤9,E denotes weight of gene 𝑗 

to distinguish TF cluster 𝑖, which is derived in Step 3 using Random Forests. Therefore, the 

extent to which TF cluster 𝑖 in gene expression of sample 𝑞	 is deviated from adult WT liver is 

quantified. We transformed and normalized the raw deviation score using equation: 

𝑁𝑇𝐹9%"(𝑞) =
𝑇𝐹9%"(𝑞)

(∑ 𝑇𝐹9%"(𝑞))/𝑊𝑇	𝑠𝑎𝑚𝑝𝑙𝑒	𝑛𝑢𝑚𝑏𝑒𝑟\]	9\	%"	\^_`ab
 

Where (∑ 𝑇𝐹9%"(𝑞))/𝑊𝑇	𝑠𝑎𝑚𝑝𝑙𝑒	𝑛𝑢𝑚𝑏𝑒𝑟\]	9\	%"	\^_`ab  is the averaged deviation of samples 

in the complete training data of adult WT liver. In this way, we quantified the deviation of each 

TF signature in query sample compared to WT liver.  

 Using this approach, we calculated the deviation of each TF cluster in each sample 

compared to WT liver sample and tumors in PKO and DKO mice, respectively. Based on these 

deviations of each TF cluster in a query expression pattern, we quantified its status using 

equation: 

𝑇𝐹(𝑖, 𝑞) =
𝑁𝑇𝐹9%"(𝑞)

𝑁𝑇𝐹9%"(𝑞) + 𝑁𝑇𝐹9788(𝑞)
∗ 𝑇𝐹𝑖788 −

𝑁𝑇𝐹9788(𝑞)
𝑁𝑇𝐹9%"(𝑞) + 𝑁𝑇𝐹9788(𝑞)

∗ 𝑇𝐹𝑖788  

Where 𝑇𝐹(𝑖, 𝑞) denotes the change of TF cluster 𝑖 in sample 𝑞. By definition, the 𝑇𝐹(𝑖, 𝑞) range 

from -1 to 1, where 1 denotes this TF cluster was fully up-regulated compared to WT liver, 0 no 

significant change, and -1 down-regulation. In this way, we quantified changes of each TF 

cluster using gene expression profile of WT liver and HCC.  

Step 5, Calculation of tumor-promoting and -inhibiting strengths of each sample in the 

third layer. In the third layer, these significantly changed TF clusters were divided into two 

groups according to their up- or down-regulated expression in tumors. These 36 TF clusters up-

regulated in tumors were assumed to be pro-tumorigenic, with the 25 down-regulated TF clusters 

being anti-tumorigenic. Activities of these TF clusters in each sample were obtained in step 4. 

For each sample 𝑞, the average activity of these 36 up-regulated TF clusters was used to quantify 



its tumor-promoting strength, and the average activity of these 25 down-regulated TF clusters 

was used to quantify its tumor-inhibiting strength. 

𝐺_𝑝𝑟𝑜𝑚𝑜𝑡𝑖𝑛𝑔(𝑞) =
1

𝑁`fg
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R
 

𝐺_𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔(𝑞) =
1
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Where 𝐺`fg_go92p(q)	𝑎𝑛𝑑	𝐺_𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔(𝑞) denote the average activity of pro-tumorigenic 

strength and average activity of anti-tumorigenic strength, respectively. 𝑁`fg	𝑎𝑛𝑑	𝑁\l`	denote 

the number of up-regulated TF cluster and down-regulated TF cluster, respectively.  

Step 6, Calculation of the weight of tumor-promoting and -inhibiting strengths in 

defining the TI. The tumor-promoting strength and tumor-inhibiting strength of adult WT liver 

samples and HCC samples were calculated in step 5, which were used to define HCC index 

using the following equation. 

𝐼𝑛𝑑𝑒𝑥(𝑞) = 𝑐R ∗ 𝐺_𝑝𝑟𝑜𝑚𝑜𝑡𝑖𝑛𝑔(𝑞) + 𝑐u ∗ 𝐺_𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔(𝑞) + 𝑐v 

Where 𝑐R	𝑎𝑛𝑑	𝑐u denote weights of tumor-promoting strength and tumor-inhibiting strength in 

defining TI. We used our training adult WT liver sample and HCC samples to infer the 

optimized values of these weights. We defined the index range from -1 to 1, -1 denotes adult WT 

liver and 1 denotes HCC. By definition, the index of adult WT liver samples in training datasets 

is -1 and HCC samples is 1. We then performed regression analysis to calculate optimized 

parameter values using LASSO. 

Step 7, Model testing. For each query transcriptome, we calculated activities of TF 

clusters, tumor-promoting and -inhibiting strengths in the sample, and finally a TI score using the 

trained multi-layer computational model. In order to make data from different backgrounds and 

platforms comparable, we performed quantile normalization to diminish batch effects using R 

package preprocess Core. According to step 4, we calculated the activity of each TF cluster 

query gene expression pattern. According to step 5, we calculated tumor-promoting and -

inhibiting strengths in the samples. At last, we calculated its index according to tumor-promoting 

and -inhibiting strengths according to step 6. According to the definition, if a TI score <0, it 

indicates this sample is more like normal liver or liver with chronic liver diseases before passing 

the transition point. However, if a TI score >0, it indicates this sample has passed the critical 

tumorigenic switch point more like a tumor tissue. The tumorigenic index scores of WT, SKO, 



PKO and DKO livers were calculated according to their transcriptomes. The TIs of human liver 

samples were also calculated from their transcriptomic data deposited in the public datasets. 

  



Supplementary Figures 

 
Figure S1. Histopathological characterization of liver samples 

Representative liver sections with H&E staining are shown for the liver samples of four 

genotypes collected at various time points as shown in Fig.1A. Scale bars: 100 µM. 

 

 



 
 

Figure S2. Quality control of RNA-seq data 

(A). Pearson’s correlations between samples were calculated and visualized using heatmap.  



(B). Expression levels of Shp2 in SKO livers (hepatocyte-specific deletion of Shp2) and DKO 

livers (hepatocyte-specific deletion of Shp2 and Pten) were significantly lower than WT livers.  

(C). Expression levels of Pten in PKO livers (hepatocyte-specific deletion of Pten) and DKO 

livers (hepatocyte-specific deletion of Shp2 and Pten) were significantly lower than WT livers.  

  



 
Figure S3. Significantly changed biological processes during tumorigenesis in PKO livers 

(A). GSEA showed significant changes in fatty acid and lipid metabolic processes in PKO livers 

starting from 1-month (1M). 

(B). Expression of epigenetic and DNA repair components started to change significantly at 1M. 

(C). Expression of extracellular structural elements changed significantly starting from 1M. 

(D). Expression of amino acid metabolic processes started to change from 2M. 

(E). Expression of several immunological and inflammatory processes started to change from 

5M. 

(F). Expression of bile acid and cholesterol metabolic processes had significant changes at 12M. 

  



 
Figure S4. Significantly changed biological processes during tumorigenesis in SKO and 

DKO livers 

(A). GSEA showed significant changes in MAPK activity in SKO livers starting from 1-month 

(1M). 

(B). Cell cycle processes started to change from 1M in SKO liver. 

(C). Immunological and inflammatory process started to change from 1M in SKO liver. 

(D). Epigenetic machinery changed significantly at 12M in SKO liver. 

(E). Epigenetic machinery started to change from 1M in DKO liver. 

(F). fatty acid metabolism started to change from 1M in DKO liver. 

(G). Immunological and inflammatory process started to change from 1M in DKO liver.   



 
Figure S5. Significantly changed TF clusters in tumors relative to WT adult livers 

(A). Schematic illustration of TF downstream genes that co-express with a TF to control specific 

cell activities. A TF and its co-expressed genes are combined into a TF cluster for further 

analysis. 

(B). Co-expressed genes of each TF were obtained from TF-gene correlation in public databases 

Cellnet and geneFriend. Genes that have high positive correlation with each TF (Pearson’s 



correlation>0.5) were identified and grouped into a TF cluster, with a total of 1568 TF clusters 

established. 

(C). Functional assessment of co-expressed genes in a TF cluster to capture its key biological 

features using E2F1 as an example. Consistent to the known function of E2F1 in control of cell 

cycle progression, gene ontology analysis of the E2F1 cluster members identified cell cycle as 

the top-enriched biological process. In a similar way, we tested other TF clusters by comparing 

their well-documented functions and the top-enriched biological processes of the co-expressed 

genes (Table S6). 

(D). A total of 36 up-regulated and 25 down-regulated TF clusters were identified in tumors 

(PKO at 16 months, DKO at 7 and 12 months), as compared to WT livers (WT adults at 2, 3, 4, 5, 

7, 9, 12, and 16 months) using gene set analysis. Expression of the up- and down-regulated TF 

clusters in WT livers or tumors was visualized using heatmap. For example, the RelA and 

HNF4a clusters were significantly up- and down-regulated in tumors, respectively. 

 

 



 
Figure S6. Temporal gene expression patterns in WT, SKO, PKO and DKO livers 

(A). Heatmap for temporal gene expression profiles of TF clusters including all replicated 

samples collected from WT, SKO, PKO and DKO livers at various time point. 

(B). Heatmap of the averaged gene expression levels in all replicates of samples in (A). 

 



 
Figure S7. TI values of human non-tumor, pre-cancer and cancer samples with different 

backgrounds 

(A). The TI values of 371 HCC samples in GSE19977 dataset were obtained at the time of 

surgical resection.  

(B). The TIs of 52 adjacent non-tumor liver samples and 115 liver tumor samples in GSE76427.  

(C). The TIs of 79 cirrhotic liver samples and 61 tumor samples in GSE54236.  

(D). The TIs of 36 HCV-related fibrotic liver samples (fibrosis stages 1/2: n=18; fibrosis stages 

3/4: n=18) in GSE33258. The averaged TI value of fibrosis stages 3/4 was higher than that of 

fibrosis 1/2.  

(E). The TIs of 7 control liver samples and 15 alcoholic hepatitis samples in GSE28619. The TI 

values increased significantly from control liver to alcoholic hepatitis.  

(F). The TIs of 13 non-tumor liver samples, 19 steatosis liver samples and 12 steatohepatitis liver 

samples in GSE33814. The TI values increased gradually from non-tumor liver, steatosis liver to 

steatohepatitis liver.  



 
Figure S8. The TI derived using LASSO was not a good predictor of clinical outcomes 

(A). TIs were calculated using LASSO based on the same data in TCGA dataset as in Fig. 5G. 

The TI values failed to distinguish stage I and II liver tumors. 

(B). The 371 liver tumor samples in TCGA dataset were divided into low and high TI groups at 

the median TI (high TI: n = 186; low TI: n= 185), Kaplan-Meier analysis showed no significant 

difference of survival between the two subgroups (log-rank test, p=0.2). 

(C). TIs were calculated using LASSO based on the same microarray data in Fig. 5I of 445 non-

tumor or tumor samples in GSE14520 (tumor: n=221; non-tumor: n=224). The TI values failed 

to predict tumor stages, the average TI of non-tumor samples was even higher than the tumor 

samples.  

(D). The 221 tumor samples in GSE14520 were divided into low and high TI groups at the 

median TI (high TI: n = 111; low TI: n = 110), Kaplan-Meier survival analysis showed no 

significant difference between the two subgroups (log-rank test, p=0.3). 



(E). TIs were calculated using LASSO based on the same microarray data in Fig. 5K of 100 liver 

tumor samples in GSE16757, with well-documented clinical data of tumor stages (stage I: n=35; 

stage II and III: n=65). The TI values correlated with the tumor stages in GSE16757, with 

advanced HCCs having significantly higher TI.  

(F). The 100 tumor samples in GSE16757 were divided into low and high TI groups by the 

median TI (high TI: n = 50; low TI: n = 50). Kaplan-Meier survival analysis showed shorter 

survival and poor prognosis for patients with high TI, compared to the low TI group (log-rank 

test, p=0.021). 

  



 
Figure S9. The TI derived using Random Forest was less effective in predicting clinical 

outcomes 

(A). TIs were calculated using Random Forest based on the same data of 371 liver tumor 

samples in TCGA dataset in Fig. 5G. A total of 347 tumor samples were deposited with well-

documented tumor stages (stage I: n=171; stage II: n=86; stage III and more advanced: n=90). 

The TI values calculated using Random Forest failed to distinguish the tumor stages. 

(B). The 371 liver tumor samples in TCGA dataset were divided into low and high TI groups by 

the median TI (high TI: n=186; low TI: n=185). Kaplan-Meier survival analysis showed short 

survival and poor prognosis for patients with high TIs (red), compared to the low TI group (blue) 

(log-rank test, p<0.003). 

(C). TIs were calculated using Random Forest based on the same data in Fig. 5I of 445 non-

tumor or tumor liver samples in GSE14520 (tumor: n=221; non-tumor: n=224). 

(D). The 221 tumor samples in GSE14520 were divided into low and high TI groups at the 

median TI (high TI: n=111; low TI: n=110). Kaplan-Meier survival analysis showed shorter 



survival and poorer prognosis for patients with high than the low TI group (log-rank test, 

p<0.0005). 

(E). TIs were derived using Random Forest from the same data in Fig. 5K of 100 liver tumor 

samples in GSE16757 dataset, with well-documented tumor stages (stage I: n=35; stage II and III: 

n=65). The TI values failed to distinguish tumor stages. 

(F). The 100 tumor samples in GSE16757 dataset were divided into low and high TI groups at 

the median TI (high TI: n=50; low TI: n=50). Kaplan-Meier survival analysis showed no 

significant difference of survival between the two subgroups (log-rank test, p=0.64). 

  



Dataset S1 (separate file), differentially expressed genes in mutant livers at different months 

Dataset S2 (separate file), significantly changed biological processes 

Dataset S3 (separate file), significantly changed ligands and receptors 

Dataset S4 (separate file), significantly changed epigenetic regulators 

Dataset S5 (separate file), significantly changed pathways 

Dataset S6 (separate file), correlated genes of each TF cluster 

Dataset S7 (separate file), test of TF clusters 

Dataset S8 (separate file), significantly changed TF clusters in tumors compared to WT liver 

Dataset S9 (separate file), correlation between the TF clusters inferred from RNA-seq data 

Dataset S10 (separate file), Mouse liver disease datasets 

Dataset S11 (separate file), Human liver disease datasets 
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